Copyright and Licence Notice

© Commonwealth of Australia and the States and Territories of Australia 2020, published by the Australian Building Codes Board

The material in this publication is licensed under a Creative Commons Attribution-NoDerivatives - 4.0 International licence, with the exception of:

- any third party material
- any trade marks, and
- any images or photographs.

You may not make derivatives of this publication, but may only use a verbatim copy. More information on this CC BY ND license is set out at the Creative Commons Website. Enquiries about this publication can be sent to:

Australian Building Codes Board
GPO Box 2013, Canberra ACT 2601
Phone: 1300 134 631
Email: ncc@abcb.gov.au
Web: abcb.gov.au

Attribution

Use of all or part of this publication must include the following attribution: © Commonwealth of Australia and the States and Territories 2022, published by the Australian Building Codes Board.

Disclaimer

By accessing or using this publication, you agree to the following:

While care has been taken in the preparation of this publication, it may not be complete or up-to-date. You can ensure that you are using a complete and up-to-date version by checking the Australian Building Codes Board website (abcb.gov.au).

The Australian Building Codes Board, the Commonwealth of Australia and States and Territories of Australia do not accept any liability, including liability for negligence, for any loss (howsoever caused), damage, injury, expense or cost incurred by any person as a result of accessing, using or relying upon this publication, to the maximum extent permitted by law. No representation or warranty is made or given as to the currency, accuracy, reliability, merchantability, fitness for any purpose or completeness of this publication or any information which may appear on any linked websites, or in other linked information sources, and all such representations and warranties are excluded to the extent permitted by law.

This publication is not legal or professional advice. Persons rely upon this publication entirely at their own risk and must take responsibility for assessing the relevance and accuracy of the information in relation to their particular circumstances.
General table of contents

Front matter

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copyright and Licence Notice</td>
<td>2</td>
</tr>
<tr>
<td>How to use the Housing Provisions</td>
<td>6</td>
</tr>
</tbody>
</table>

Structure

Part 2.1 Scope and application of Section 2 ... 10

Part 2.2 Structural provisions .. 11

Site preparation

Part 3.1 Scope and application of Section 3 ... 17

Part 3.2 Earthworks .. 18

Part 3.3 Drainage ... 21

Part 3.4 Termite risk management .. 27

Footings and slabs

Part 4.1 Scope and application of Section 4 ... 32

Part 4.2 PreparationFootings, slabs and associated elements 35

Masonry

Part 5.1 Scope and application of Section 5 ... 64

Part 5.2 Masonry veneer .. 65

Part 5.3 Cavity masonry .. 67

Part 5.4 Unreinforced single leaf masonry 69

Part 5.5 Isolated masonry piers ... 75

Part 5.6 Masonry components and accessories .. 78

Part 5.7 Weatherproofing of masonry ... 93

Framing

Part 6.1 Scope and application of Section 6 ... 99

Part 6.2 Subfloor ventilation ... 100

Part 6.3 Structural steel members .. 104

Roof and wall cladding

Part 7.1 Scope and application of Section 7 ... 145

Part 7.2 Sheet roofing .. 146

Part 7.3 Roof tiles and shingles ... 156

Part 7.4 Gutters and downpipes ... 165

Part 7.5 Timber and composite wall cladding ... 177

Glazing

Part 8.1 Scope and application of Section 8 ... 189
<table>
<thead>
<tr>
<th>Part</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>Glazing Windows and external glazed doors</td>
<td>190</td>
</tr>
<tr>
<td>8.3</td>
<td>Glass</td>
<td>211</td>
</tr>
<tr>
<td>8.34</td>
<td>Human impact safety requirements for glazing</td>
<td>215</td>
</tr>
<tr>
<td>9</td>
<td>Fire safety</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Scope and application of Section 9</td>
<td>222</td>
</tr>
<tr>
<td>9.2</td>
<td>Fire separation of external walls</td>
<td>223</td>
</tr>
<tr>
<td>9.3</td>
<td>Fire protection of separating walls and floors</td>
<td>251</td>
</tr>
<tr>
<td>9.4</td>
<td>Fire protection of garage top dwellings</td>
<td>257</td>
</tr>
<tr>
<td>9.5</td>
<td>Smoke alarms and evacuation lighting</td>
<td>259</td>
</tr>
<tr>
<td>10</td>
<td>Health and amenity</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Scope and application of Section 10</td>
<td>265</td>
</tr>
<tr>
<td>10.2</td>
<td>Wet areas and external waterproofing</td>
<td>266</td>
</tr>
<tr>
<td>10.3</td>
<td>Room heights</td>
<td>290</td>
</tr>
<tr>
<td>10.4</td>
<td>Facilities</td>
<td>292</td>
</tr>
<tr>
<td>10.5</td>
<td>Light</td>
<td>294</td>
</tr>
<tr>
<td>10.6</td>
<td>Ventilation</td>
<td>298</td>
</tr>
<tr>
<td>10.7</td>
<td>Sound insulation</td>
<td>301</td>
</tr>
<tr>
<td>10.8</td>
<td>Condensation management</td>
<td>312</td>
</tr>
<tr>
<td>11</td>
<td>Safe movement and access</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Scope and application of Section 11</td>
<td>314</td>
</tr>
<tr>
<td>11.2</td>
<td>Stairway and ramp construction</td>
<td>315</td>
</tr>
<tr>
<td>11.3</td>
<td>Barriers and handrails</td>
<td>324</td>
</tr>
<tr>
<td>12</td>
<td>Ancillary provisions</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Scope and application of Section 12</td>
<td>338</td>
</tr>
<tr>
<td>12.2</td>
<td>Construction in alpine areas</td>
<td>339</td>
</tr>
<tr>
<td>12.3</td>
<td>Attachment of framed decks and balconies to external walls</td>
<td>343</td>
</tr>
<tr>
<td>12.4</td>
<td>Boilers, pressure vessels, heating appliances, fireplaces, chimneys and flues</td>
<td>348</td>
</tr>
<tr>
<td>13</td>
<td>Energy efficiency</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Scope and application of Section 13</td>
<td>358</td>
</tr>
<tr>
<td>13.2</td>
<td>Building fabric</td>
<td>359</td>
</tr>
<tr>
<td>13.3</td>
<td>External glazing</td>
<td>387</td>
</tr>
<tr>
<td>13.4</td>
<td>Building sealing</td>
<td>403</td>
</tr>
<tr>
<td>13.5</td>
<td>Air movement</td>
<td>406</td>
</tr>
<tr>
<td>13.6</td>
<td>Services</td>
<td>408</td>
</tr>
<tr>
<td></td>
<td>Schedule 1 Definitions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Definitions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>Symbols</td>
<td>418</td>
</tr>
</tbody>
</table>
How to use the Housing Provisions

This Section is for information only.

1.1 Introduction
This ABCB Housing Provisions contains Deemed-to-Satisfy Provisions that are considered to be acceptable forms of construction that meet the legislative requirements for complying with Parts H1 to H7 of NCC Volume Two (i.e. they comply with the Performance Requirements listed in Parts H1 to H7 of NCC Volume Two).

There is no obligation to adopt any particular option contained in this Housing Provisions if it is preferred to meet the Performance Requirement some other way.

However, if one of the options described in this Housing Provisions or elsewhere in the Deemed-to-Satisfy Provisions of NCC Volume Two is not complied with, then the appropriate authority must be satisfied that the Performance Requirements have been met.

1.2 Application
This Housing Provisions must be applied in accordance with each of the following:

- Section A (Governing Requirements) of NCC Volume Two.
- Any conditions on the use of the Housing Provisions set out within the Deemed-to-Satisfy Provisions of NCC Volume Two where it is referenced.
- The Scope clause at the beginning of each Section of this Housing Provisions.

1.3 The scope of the Housing Provisions
In Section H of NCC Volume Two, some Deemed-to-Satisfy Provisions contain more than one compliance pathway. Usually, the first of these pathways will be by referenced to a relevant Australian Standard (or similar) and the second will be by reference to a particular Section or Part of the ABCB Housing Provisions. In these cases, use of the Housing Provisions is one option for complying with the relevant Deemed-to-Satisfy Provision.

Other Deemed-to-Satisfy Provisions contain only one compliance pathway: either a reference to an Australian Standard (or similar), or a reference to a particular Section or Part of the ABCB Housing Provisions. In these cases, the ABCB Housing Provisions may only be used if it is referenced, and must be used if it is the only compliance option for the particular Deemed-to-Satisfy Provision.

If a Deemed-to-Satisfy Provision does not reference the ABCB Housing Provisions, then the Housing Provisions cannot be used as a compliance pathway for that particular Deemed-to-Satisfy Provision.

The ABCB Housing Provisions only contains content relevant to the Deemed-to-Satisfy Provisions in NCC Volume Two which call it up. Therefore, the ABCB Housing Provisions should not be interpreted as a comprehensive or complete manual for house building.

Section 2 of the ABCB Housing Provisions contains a number of structural design manuals which can be used to design building elements using engineering principles.

There is no obligation for the provisions of Section 2 to be used apart from situations where a particular building, building element or component is required to comply with NCC Volume Two and is not contained on the scope of any other Deemed-to-Satisfy Provisions.

Section 11 contains additional construction requirements that are ancillary to the construction of a building or structure, such as the construction of swimming pools, heating appliances, fireplaces, methods of attaching decks and balconies to external walls or the like. Section 11 also contains special provisions for construction in alpine areas (earthquake areas are addressed in Section 2, flood hazard areas are addressed in the ABCB Standard for Construction of Buildings in Flood Hazard Areas, which is referenced directly by H1D10).

Situations where it is necessary for a mixed application of the ABCB Housing Provisions and other standards referenced in the Deemed-to-Satisfy Provisions of NCC Volume Two may be identified by reference to the differing components of the Performance Requirements (see A2G3).
1.4 Suitability of Performance Solutions

The options described in the Deemed-to-Satisfy Provisions are typical examples of national construction methods. They are certainly not the only means available of complying with NCC Volume Two. The performance format of the NCC provides flexibility and allows the use of alternative construction methods to those described in the Deemed-to-Satisfy Provisions.

1.5 The use of maps

Maps have been used throughout NCC Volume Two, including in the ABCB Housing Provisions, to indicate areas where particular requirements apply. These maps are indicative and some variation in conditions will apply, especially on the border of marked areas.

It is recommended that the appropriate authority be consulted and in most cases they be able to identify what conditions apply in such areas at the early stage of building design.

1.6 Consultation with appropriate authorities

When building in certain locations there may be local conditions or other site constraints that may limit the type of construction that can be used. This is particularly important with buildings that are constructed in areas subject to increased structural loading conditions that may occur due to geographical, topographical or climatic conditions and soil types. Appropriate authorities have a wide range of experience and information on the geographical and topographical conditions found in their area of responsibility, and should be consulted during the initial design stage.

1.7 Layout of the ABCB Housing Provisions

Although it does not cover every aspect of housing construction, the ABCB Housing Provisions has nonetheless been organised in a manner that follows the logical construction sequence of a building. Table 1.7 outlines some of the more frequently used details and where they are located in the ABCB Housing Provisions.

<table>
<thead>
<tr>
<th>Table 1.7: Information guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
</tr>
<tr>
<td>Initial design considerations</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Construction issues</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
1.8 Interpretation
Throughout the ABCB Housing Provisions, diagrams, explanatory information and cross-volume considerations are included. A1G1 (interpretation) contains information on these elements in the NCC which is also applicable when they appear in the ABCB Housing Provisions.

1.9 How to use the requirements of each Section/Part
Each Section of the ABCB Housing Provisions is comprised of a scope statement and one or more Parts which contain the technical provisions which must be followed as appropriate to achieve compliance with the relevant Deemed-to-Satisfy Provision. Generally, a Deemed-to-Satisfy Provision will refer to a specific Part of the ABCB Housing Provisions in order to link the user directly to the relevant technical provisions.

Each Section contains a scope and application Part which sets out the conditions and limitation applicable to the subsequent Parts contained within that Section. Each Part must only be applied in a way that is consistent with its scope.

Sections are numbered with a single numeral (e.g. Section 2 - Structure).

Parts are numbered with two numbers separated by a decimal (e.g. Part 2.2 – Structural provisions).

Clauses within each Part are numbered with three numbers separated by a decimal point (e.g. Clause 2.2.4 – Determination of structural resistance of materials and forms of construction).

Subclauses and below are numbered using the system used throughout the NCC.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Relevant part</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termite risk management</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>Earth retaining structures</td>
<td>H1D3</td>
<td></td>
</tr>
<tr>
<td>Subfloor ventilation</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>Smoke alarms and evacuation lighting</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>Boilers, pressure vessels, heating appliances, fireplaces, chimneys and flues</td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td>Special requirements</td>
<td>Earthquake areas</td>
<td>2</td>
</tr>
<tr>
<td>Flood hazard areas</td>
<td>H1D10</td>
<td></td>
</tr>
<tr>
<td>Construction in bushfire areas</td>
<td>H7D4</td>
<td></td>
</tr>
<tr>
<td>Construction in alpine areas</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>Attachment of decks and balconies to external walls of buildings</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>High wind areas</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Class 10 buildings and structures</td>
<td>Various</td>
<td></td>
</tr>
</tbody>
</table>
2 Structure

Part 2.1 Scope and application of Section 2

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1</td>
<td>Scope</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Application</td>
</tr>
</tbody>
</table>

Part 2.2 Structural provisions

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1</td>
<td>Application of Part 2.2</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Resistance to actions</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Determination of individual actions</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Determination of structural resistance of materials and forms of construction</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Structural software</td>
</tr>
</tbody>
</table>
2.1.1 Scope

[New for 2022]

(1) This Section of the ABCB Housing Provisions sets out the *Deemed-to-Satisfy Provisions* for structure (see Part 2.2).

(2) For other structural provisions not included in this Section of the ABCB Housing Provisions, refer to the following *Deemed-to-Satisfy Provisions* in NCC Volume Two:

 (a) Site preparation (see H1D3).
 (b) Footings and slabs (see H1D4).
 (c) Masonry (see H1D5).
 (d) Framing (see H1D6).
 (e) Roof and wall cladding (see H1D7).
 (f) Glazing (see H1D8).
 (g) Earthquake areas (see H1D9).
 (h) Flood hazard areas (see H1D10).
 (i) Attachment of decks and balconies to external walls of buildings (see H1D11).

2.1.2 Application

[New for 2022]

The application of Section 2 of the ABCB Housing Provisions is subject to the following:

 (a) The Governing Requirements of NCC 2022 Volume Two.
 (b) The State and Territory variations, additions and deletions contained in the Schedules to the ABCB Housing Provisions and NCC Volume Two.

Explanatory Information:

In NCC 2019, the content of Section 2 of the ABCB Housing Provisions (other than content added in NCC 2022 or later) was contained in Part 3.0 of NCC Volume Two.
Part 2.2 Structural provisions

2.2.1 Application of Part 2.2

[New for 2022]

Part 2.2 need not be complied with if, for the purposes of H1D2(1)(b) only, the Deemed-to-Satisfy Provisions of H1D3 to H1D11 relating to structural elements are complied with.

2.2.2 Resistance to actions

[2019: 3.0.2]

The resistance of a building or structure must be greater than the most critical action effect resulting from different combinations of actions, where—

(a) the most critical action effect on a building or structure must be determined in accordance with 2.2.3 and the general design procedures contained in AS/NZS 1170.0; and

(b) the resistance of a building or structure is determined in accordance with 2.2.4.

Explanatory Information:
A building or structure must be designed to resist the most critical effect resulting from different combinations of actions, taking into consideration—

(a) the probability of simultaneous occurrence of two or more actions; and

(b) the levels of reliability of the structure when subject to combined actions; and

(c) the characteristics of the action.

Determining the levels of reliability of the structure when subject to combined actions should be consistent with the levels of reliability implicit in the design events for natural phenomenon. When designing for the maximum combined actions, a principle frequently adopted is that the maximum is likely to occur when at least one of the actions is at its maximum value.

NT 2.2.3

2.2.3 Determination of individual actions

[2019: 3.0.3]

The magnitude of individual actions must be determined in accordance with the following:

(a) Permanent actions:
 (i) the design or known dimensions of the building or structure; and
 (ii) the unit weight of the construction; and
 (iii) AS/NZS 1170.1.

(b) Imposed actions:
 (i) the known loads that will be imposed during the occupation or use of the building or structure; and
 (ii) construction activity actions; and
 (iii) AS/NZS 1170.1.

(c) Wind, snow and earthquake actions:
 (i) the applicable annual probability of design event for safety, determined by—
 (A) assigning the building or structure an Importance Level in accordance with Table 2.2.3a; and
(B) determining the corresponding annual probability of exceedance for safety in accordance with Table 2.2.3b; and

(ii) for wind actions, AS/NZS 1170.2 or AS 4055; and
(iii) for snow and ice actions, AS/NZS 1170.3; and
(iv) for earthquake actions, AS 1170.4.

(d) Actions not covered in (a), (b) and (c) above:
 (i) the nature of the action; and
 (ii) the nature of the building or structure; and
 (iii) the Importance Level of the building or structure determined in accordance with Table 2.2.3a; and
 (iv) AS/NZS 1170.1.

(e) For the purposes of (d) the actions include but are not limited to—
 (i) liquid pressure action; and
 (ii) ground water action; and
 (iii) rainwater action (including ponding action); and
 (iv) earth pressure action; and
 (v) differential movement; and
 (vi) time dependent effects (including creep and shrinkage); and
 (vii) thermal effects; and
 (viii) ground movement caused by—
 (A) swelling, shrinkage or freezing of the subsoil; and
 (B) landslip or subsidence; and
 (C) siteworks associated with the building or structure; and
 (ix) construction activity actions.

Table 2.2.3a: Importance Levels of buildings and structures

<table>
<thead>
<tr>
<th>Importance Level</th>
<th>Building types</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Buildings or structures presenting a low degree of hazard to life and other property in the case of failure.</td>
</tr>
<tr>
<td>2</td>
<td>Buildings or structures not included in Importance Level 1.</td>
</tr>
</tbody>
</table>

Table 2.2.3b: Design events for safety—annual probability of exceedance

<table>
<thead>
<tr>
<th>Importance Level</th>
<th>Non-cyclonic wind</th>
<th>Cyclonic wind</th>
<th>Snow</th>
<th>Earthquake</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:100</td>
<td>1:200</td>
<td>1:100</td>
<td>1:250</td>
</tr>
<tr>
<td>2</td>
<td>1:500</td>
<td>1:500</td>
<td>1:150</td>
<td>1:500</td>
</tr>
</tbody>
</table>
Explanatory Information: Permanent and imposed actions

Permanent actions include the dead loads of the building or structure. These include the load imposed by the building’s components inclusive of the forces imposed by the floors, walls, roofs, suspended ceilings, etc.

Imposed actions include live loads on the building or structure. These include the load arising from construction activity and the intended use or function of the building or structure.

Explanatory Information: Application of AS 1170.4

There are certain limitations on the application to domestic structures such as Class 1a and Class 1b buildings in Appendix A of AS 1170.4. These limitations include building height, roof slope, etc. For additional information refer to Appendix A of AS 1170.4.

Explanatory Information: Importance Levels (Table 2.2.3a)

Table 2.2.3a provides a generic description of building types to which Importance Levels have been assigned. The “Importance Level” concept is applicable to building structural safety only. More specific examples are provided in the following list. The examples are indicative and not exhaustive.

- Importance Level 1: Isolated minor Class 10a buildings and Class 10b structures.
- Importance Level 2: Class 1 buildings; Class 10a buildings and Class 10b structures associated with Class 1 buildings.

Importance Levels must be assigned on a case by case basis and relate to the hazards to human life and other property in the event of the structure’s failure. For example—

(a) Importance Level 1 is for minor isolated structures that rarely contain people, are not required as part of normal infrastructure and present a low risk to life and other property.

(b) Importance Level 2 includes domestic housing and structures intended to contain reasonable numbers of people under normal operations.
Explanatory Information: Construction in cyclonic areas
The intent of building construction in cyclonic areas (see Figure 2.2.3) is to ensure the structure has sufficient strength to transfer wind forces to the ground with an adequate safety margin to prevent collapse of the building and the building being lifted, or slid off its foundations.

To resist these forces it is necessary to have—
(a) an anchorage system, where the roof is connected by the walls to the footings by a chain of connections; and
(b) a bracing system to prevent horizontal collapse due to wind forces; and
(c) continuity of the system where each structural element is interlocked to its adjoining structural element throughout the building.

Explanatory Information: Anchorage
Anchorage of the system is achieved by using a variety of connectors. Each connector must be capable of carrying the uplift force, because the ability of the building to resist the wind forces is directly related to its weakest link.

2.2.4 Determination of structural resistance of materials and forms of construction

The following requirements, or any combination of them, must be used to determine the structural resistance of materials and forms of construction as appropriate:

(a) Earthworks: H1D3(1).
(b) Earth retaining structures: H1D3(2).
(c) Termite risk management: H1D3(3).
(d) Concrete construction (including slabs and footings, piled footings and reinforced and prestressed concrete structures): H1D4 or AS 3600 as applicable.
(e) Post-installed and cast-in fastenings in concrete: AS 5216.
(f) Masonry (including masonry veneer, unreinforced masonry and reinforced masonry): H1D5.
(g) Steel construction (including steel framing and structural steel members): H1D6(2), (4) and (5).
(h) Timber construction (including design of timber structures, timber framing and design of nail-plated timber roof trusses): H1D6(3).
(i) Composite steel and concrete: AS/NZS 2327.
(j) Aluminium construction:
 (i) AS/NZS 1664.1.
 (ii) AS/NZS 1664.2.
(k) Roof construction (including plastic sheeting, roofing tiles, metal roofing and terracotta, fibre-cement and timber slates and shingles): H1D7.
(l) Wall cladding: H1D7.
(m) Glazed assemblies: H1D8.
(n) Barriers and handrails (including stairway and ramp construction):
 (i) H5D3; and
 (ii) AS/NZS 1170.1 for the determination of loading forces on a barrier.
(o) Attachment of decks and balconies to external walls of buildings: H1D11.
(p) Garage doors and other large access doors in openings not more than 3 m in height in external walls of buildings determined as being located in wind region C or D in accordance with Figure 2.2.3: AS/NZS 4505.
(q) For high wind areas: requirements listed in (a) to (p) as appropriate or the Northern Territory Deemed to Comply Standards Manual.
Explanatory Information:
The weight of roof or ceiling insulation, particularly if additional ceiling insulation is used for compliance with the energy efficiency provisions, needs to be considered in the selection of plasterboard, plasterboard fixings and building framing.

2.2.5 Structural software

(1) Structural software used in computer aided design of a building or structure that uses design criteria based on the Deemed-to-Satisfy Provisions of the Housing Provisions, including its referenced documents, for the design of steel or timber trussed roof and floor systems and framed building systems, must comply with the ABCB Protocol for Structural Software.

(2) The requirements of (1) only apply to structural software used to design steel or timber trussed roof and floor systems and framed building systems for buildings within the following geometrical limits:
 (a) The distance from ground level to the underside of eaves must not exceed 6 m.
 (b) The distance from ground level to the highest point of the roof, neglecting chimneys, must not exceed 8.5 m.
 (c) The building width including roofed verandahs, excluding eaves, must not exceed 16 m.
 (d) The building length must not exceed five times the building width.
 (e) The roof pitch must not exceed 35 degrees.

(3) The requirements of (1) do not apply to design software for individual frame members such as electronic tables similar to those provided in—
 (a) AS 1684 Parts 2, 3 and 4; or
 (b) NASH Standard Residential and Low-Rise Steel Framing, Part 2.

Explanatory Information:
2.2.5 does not apply where a software package simply eliminates manual calculations and the process of the package requires identical methodology as that undertaken manually, e.g. AS 1684 span tables and bracing calculations.
3 Site preparation

Part 3.1 Scope and application of Section 3
3.1.1 Scope
3.1.2 Application

Part 3.2 Earthworks
3.2.1 Un-retained bulk earthworks – site cut and fill

Part 3.3 Drainage
3.3.1 Application of Part 3.3
3.3.2 Drainage requirements
3.3.3 Surface water drainage
3.3.4 Subsoil drainage
3.3.5 Stormwater drainage

Part 3.4 Termite risk management
3.4.1 Requirements for termite management systems
3.4.2 Termite management systems
3.4.3 Durable notice
3.1.1 Scope

(1) This Section of the ABCB Housing Provisions sets out the *Deemed-to-Satisfy Provisions* for—

(a) Earthworks (see Part 3.2); and
(b) Drainage (see Part 3.3); and
(c) Termite risk management (see Part 3.4).

(2) For other site preparation provisions not included in this Section of the ABCB Housing Provisions, refer to the following *Deemed-to-Satisfy Provisions* in NCC Volume Two: Earth retaining structures (see H1D3(2)).

Explanatory Information:
These provisions relate to general site preparation for footings, services, drainage and installation of termite management systems. It should be noted that other construction methods may be used to achieve the same results as specified in this Part provided they comply with the appropriate Performance Requirement.

The provisions in Part 3.2 will enable earthworks associated with the construction of a building to be carried out safely and to avoid potential damage to the subject building, adjoining structures and property through the soil collapsing or subsiding. Exceptional site conditions (including the effects of torrential rain) may need special consideration and additional advice from appropriately qualified people should be considered.

State and Territory legislation may also have requirements that apply to earthworks, especially in relation to adjoining property and notification of owners of that property. Advice should be obtained from the appropriate authority before commencement of works.

The requirements of this Part are to be read in conjunction with H1D3(2) where an earth retaining structure is installed.

3.1.2 Application

The application of Section 3 of the ABCB Housing Provisions is subject to the following:

(a) The Governing Requirements of NCC 2022 Volume Two.
(b) Any conditions set out within the following *Deemed-to-Satisfy Provisions* of NCC Volume Two:
 (i) H1D3(1), for earthworks.
 (ii) H2D4(1)(b), for drainage.
(c) The State and Territory variations, additions and deletions contained in the Schedules to the ABCB Housing Provisions and NCC Volume Two.

Explanatory Information:
In NCC 2019, the content of Section 3 of the ABCB Housing Provisions (other than content added in NCC 2022 or later) was contained in the acceptable construction practices for Parts 3.1.1, 3.1.3 and 3.1.4 of NCC 2019 Volume Two.

NCC 2019 Volume Two did not include an acceptable construction practice for Part 3.1.2.
Part 3.2
Earthworks

3.2.1
Un-retained bulk earthworks – site cut and fill

[2019: 3.1.1]

(1) A site cut using an un-retained embankment must be—
 (a) within the allotment; and
 (b) not within the zone of influence of any existing structure on the property, or the allotment boundary as defined in Table 3.2.1 and Figure 3.2.1a; and
 (c) not deeper than 2 m from the natural ground level at any point.

(2) Fill, using an un-retained embankment must—
 (a) be placed within the allotment; and
 (b) be placed at a gradient which complies with Table 3.2.1 and Figure 3.2.1b; and
 (c) be placed and mechanically compacted in layers not more than 150 mm; and
 (d) be not more than 2 m in height from the natural ground level at any point; and
 (e) where used to support footings or slabs, be placed and compacted in accordance with Part 4.2; and
 (f) have surface water diverted away from any existing structure on the property or adjoining allotment in accordance with 3.3.3.

Table 3.2.1:
Un-retained embankment slope ratios

<table>
<thead>
<tr>
<th>Soil class (see 4.4.1 for material description)</th>
<th>Site cut (excavation) (maximum embankment slope ratio, angle of site cut H:L (\text{Note} \ 1))</th>
<th>Compacted fill (maximum embankment slope ratio, angle of batter H:L (\text{Note} \ 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable rock (Class A)</td>
<td>8:1</td>
<td>3:3</td>
</tr>
<tr>
<td>Sand (Class A)</td>
<td>1:2</td>
<td>1:2</td>
</tr>
<tr>
<td>Firm clay (Class M-E)</td>
<td>1:1</td>
<td>1:2</td>
</tr>
<tr>
<td>Soft clay (Class M-E)</td>
<td>2:3</td>
<td>Not suitable</td>
</tr>
</tbody>
</table>

Table Notes:
1. See Figures 3.2.1a and 3.2.1b for some examples of un-retained embankment slopes.
2. Retaining walls must be installed in accordance with H1D3(2) where—
 a. the embankment slope is steeper than described in this Table; or
 b. the soil type is not described in this Table.
Figure 3.2.1a: Site cut and fill using un-retained embankments — Site cut commencing at the allotment boundary or affecting an adjoining property

Figure Notes:
1. The angle for line A-A is defined as the maximum embankment slope ratio H:L in Table 3.2.1 and is taken from the bottom of the existing footing and is defined as the area suitable for excavation.

2. Consideration must be given for drainage of *surface water*, particularly where fill affects an adjoining property.
Figure 3.2.1b: Site cut and fill using un-retained embankments — Fill commencing at the allotment boundary or affecting an adjoining property

Figure Notes:
1. The angle for line A-A is defined as the maximum embankment slope ratio $H:L$ in Table 3.2.1 and is taken from the bottom of the existing footing and is defined as the area suitable for excavation.
2. Consideration must be given for drainage of surface water, particularly where fill affects an adjoining property.
3.3.1 Application of Part 3.3

(1) Part 3.3 is subject to the limitations set out in H2D2(1)(b).

(2) Part 3.3 need not be complied with if H2D2(1)(a) is complied with.

3.3.2 Drainage requirements

Drainage systems must be installed as follows—

(a) areas adjoining and under buildings — *surface water* drainage in accordance with 3.3.3; and

(b) where *site* conditions exist that create a need for subsoil water to be diverted away from footings, basements, retaining walls etc — sub-soil drainage in accordance with 3.3.4; and

(c) where underground drainage from roof areas is *required* or permitted — underground stormwater drainage in accordance with 3.3.5; and

(d) excavation for drains adjacent to existing footings must be within the area described in Figure 3.3.2 as being safe for excavation.

Figure 3.3.2: Excavation for drains adjacent to footings

Figure Notes:

1. Any excavation below the area defined as being safe for excavation will need additional protection measures to be determined by appropriately qualified persons.

2. Slope ratio H:L is determined using Table 3.2.1.
3.3.3 Surface water drainage

Surface water must be diverted away from Class 1 buildings as follows:

(a) Slab-on-ground — finished ground level adjacent to buildings: the external finished surface surrounding the slab must be drained to move surface water away from the building and graded to give a slope of not less than (see Figure 3.2.1) —
 (i) 25 mm over the first 1 m from the building in low rainfall intensity areas for surfaces that are reasonably impermeable (such as concrete or clay paving); or
 (ii) 50 mm over the first 1 m from the building in any other case.

(b) Slab-on-ground — finished slab heights: the height of the slab-on-ground above external finished surfaces must be not less than (see Figure 3.3.3a) —
 (i) 100 mm above the finished ground level in low rainfall intensity areas or sandy, well-drained areas; or
 (ii) 50 mm above impermeable (paved or concrete) areas that slope away from the building in accordance with (a); or
 (iii) 150 mm in any other case.

(c) The ground beneath suspended floors must be graded so that the area beneath the building is above the adjacent external finished ground level and surface water is prevented from ponding under the building (see Figure 3.3.3b).

Figure 3.3.3a: Site surface drainage

Figure Notes:
1. For fall in finished external surface, see 3.3.3(a).
2. For finished floor level above finished external surface, see 3.3.3(b).
Figure 3.3.3b: Grading of ground under suspended floors

Explanatory Information:
The appropriate slab height above finished ground level and the slope of the external finished surface surrounding the slab may vary depending on:
(a) The local plumbing requirements; in particular the height of the overflow relief gully relative to drainage fittings and ground level (to work effectively they must be a minimum of 150 mm below the lowest sanitary fixture).
(b) The run-off from storms, particularly in areas of high rainfall intensity, and the local topography.
(c) The effect of excavation on a cut and fill site.
(d) The possibility of flooding.
(e) Termite risk management provisions.
Clearances between wall cladding and the finished ground level are provided in 7.5.7.

3.3.4 Subsoil drainage

Where a subsoil drainage system is installed to divert subsurface water away from the area beneath a building, the subsoil drain must—
(a) be graded with a uniform fall of not less than 1:300; and
(b) discharge into an external silt pit or sump with—
 (i) the level of discharge from the silt pit or sump into an impervious drainage line not less than 50 mm below the invert level of the inlet (see Figure 3.3.4); and
 (ii) provision for cleaning and maintenance.
Explanatory Information:

Subsoil drainage systems may need to be installed where subsurface water movement could damage buildings or cause loss of amenity through the build up of excessive moisture or lateral water pressure. Typical locations of subsoil drainage systems are on the uphill side of cut and fill sites, adjacent to deep footings, behind retaining walls and adjacent to basement walls.

The design and installation of subsoil drainage systems should take into account the nature of the soil and the anticipated water level, quantity and movement. In some cases, detailed investigations involving excavations, field observations and soil tests may be necessary to determine the appropriate solution. Typical subsoil drain configurations are shown in the following diagrams.

In clay soil, subsoil drains can alter the long-term moisture content in the soil, adversely affecting the building foundation by removing or, in some cases, introducing water. In such conditions, subsoil drains should only be used where there are no other options for dealing with subsoil water.

Additional guidance on subsoil drainage systems can be found in AS/NZS 3500.3 and AS 2870.
3.3.5 Stormwater drainage

Where a stormwater drainage system is installed, it must comply with the following:

(a) The position and manner of discharge of the stormwater drainage system must be to the satisfaction of the appropriate authority.

(b) The stormwater drainage system must be designed so that any overflow during heavy rain periods is prevented from flowing back into the building.

(c) Cover to stormwater drains: the cover to 90 mm Class 6 UPVC stormwater drains installed underground must be not less than—
 (i) under soil — 100 mm; or
 (ii) under paved or concrete areas — 50 mm; or
 (iii) under areas subject to light vehicle traffic—
 (A) reinforced concrete — 75 mm; or
 (B) paved — 100 mm.

Explanatory Information: Discharge points

The manner of discharge of stormwater drainage systems includes consideration of discharge points. Some examples of discharge points which may be acceptable to the appropriate authority are:

(a) A legal discharge point at the allotment boundary.

(b) On-site catchment systems, such as stormwater tanks.

(c) On-site soil drainage systems, such as soaker wells.
Explanatory Information: Depth of cover

Different depths of soil cover (or no cover at all) can be achieved using other types of pipes. The cover specified is measured from the top of the pipe to either the finished ground level or, in the case of paved or concreted areas, to the underside of the paving or concrete.
3.4.1 Requirements for termite management systems

(1) The requirements of this Part apply where:
 (a) a Class 1 or 10 building is constructed in an area where subterranean termites are known to present a potential risk of attack; and
 (b) a of a Class 1 or 10 building is considered susceptible to termite attack.

NT 3.4.1(2)
(2) For the purposes of (1), a consisting entirely of, or a combination of, any of the following materials is considered not subject to termite attack:
 (a) Steel, aluminium or other metals.
 (b) Concrete.
 (c) Masonry.
 (d) Fibre-reinforced cement.
 (e) Timber — naturally termite resistant in accordance with Appendix C of AS 3660.1.
 (f) Timber — preservative treated in accordance with Appendix D of AS 3660.1.

QLD 3.4.1(3)
QLD 3.4.1(4)
QLD 3.4.1(5)
QLD 3.4.1(6)

Explanatory Information:

1. 3.4.1(1): Termites are not considered to be a risk in Tasmania and a lesser risk in parts of Victoria. The appropriate authority may have records of termite activity for each area and may be able to advise on whether termite risk management is needed.
2. 3.4.1(2): Where individual are susceptible to termite attack and the remainder of the are constructed of termite resistant materials, only the susceptible elements need to be provided with a termite management system.
3. 3.4.1(2)(c): states that masonry is not subject to termite attack, however termites may gain entry through mortar and other joints.
4. Explanatory Figure 3.4.1 provides a flowchart for identifying if a termite management system is required.
Figure 3.4.1 (explanatory): Flow chart for identifying if a termite management system is required

![Flow chart for identifying if a termite management system is required]

Figure Notes:
To check *primary building elements*, see 3.4.1(2).

NT 3.4.2
QLD 3.4.2

3.4.2 Termite management systems

[2019: 3.1.4.3]

Where a termite management system is required it must—

(a) be selected appropriate to Table 3.4.2; and

(b) comply with—
 (i) AS 3660.1; or

 (ii) have been tested and passed the tests *required* by Section 5 of AS 3660.3; and

(c) have a durable notice installed in accordance with 3.4.3; and

(d) where a chemical termite management system is used, the chemical must be included on the *appropriate authority’s* pesticides register.

Table 3.4.2: Acceptable termite management systems and components

<table>
<thead>
<tr>
<th>Building element</th>
<th>Termite management system or component options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete slab-on-ground: slab perimeter or external wall perimeter</td>
<td>Slab edge exposure</td>
</tr>
<tr>
<td></td>
<td>Sheet material</td>
</tr>
<tr>
<td></td>
<td>Granular material</td>
</tr>
</tbody>
</table>
Table Notes:
The entire area beneath the slab must be treated when the slab-on-ground is not designed and constructed in accordance with AS 2870 or AS 3600.

Explanatory Information: Validity of test results
3.4.2(b)(ii) provides the option of having a chemical termite management system tested to AS 3660.3. In order for the test results to remain valid, the system would then have to be installed as tested.

Explanatory Information: Component
A component of a system as referred to in Table 3.4.2 is one that when used in combination with other components, will form a “full system”.

For example, if a concrete slab is used as a component of a system, it in itself will not provide a complete termite management system. Depending on the construction methods and the site conditions, additional requirements will be necessary for service penetrations through the concrete slab. Each of these are “components”, when integrated, will form a “full system”.

Explanatory Information: Integrity of the termite management system
There are more than 350 species of termites in Australia, about 30 of which achieve economic importance by causing costly damage to building structures. Due to the nature of termites, it is extremely difficult to prevent them gaining access to a building.

In addition to correct installation of a termite management system, its effectiveness will rely on regular maintenance and competent inspection.

Explanatory Information: Attachments to buildings
Attachments referred to in Table 3.4.2 include downpipes, service pipes, steps, verandahs, porches, access ramps, carports, trellises, decks, heated water systems, air-conditioners and the like.

3.4.3 Durable notice

A durable notice must be permanently fixed to the building in a prominent location, such as in a meter box or the like, indicating—

(a) the termite management system used; and
(b) the date of installation of the system; and
(c) where a chemical is used, its life expectancy as listed on the appropriate authority’s register label; and
(d) the installer’s or manufacturer’s recommendations for the scope and frequency of future inspections of termite activity.
Explanatory Information: Appropriate authority
For the purpose of the pesticides register, the *appropriate authority* is the government body responsible for the registration of pesticides. Currently, the Australian Pesticides and Veterinary Medicines Authority (APMVA) coordinates the registration scheme.

Explanatory Information: Durable notice
Where a durable notice is *required* by 3.4.3 a durable notice must be fixed to the building in a prominent location advising the building occupants that the system should be inspected and maintained.

The notice should be clearly written, on a material that will not deteriorate or fade over time and be located in or near the electrical meter box or similar location so that it can be easily seen and read by future owners of the building. Additional information may be included if desired by the person placing the notice.
4 Footings and slabs

Part 4.1 Scope and application of Section 4
4.1.1 Scope
4.1.2 Application
4.1.3 Explanation of terms

Part 4.2 Preparation Footings, slabs and associated elements
4.2.1 Application of Part 4.2
4.2.2 Site classification
4.2.3 Excavation for footings
4.2.4 Filling under concrete slabs
4.2.5 Foundations for footings and slabs
4.2.6 Slab edge support on sloping sites
4.2.7 Stepped footings
4.2.8 Vapour barriers
4.2.9 Edge rebates
4.2.10 Concrete
4.2.11 Steel reinforcement
4.2.12 Footing and slab construction
4.2.13 Stump footing details
4.2.14 Stiffened rafts Class A, S and M sites
4.2.15 Strip footings Class A, S and M sites
4.2.16 Footing slabs for Class A sites
4.2.17 Footings for single leaf masonry, mixed construction and earth wall construction
4.2.18 Footings for fireplaces on Class A and S sites
4.2.19 Shrinkage control
4.2.20 Minimum edge beam dimensions
4.2.21 Recessed areas of slabs
4.1.1 Scope

This Section of the ABCB Housing Provisions sets out the *Deemed-to-Satisfy Provisions* for footings and slabs.

Explanatory Information:

This Section specifies the requirements for the excavation and filling for the footing or slab together with the construction of various alternative concrete slab and footing configurations. The slab and footing configurations detailed in [Part 4.5 this Part](#) are only suitable for the specified soil classifications. The requirements contained in the remainder of this Section are more general and may be applied to all slab and footing construction.

The requirements of this Section are to be read in conjunction with [Part 6.2](#). The [Part 6.2](#) subfloor ventilation requirements apply to the subfloor space of all suspended floors of a building or deck, including but not limited to, timber and steel-framed subfloors and suspended concrete slabs.

4.1.2 Application

The application of Section 4 of the ABCB Housing Provisions is subject to the following:

(a) The Governing Requirements of NCC 2022 Volume Two.

(b) Any conditions set out within the following *Deemed-to-Satisfy Provisions* of NCC Volume Two: H1D4(2), for footings and slabs.

(c) The State and Territory variations, additions and deletions contained in the Schedules to the ABCB Housing Provisions and NCC Volume Two.

Explanatory Information:

In NCC 2019, the content of Section 4 of the ABCB Housing Provisions (other than content added in NCC 2022 or later) was contained in the acceptable construction practices for Part 3.2 of NCC 2019 Volume Two.

4.1.3 Explanation of terms

Figures 4.1.3a, 4.1.3b and 4.1.3c depict footing and slab members and associated terminology used to describe them in [Part 4.2](#) of the ABCB Housing Provisions.
Figure 4.1.3a: Footing and slab members and associated terminology: diagram 1

Figure Notes:
1. Slab (monolithic).
2. Deepened edge beam.
3. Reinforcement.
4. Foundation.
5. Vapour barrier/damp proofing membrane.
6. Edge rebate.
7. Internal beam (thickening).

Figure 4.1.3b: Footing and slab members and associated terminology: diagram 2

Figure Notes:
1. Controlled fill.
2. Deepened edge beam and slab.
3. Reinforcement.
4. Foundation
5. Vapour barrier/damp proofing membrane.
6. Edge rebate.
7. Internal beam (thickening).
Figure 4.1.3c: Footing and slab members and associated terminology: diagram 3

Figure Notes:
1. Controlled fill.
2. Deepened edge beam and slab.
3. Natural ground line above cut.
5. Foundation (natural ground below fill).
Part 4.2 Preparation

4.2.1 Application of Part 4.2

Part 4.2 is subject to the limitations set out in H1D4(2).

4.2.2 Site classification

The foundations where footings and slabs are to be located must be classified in accordance with AS 2870.

Explanatory Information:

Explanatory Table 4.2.2 provides a general description of foundation soil types that will assist in the classification of a site. More detailed information, including differentiation between classifications, can be found in AS 2870 or alternatively contact the appropriate authority.

Due to the limitations of this Part, if a site is classified H, E or P then reference must be made to AS 2870 for design and construction information.

Table 4.2.2 (explanatory): General definition of site classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Most sand and rock sites with little or no ground movement from moisture changes</td>
</tr>
<tr>
<td>S</td>
<td>Slightly reactive clay sites with only slight ground movement from moisture changes</td>
</tr>
<tr>
<td>M</td>
<td>Moderately reactive clay or silt sites which can experience moderate ground movement from moisture changes</td>
</tr>
<tr>
<td>H</td>
<td>Highly reactive clay sites which can experience high ground movement from moisture changes</td>
</tr>
<tr>
<td>E</td>
<td>Extremely reactive clay sites which can experience extreme ground movement from moisture changes</td>
</tr>
<tr>
<td>A to P</td>
<td>Filled sites — see AS 2870</td>
</tr>
<tr>
<td>P</td>
<td>Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.</td>
</tr>
</tbody>
</table>

Table Notes:

1. For Class M, further division based on the depth of expected movement is required.
2. For deep-seated movement, characteristic of dry climates and corresponding to a design depth of suction change H_{SL} equal to or greater than 3 m, the classification must be M-D.
3. If classification M-D is established due to further division, design of footings and slabs is beyond the scope of the ABCB Housing Provisions and reference must be made to AS 2870 for design and construction information.
4.2.23 Excavation for footings

(1) Excavation for footings, including thickenings for slabs and pads must be clean cut with vertical sides, wherever possible.

(2) The base of the excavation must be—
 (a) for flat sites, generally level but may slope not more than 1:40 to allow excavations to drain; and
 (b) sloping sites at an angle of not more than 1:10; and
 (c) stepped footings in accordance with 4.2.7.6.

(3) Footing excavations must be free of loose earth, tree roots, mud or debris immediately before pouring concrete.

(4) Topsoil containing grass roots must be removed from the area on which the footing will rest site of the foundation.

(5) Excavation depths and soil cuts must comply with Part 3.2.

(6) On loose sand sites or sites subject to wind or water erosion, the depth below finished ground level for the bottom of footings must be not less than 300 mm.

(7) Height of finished slab-on-ground must be in accordance with 3.3.3(b).

4.2.34 Filling under concrete slabs

Filling placed under a slab (except where the slab is suspended) must comply with the following:

(a) Filling must be either controlled fill or rolled fill as follows:
 (i) Sand used in controlled fill or rolled fill must not contain any gravel size material and achieve a blow count of 7 or more per 300 mm using the test method described in AS 1289.6.3.3.
 (ii) Clay used in controlled fill or rolled fill must be moist during compaction.
 (iii) Controlled fill:
 (A) Sand fill up to 800 mm deep — well compacted in layers not more than 300 mm deep by vibrating plate or vibrating roller.
 (B) Clay fill up to 400 mm deep — well compacted in layers of not more than 150 mm by a mechanical roller.
 (iv) Rolled fill:
 (A) Sand fill up to 600 mm deep — compacted in layers of not more than 300 mm by repeated rolling by an excavator or other suitable mechanical equipment.
 (B) Clay fill up to 300 mm deep — compacted in layers of not more than 150 mm by repeated rolling by an excavator or similar machine.

(b) A level layer of clean quarry sand must be placed on top of the fill, with a depth of not less than 20 mm.

(c) A graded stone termite management system complying with Part 3.4 may be substituted for the sand required in (b).

(d) Where perimeter walls retain the controlled fill or rolled fill, the walls must be able to resist the lateral pressures from compacted soil and the compaction equipment activity.

4.2.45 Foundations for footings and slabs

Footings and slabs, including internal and edge beams, must be founded on soil with an allowable bearing pressure as follows:

(a) Slab panels, load support panels and internal beams — natural soil with an allowable bearing pressure of not less than 50 kPa or controlled fill or rolled fill compacted in accordance with 4.2.24.2.4.
(b) Edge beams connected to the slab — natural soil with an allowable bearing pressure of not less than 50 kPa or controlled fill compacted in accordance with 4.2.3(a)(iii) and extending past the perimeter of the building 1 m with a slope ratio not steeper than 2 horizontal to 1 vertical (see Figure 4.2.4 and Figure 4.2.5).

(c) Pad footings, strip footings and edge beams not connected to the slab, must be—
 (i) founded in natural soil with an allowable bearing pressure of not less than 100 kPa; or
 (ii) for Class A and S sites they may be founded on controlled sand fill in accordance with 4.2.3(a) and 4.2.4(a).

Figure 4.2.45: Foundations for footings and slabs

Figure Notes:
Compacted fill must be in accordance with 4.2.4.

Explanatory Information:

The foundations of a building are critical to its successful performance. As such, the soil must have the strength or bearing capacity to carry the building load with minimum movement.

The bearing capacity of a soil varies considerably and needs to be determined on a site by site basis. For this to occur, the appropriate people need to be consulted. These people may include a qualified engineer or experienced engineering geologist, or it may be determined by a person with appropriate local knowledge. The minimum bearing capacity (soil strength rating) may depend on the site conditions. The soil may be naturally undisturbed or be disturbed by building work or the like. Where soil is disturbed by building work and the like, the bearing capacity can be dramatically altered. This is typically the case for sloping sites where cut and fill procedures are used. In these situations the soil needs to be consolidated, generally via compaction, to achieve the required bearing capacity.

There are a number of alternatives for working on cut and filled sites. These are described in Figure 4.2.4 and Figure 4.2.5. Option 1 of Figure 4.2.4 and Figure 4.2.5 refers to the controlled fill process which involves the compaction of fill in layers to achieve the bearing capacity described in 4.2.4. The depth of fill for each layer is specified to ensure effective compaction. Fill beyond these depths will need to be installed in accordance with H1D4(1).

Option 2 and 3 of Figure 4.2.4 and Figure 4.2.5 refer to edge beams that extend through the fill into undisturbed soil which...
provides the 4.2.4.2.5 required bearing capacity. In this situation the fill is essentially only taking the internal slab loads.

4.2.56 Slab edge support on sloping sites

Footings and slabs installed on the low side of sloping sites must be as follows:

- **(a)** Slab panels — in accordance with 4.2.4(a)4.2.5(a).
- **(b)** Edge beams—
 - (i) supported by *controlled fill* in accordance with 4.2.4(b)4.2.5(b) (see Figure 4.2.5Figure 4.2.4, Option 1); or
 - (ii) supported by deepened edge beams or bulk piers designed in accordance with AS 3600 (see Figure 4.2.5Figure 4.2.4, Option 2); or
 - (iii) deepened (as per AS 2870) to extend into the natural soil level with a bearing capacity in accordance with 4.2.4(b)4.2.5(b) (see Figure 4.2.4Figure 4.2.5, Option 3); or
 - (iv) stepped in accordance with AS 2870.
- **(c)** Edge beams not connected to the slab, pad footings and strip footings — founded in accordance with 4.2.4(c)4.2.5(c).
- **(d)** Where an excavation (cut) of the natural ground is used it must be in accordance with Part 3.2.

4.2.67 Stepped footings

Stepped strip footings must be constructed as follows—

- **(a)** the base of the footing must be horizontal or have a slope of not more than 1:10; or
- **(b)** be stepped in accordance with one of the methods shown in Figure 4.2.6Figure 4.2.7.

Figure 4.2.67: Stepped strip footings

(a) Method A

(b) Method B

(c) Method C

(d) Method D

Figure Notes:
All dimensions in millimetres.
Vapour barriers

(1) A vapour barrier must be installed under slab-on-ground construction for all Class 1 buildings and for Class 10 buildings where the slab is continuous with the slab of a Class 1 building in accordance with (2), (3), (4) and (5).

(2) Materials: A vapour barrier must be—
 (a) 0.2 mm nominal thickness polyethylene film; and
 (b) medium impact resistant,
 determined in accordance with criteria specified in clause 5.3.3.3 of AS 2870.

(3) A vapour barrier must be branded continuously “AS 2870 Concrete underlay, 0.2 mm Medium impact resistance”.

(3) Installation: A vapour barrier must be installed as follows—
 (a) lap not less than 200 mm at all joints; and
 (b) tape or seal with a close fitting sleeve around all service penetrations; and
 (c) fully seal where punctured (unless for service penetrations) with additional polyethylene film and tape.

(4) The vapour barrier must be placed beneath the slab so that the bottom surface of the slab is entirely underlaid and extends under internal and edge beams to finish at ground level in accordance with Figure 4.2.7 and Figure 4.2.8.

Figure 4.2.78: Acceptable vapour barrier and damp-proofing membrane location

(a) Minimum rebate for cavity masonry or veneer wall

(b) Deep edge rebate alternative

(c) Masonry alternative

Figure Notes:
All dimensions in millimetres.
4.2.89 Edge rebates

Edge rebates for slab-on-ground, and stiffened raft or waffle raft with masonry cavity or veneer construction must comply with the following:

(a) The rebate must not be less than 20 mm, except as provided for in (d).
(b) Exterior masonry must not overhang more than 15 mm past the edge of the slab.
(c) The edge rebate must be flashed and drained in accordance with H2D4 and where it cannot be flashed it must be filled with mortar.
(d) Edge rebates are not required for single leaf masonry.

Explanatory Information:
See 4.5.5 4.2.20 for minimum edge beam details. For single skin or frames walls with external cladding, rebates are not required.

SA 4.3.2

4.3.22.10 Concrete

Concrete must comply with the following:

(a) Concrete must be manufactured to comply with AS 3600; and—
 (i) have a strength at 28 days of not less than 20 MPa (denoted as N20 grade); and
 (ii) have a 20 mm maximum nominal aggregate size; and
 (iii) have a nominal 100 mm slump.
(b) Water must not be added to the mix to increase the slump to a value in excess of that specified.
(c) Concrete must be placed, compacted and cured in accordance with good building practice.

Explanatory Information:
1. Complete discharge of the concrete from the truck should be made within one and a half hours of initial mixing with water unless a suitable retarder has been specified.
2. Compacting concrete by vibration removes air pockets and works the concrete thoroughly around reinforcement, service penetrations etc. and into corners of formwork to increase durability and resistance to termite infestation and salt damp attack. Care should be taken not to over-vibrate. The finishing and curing of slab edges provides an improved edge finish which is resistant to edge dampness.
3. Care should be taken when using chemical curing methods, because some products may not be compatible with adhesives used to fix surface finishes to the slab.

4.3.32.11 Steel reinforcement

(1) Materials used for reinforcing steel must comply with AS 2870 and be—
 (a) welded wire reinforcing fabric; or
 (b) trench mesh; or
 (c) steel reinforcing bars.
(2) Steel reinforcing bars may be substituted for trench mesh in accordance with Table 4.3.3a Table 4.2.11a.
(3) Minimum laps for reinforcement as shown in Table 4.3.3b, Table 4.2.11b and Figure 4.3.3, Figure 4.2.11 must be provided where reinforcing is used.

(4) Any slab in H1D4 with a re-entrant corner must have the following reinforcement not less than 2 m in length and placed at an angle of 45° across the corner—
 (a) two strips of 3-L8TM; or
 (b) one strip of 3-L11TM; or
 (c) 3-N12 bars.

(5) Footings and slabs-on-ground must have concrete cover between the outermost edge of the reinforcement (including ligatures, tie wire etc.) and the surface of the concrete of not less than the following:
 (a) 40 mm to unprotected ground.
 (b) 30 mm to a membrane in contact with the ground.
 (c) 20 mm to an internal surface.
 (d) 40 mm to external exposure.

(6) Reinforcement must be cleaned free of loose rust, mud, paints and oils immediately prior to the concrete pour.

(7) Reinforcement must be placed as follows:
 (a) All reinforcement must be firmly fixed in place to prevent it moving during concreting operations.
 (b) Reinforcement must be supported off the ground or the forms by bar chairs made from wire, concrete or plastic.
 (c) When using wire chairs the minimum concrete cover (see 4.3.3(4)(5)) to the uncoated portion of the chair must be obtained.
 (d) Wire chairs on soft ground or plastic membrane must be placed on flat bases.
 (e) Bar chairs must be spaced at not more than 800 mm centres for steel fabric.

Table 4.3.3a, 2.11a: Alternative mesh/reinforcing bar sizes

<table>
<thead>
<tr>
<th>Trench mesh (TM)</th>
<th>Area — mm²</th>
<th>Reinforcing bar alternative</th>
<th>Trench mesh alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-L8TM</td>
<td>91</td>
<td>2-N10 or 1-N12</td>
<td>Not applicable</td>
</tr>
<tr>
<td>3-L8TM</td>
<td>136</td>
<td>2-N10 or 2-N12</td>
<td>Not applicable</td>
</tr>
<tr>
<td>4-L8TM</td>
<td>182</td>
<td>2-N12</td>
<td>2-L11TM</td>
</tr>
<tr>
<td>5-L8TM</td>
<td>227</td>
<td>2-N12</td>
<td>3-L11TM</td>
</tr>
<tr>
<td>2-L11TM</td>
<td>180</td>
<td>1-N16 or 2-N12</td>
<td>2x2-L8TM</td>
</tr>
<tr>
<td>3-L11TM</td>
<td>270</td>
<td>3-N12</td>
<td>2x3-L8TM</td>
</tr>
<tr>
<td>4-L11TM</td>
<td>360</td>
<td>2-N16</td>
<td>2x4-L8TM</td>
</tr>
<tr>
<td>2-L12TM</td>
<td>222</td>
<td>2-N12</td>
<td>3-L11TM</td>
</tr>
<tr>
<td>3-L12TM</td>
<td>333</td>
<td>3-N12</td>
<td>4-L11TM</td>
</tr>
<tr>
<td>4-L12TM</td>
<td>444</td>
<td>4-N12</td>
<td>5-L11TM</td>
</tr>
</tbody>
</table>

Table Notes:
1. Where necessary 2 layers of mesh may be used.
2. L11TM and L12TM may be replaced by RL1118 and RL1218 mesh respectively.
3. L11TM may be replaced by two layers of L8TM.

Table 4.3.3b, 2.11b: Minimum lap for reinforcement

<table>
<thead>
<tr>
<th>Reinforcement</th>
<th>Minimum splice</th>
<th>Minimum Lap at “T” intersections</th>
<th>Minimum Lap at “L” intersections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel reinforcing bars ≤ 12 mm diameter</td>
<td>500 mm</td>
<td>Full width across the junction</td>
<td>One outer bar must be bent and continue 500 mm (min) around corner</td>
</tr>
</tbody>
</table>
Reinforcement types referenced in this clause are described as follows:

(a) Square mesh is designated in terms of the diameter of each bar and the spacing of consecutive bars. For example, SL62 consists of 6 mm bar at 200 mm spacings.

(b) Trench mesh is designated in terms of the number of longitudinal bars and the diameter of each bar. For example, 3-L11TM consists of 3 longitudinal bars each of which are 11 mm in diameter.

(c) Reinforcing bars are designated in terms of the number of bars and the diameter of each bar. For example, 6-N12 consists of 6 bars each of which are 12 mm in diameter.

Explanatory Information: Reinforcement length and angle

Reinforcement described in 4.2.11(4)(a), (b) or (c) is required to be at least 2 m long and placed at an angle of 45° to the re-entrant corner. Placement of the reinforcing should ensure the minimum concrete cover is provided in accordance with 4.2.11(5) and it is positioned so that the centre of the 2 m length is at the point of the internal angle of the slab. See Explanatory Figure 4.2.11.
Figure 4.2.11 (explanatory): Reinforcing for re-entrant corners

Explanatory Information: Cleaning and placement of reinforcing

In order to obtain a good bond between concrete and reinforcement, the reinforcement should be free of contamination by mud, paint, oils, etc. It is not necessary for the reinforcement to be completely free of rust. Some rusting is beneficial in promoting a good bond as it roughens the surface of the steel. Loose rust, however, must be removed from the reinforcement.

Reinforcement is designed to be in a particular place so as to add strength or to control cracking of the concrete. A displacement from its intended location could make a significant difference to the life or serviceability of the structure.

Supports for fabric reinforcement are provided to prevent the fabric distorting when workers walk on top of it to place the concrete and maintain the correct concrete cover to the fabric.

4.2.12 Footing and slab construction

Footing and slab construction, including size and placement of reinforcement, must be in accordance with the relevant provisions of—

(a) 4.2.13 for footings for stumps; and
(b) 4.2.14 for stiffened rafts on Class A, S and M sites; and
(c) 4.2.15 for strip footing systems on Class A, S and M sites; and
(d) 4.2.16 for footing slabs on Class A sites; and
(e) 4.2.17 for footings for single leaf masonry, mixed construction and earth retaining walls; and
(f) 4.2.18 for footings for fireplaces on Class A and S sites; and
(g) 4.2.19 for shrinkage control; and
(h) 4.2.20 for minimum edge beam dimensions; and
(i) 4.2.21 for recessed areas of slabs.
4.5.72.13 Stump footing details

(1) Footings for stumps must comply with—
 (a) the provisions of Table 4.5.2a and Table 4.5.2b, Tables 4.2.13a, 4.2.13b or 4.2.13c for Class A and Class S sites;
 (b) the appropriate referenced document listed in—
 (i) H1D6(3); or
 (ii) H1D4.

(2) Concrete stumps must—
 (a) be designed in accordance with—
 (i) AS 3600; or
 (ii) Table 4.5.2a and Table 4.5.2b, Tables 4.2.13d, 4.2.13e or 4.2.13f; and
 (b) use a minimum 20 MPa concrete as defined in AS 3600.

(3) Steel stumps must be—
 (a) designed in accordance with—
 (i) AS 4100; or
 (ii) Table 4.5.2a and Table 4.5.2b, Tables 4.2.13d, 4.2.13e or 4.2.13f; and
 (b) fully enclosed and sealed with a welded top plate; and
 (c) encased in concrete sloping away from the stump and finishing not less than 100 mm above finished ground level; and
 (d) corrosion protected in accordance with Part 6.3.

(4) Timber stumps must be designed in accordance with—
 (a) AS 1684.2, AS 1684.3 or AS 1684.4 or AS 1720.1; or
 (b) Table 4.5.2a and Table 4.5.2b, Tables 4.2.13d, 4.2.13e or 4.2.13f.

(5) Stumps must be braced—
 (a) by a full perimeter masonry base; or
 (b) for concrete stumps — in accordance with AS 3600; or
 (c) for steel stumps — in accordance with AS 4100; or
 (d) for timber stumps — in accordance with AS 1684.2, AS 1684.3 or AS 1684.4 or AS 1720.1.

(6) Stumps must be embedded into the foundation material not less than 30% of their height above ground level or 450 mm, whichever is the greater.

(7) Pad footings for clad frame, Class A and Class S sites, must be in accordance with Table 4.2.13g and Figure 4.2.13.

Table 4.2.13a: Stumps supporting single storey timber floor and metal roof

<table>
<thead>
<tr>
<th>Floor load area (m²)</th>
<th>Dimension (mm)</th>
<th>Roof load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Square pad footing, size</td>
<td>250 x 250</td>
</tr>
<tr>
<td>8</td>
<td>Square pad footing, size</td>
<td>400 x 400</td>
</tr>
<tr>
<td>12</td>
<td>Square pad footing, size</td>
<td>450 x 450</td>
</tr>
<tr>
<td>3</td>
<td>Circular pad footing</td>
<td>300</td>
</tr>
</tbody>
</table>
Table Notes:
1. Load accounted for includes 0.53 kPa permanent floor, 0.92 kN/m permanent wall, 0.4 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor and 0.25 kPa imposed roof.
2. Load combinations for ULS included are 1.35G and 1.2G + 1.5Q for stumps and G + 0.5Q for pad footings.
3. Minimum bearing pressure is 100 kPa for pad footings.
4. For pad footings founded on rock, the width or diameter may be reduced by half but not less than 250 mm x 250 mm or 300 mm diameter.
5. Stumps are assumed to be braced and simply-supported at both ends with an effective length factor of 1.
6. A maximum load eccentricity of length/100 has been accounted for in the stumps.
7. A roof load area of “0” must be used for stumps not supporting roof loads.
8. The length of wall load allowed for is equal to the square root of the floor area.

Table 4.2.13b: Stumps supporting single storey tiled floor and tiled roof

<table>
<thead>
<tr>
<th>Floor load area (m²)</th>
<th>Dimension (mm)</th>
<th>Roof load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimension (mm)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Square pad footing size</td>
<td>300 x 300</td>
</tr>
<tr>
<td>8</td>
<td>Square pad footing size</td>
<td>450 x 450</td>
</tr>
<tr>
<td>12</td>
<td>Square pad footing size</td>
<td>500 x 500</td>
</tr>
<tr>
<td>3</td>
<td>Circular pad footing diameter</td>
<td>400</td>
</tr>
<tr>
<td>8</td>
<td>Circular pad footing diameter</td>
<td>600</td>
</tr>
<tr>
<td>12</td>
<td>Circular pad footing diameter</td>
<td>650</td>
</tr>
<tr>
<td>3</td>
<td>Pad footing depth</td>
<td>250</td>
</tr>
<tr>
<td>8</td>
<td>Pad footing depth</td>
<td>250</td>
</tr>
<tr>
<td>12</td>
<td>Pad footing depth</td>
<td>250</td>
</tr>
</tbody>
</table>

Table Notes:
1. Load accounted for includes 0.98 kPa permanent floor, 0.92 kN/m permanent wall, 0.85 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor and 0.25 kPa imposed roof.
2. Load combinations for ULS included are 1.35G and 1.2G + 1.5Q for stumps and G + 0.5Q for pad footings.
3. Minimum bearing pressure is 100 kPa for pad footings.
4. For pad footings founded on rock, the width or diameter may be reduced by half but not less than 250 mm x 250 mm or 300 mm diameter.
5. Stumps are assumed to be braced and simply-supported at both ends with an effective length factor of 1.
6. A maximum load eccentricity of length/100 has been accounted for in the stumps.
7. A roof load area of “0” must be used for stumps not supporting roof loads.
8. The length of wall load allowed for is equal to the square root of the floor area.

Table 4.2.13c: Stumps supporting double storey timber floor and metal roof

<table>
<thead>
<tr>
<th>Floor load area (m²)</th>
<th>Dimension (mm)</th>
<th>Roof load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Square pad footing size</td>
<td>350 x 350</td>
</tr>
<tr>
<td>8</td>
<td>Square pad footing size</td>
<td>550 x 550</td>
</tr>
<tr>
<td>12</td>
<td>Square pad footing size</td>
<td>650 x 650</td>
</tr>
<tr>
<td>3</td>
<td>Circular pad footing diameter</td>
<td>400</td>
</tr>
<tr>
<td>8</td>
<td>Circular pad footing diameter</td>
<td>650</td>
</tr>
<tr>
<td>12</td>
<td>Circular pad footing diameter</td>
<td>750</td>
</tr>
<tr>
<td>3</td>
<td>Pad footing depth</td>
<td>250</td>
</tr>
<tr>
<td>8</td>
<td>Pad footing depth</td>
<td>300</td>
</tr>
<tr>
<td>12</td>
<td>Pad footing depth</td>
<td>350</td>
</tr>
</tbody>
</table>

Table Notes:
1. Load accounted for includes 0.53 kPa permanent floor, 0.92 kN/m permanent wall, 0.4 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor and 0.25 kPa imposed roof.
2. Load combinations for ULS included are 1.35G and 1.2G + 1.5Q for stumps and G + 0.5Q for pad footings.
3. Minimum bearing pressure is 100 kPa for pad footings.
4. For pad footings founded on rock, the width or diameter may be reduced by half but not less than 250 mm x 250 mm or 300 mm diameter.
5. Stumps are assumed to be braced and simply-supported at both ends with an effective length factor of 1.
6. A maximum load eccentricity of length/100 has been accounted for in the stumps.
7. A roof load area of “0” must be used for stumps not supporting roof loads.
8. The length of wall load allowed for is equal to the square root of the floor area.

Table 4.2.13d: Maximum stump height (mm): stump supporting single storey timber floor and metal roof

<table>
<thead>
<tr>
<th>Stump material</th>
<th>Section size (mm)</th>
<th>Floor load area (m²)</th>
<th>Roof load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Concrete $f'_c = 20$ MPa</td>
<td>100 x 100</td>
<td>3</td>
<td>2500</td>
</tr>
<tr>
<td>Concrete $f'_c = 20$ MPa</td>
<td>100 x 100</td>
<td>8</td>
<td>1500</td>
</tr>
<tr>
<td>Concrete $f'_c = 20$ MPa</td>
<td>100 x 100</td>
<td>12</td>
<td>1250</td>
</tr>
<tr>
<td>Steel $f_y = 350$ MPa</td>
<td>100 x 100 x 2.0</td>
<td>3</td>
<td>3000</td>
</tr>
<tr>
<td>Steel $f_y = 350$ MPa</td>
<td>100 x 100 x 2.0</td>
<td>8</td>
<td>3000</td>
</tr>
</tbody>
</table>
Footings and slabs

Table Notes:
1. Load accounted for includes 0.53 kPa permanent floor, 0.92 kN/m permanent wall, 0.4 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor and 0.25 kPa imposed roof.
2. Load combinations for ULS included are 1.35G and 1.2G + 1.5Q for stumps and G + 0.5Q for pad footings.
3. Minimum bearing pressure is 100 kPa for pad footings.
4. For pad footings founded on rock, the width or diameter may be reduced by half but not less than 250 mm x 250 mm or 300 mm diameter.
5. Stumps are assumed to be braced and simply-supported at both ends with an effective length factor of 1.
6. A maximum load eccentricity of length/100 has been accounted for in the stumps.
7. A roof load area of "0" must be used for stumps not supporting roof loads.
8. The length of wall load allowed for is equal to the square root of the floor area.

Table 4.2.13e: Maximum stump height: stump supporting single storey tiled floor and tiled roof

<table>
<thead>
<tr>
<th>Stump material</th>
<th>Section size (mm)</th>
<th>Floor load area (m²)</th>
<th>Roof load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Concrete $f'_c = 20$ MPa</td>
<td>100 x 100</td>
<td>3</td>
<td>2250</td>
</tr>
<tr>
<td>Concrete $f'_c = 20$ MPa</td>
<td>100 x 100</td>
<td>8</td>
<td>1500</td>
</tr>
<tr>
<td>Concrete $f'_c = 20$ MPa</td>
<td>100 x 100</td>
<td>12</td>
<td>1250</td>
</tr>
<tr>
<td>Steel $f_y = 350$ MPa</td>
<td>100 x 100 x 2.0</td>
<td>3</td>
<td>3000</td>
</tr>
</tbody>
</table>
Table Notes:
1. Load accounted for includes 0.98 kPa permanent floor, 0.92 kN/m permanent wall, 0.85 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor and 0.25 kPa imposed roof.
2. Load combinations for ULS included are 1.35G and 1.2G + 1.5Q for stumps and G + 0.5Q for pad footings.
3. Minimum bearing pressure is 100 kPa for pad footings.
4. Stumps are assumed to be braced and simply-supported at both ends with an effective length factor of 1.
5. A maximum load eccentricity of length/100 has been accounted for in the stumps.
6. The length of wall load allowed for is equal to the square root of the floor area.

Table 4.2.13f: Maximum stump height: stump supporting double storey timber floor and metal roof

<table>
<thead>
<tr>
<th>Stump material</th>
<th>Section size (mm)</th>
<th>Floor load area (m²)</th>
<th>Roof load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Steel f_y = 350 MPa</td>
<td>100 x 100 x 2.0</td>
<td>8</td>
<td>3000</td>
</tr>
<tr>
<td>Timber F17</td>
<td>100 x 100</td>
<td>3</td>
<td>3000</td>
</tr>
<tr>
<td>Timber F17</td>
<td>100 x 100</td>
<td>8</td>
<td>2500</td>
</tr>
<tr>
<td>Timber F14</td>
<td>100 x 100</td>
<td>3</td>
<td>3000</td>
</tr>
<tr>
<td>Timber F14</td>
<td>100 x 100</td>
<td>8</td>
<td>2000</td>
</tr>
<tr>
<td>Timber F11</td>
<td>100 x 100</td>
<td>12</td>
<td>1500</td>
</tr>
<tr>
<td>Timber F11</td>
<td>100 x 100</td>
<td>8</td>
<td>1750</td>
</tr>
<tr>
<td>Timber F11</td>
<td>100 x 100</td>
<td>12</td>
<td>1250</td>
</tr>
<tr>
<td>Timber F8</td>
<td>100 x 100</td>
<td>3</td>
<td>2500</td>
</tr>
<tr>
<td>Timber F8</td>
<td>100 x 100</td>
<td>8</td>
<td>1500</td>
</tr>
<tr>
<td>Timber F7</td>
<td>100 x 100</td>
<td>12</td>
<td>1250</td>
</tr>
<tr>
<td>Timber F7</td>
<td>100 x 100</td>
<td>8</td>
<td>2500</td>
</tr>
<tr>
<td>Timber F5</td>
<td>100 x 100</td>
<td>12</td>
<td>–</td>
</tr>
<tr>
<td>Timber F5</td>
<td>100 x 100</td>
<td>8</td>
<td>2250</td>
</tr>
<tr>
<td>Timber F5</td>
<td>100 x 100</td>
<td>3</td>
<td>750</td>
</tr>
<tr>
<td>Timber F5</td>
<td>100 x 100</td>
<td>12</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stump material</th>
<th>Section size (mm)</th>
<th>Floor load area (m²)</th>
<th>Roof load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Concrete f_y = 20 MPa</td>
<td>100 x 100</td>
<td>3</td>
<td>1750</td>
</tr>
<tr>
<td>Concrete f_y = 20 MPa</td>
<td>100 x 100</td>
<td>8</td>
<td>1250</td>
</tr>
<tr>
<td>Concrete f_y = 20 MPa</td>
<td>100 x 100</td>
<td>12</td>
<td>–</td>
</tr>
</tbody>
</table>
Footings and slabs

Table Notes:
1. Load accounted for includes 0.53 kPa permanent floor, 0.92 kN/m permanent wall, 0.4 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor and 0.25 kPa imposed roof.
2. Load combinations for ULS included are 1.35G and 1.2G + 1.5Q for stumps and G + 0.5Q for pad footings.
3. Minimum bearing pressure is 100 kPa for pad footings.
4. Stumps are assumed to be braced and simply-supported at both ends with an effective length factor of 1.
5. A maximum load eccentricity of length/100 has been accounted for in the stumps.
6. A roof load area of “0” must be used for stumps not supporting roof loads.
7. The length of wall load allowed for is equal to the square root of the floor area.

Table 4.5.72.13g: Minimum dimensions of circular and square pad footings for clad frame, Class A and S sites

<table>
<thead>
<tr>
<th>Effective supported areas (m²)</th>
<th>Width of square pad (mm)</th>
<th>Width of circular pad (mm)</th>
<th>Thickness (t) (mm)</th>
<th>Depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>400</td>
<td>500</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>20</td>
<td>500</td>
<td>600</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>30</td>
<td>600</td>
<td>750</td>
<td>250</td>
<td>400</td>
</tr>
</tbody>
</table>
Table Notes:
1. The effective area supported by a pad footing is the sum of—
 a. the supported floor area; and
 b. the supported roof area (if applicable); and
 c. half the supported wall area in elevation (if applicable).
2. The width or diameter can be reduced to one half the above footings on rock.
3. The pad footings must be constructed in concrete except that footings for masonry can be used under masonry piers.
4. Pad footing sizes must also apply to footings supporting roof and floor loads only.
5. The foundation must provide an allowable bearing pressure of not less than 100 kPa.
6. The excavation must be backfilled with manually rodded tamped soil, or the footing thickness shall be increased by 50 mm.
7. Where stump pad footings provide resistance to horizontal or uplift forces, the minimum size of the footing must comply with AS 2870.
8. Braced stumps must comply with 4.5.7(5) 4.2.13(5).

Figure 4.5.7.2.13: Pad footings for clad frame, Class A and S sites

![Diagram of pad footings for clad frame, Class A and S sites]

- **(a)** Stumps
- **(b)** Piers

Figure Notes:
1. For minimum pad footing dimensions t and D, see Table 4.2.13g.
2. For tamped fill or thickened concrete pads, see Note 6 to Table 4.2.13g.

4.2.14 Stiffened rafts Class A, S and M sites

Footing and stiffened raft slabs must comply with—

- **(a)** For Class A and S sites — Tables 4.2.14a, 4.2.14b and Figure 4.2.14a; and
- **(b)** For Class M sites — Table 4.2.14c and Figure 4.2.14b.
Table 4.5.2c.2.14a: Reinforcement for stiffened raft footings for Class A sites

<table>
<thead>
<tr>
<th>Type of construction</th>
<th>Depth (D) (mm)</th>
<th>Bottom reinf.</th>
<th>Max. spacing c/l to c/l</th>
<th>Slab fabric where slab-length <18m</th>
<th>Slab fabric where slab-length <25m</th>
<th>Slab fabric where slab-length <30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clad frame</td>
<td>300</td>
<td>3-L8TM</td>
<td>N/A</td>
<td>SL72</td>
<td>SL82</td>
<td>SL92</td>
</tr>
<tr>
<td>Articulated masonry veneer</td>
<td>300</td>
<td>3-L8TM</td>
<td>N/A</td>
<td>SL72</td>
<td>SL82</td>
<td>SL92</td>
</tr>
<tr>
<td>Masonry veneer</td>
<td>300</td>
<td>3-L8TM</td>
<td>N/A</td>
<td>SL72</td>
<td>SL82</td>
<td>SL92</td>
</tr>
<tr>
<td>Articulated full masonry</td>
<td>400</td>
<td>3-L8TM</td>
<td>N/A</td>
<td>SL72</td>
<td>SL82</td>
<td>SL92</td>
</tr>
<tr>
<td>Full masonry</td>
<td>400</td>
<td>3-L8TM</td>
<td>N/A</td>
<td>SL72</td>
<td>SL82</td>
<td>SL92</td>
</tr>
</tbody>
</table>

Table Notes:
1. Internal and external edge beams must be arranged to form an integral structural grid (see clauses 5.3.8 and 5.3.9 of AS 2870).
2. A 10% increase in spacings is permitted where the spacing in the other direction is 20% less than that specified.
3. Where external beams are wider than 300 mm, an extra bottom bar or equivalent of the same bar size is required for each 100 mm additional width.
4. Where a reinforced single leaf masonry wall is constructed directly above and structurally connected to a concrete edge beam, the beam may be reduced to 300 mm wide by 300 mm deep and reinforced with 3-L8TM reinforcement.
5. Alternative reinforcement sizes must comply with AS 2870.
6. Internal beam details and spacings must comply with Figure 4.5.2a or Figure 4.2.14a or Figure 4.5.2b or Figure 4.2.14b. At a re-entrant corner where an external beam continues as an internal beam, the internal beam details must be continued for a length of 1 m into the external beam.

Table 4.5.2d.2.14b: Reinforcement for stiffened raft footings for Class S sites

<table>
<thead>
<tr>
<th>Type of construction</th>
<th>Depth (D) (mm)</th>
<th>Bottom reinf.</th>
<th>Max. spacing c/l to c/l</th>
<th>Slab fabric where slab-length <18m</th>
<th>Slab fabric where slab-length <25m</th>
<th>Slab fabric where slab-length <30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clad frame</td>
<td>300</td>
<td>3-L8TM</td>
<td>N/A</td>
<td>SL72</td>
<td>SL82</td>
<td>SL92</td>
</tr>
<tr>
<td>Articulated masonry veneer</td>
<td>300</td>
<td>3-L8TM</td>
<td>N/A</td>
<td>SL72</td>
<td>SL82</td>
<td>SL92</td>
</tr>
<tr>
<td>Masonry veneer</td>
<td>300</td>
<td>3-L11TM</td>
<td>N/A</td>
<td>SL72</td>
<td>SL82</td>
<td>SL92</td>
</tr>
<tr>
<td>Articulated full masonry</td>
<td>450</td>
<td>3-L11TM</td>
<td>N/A</td>
<td>SL72</td>
<td>SL82</td>
<td>SL92</td>
</tr>
<tr>
<td>Full masonry</td>
<td>450</td>
<td>3-L11TM 3-N16</td>
<td>5.0 (m) Note 2</td>
<td>SL82</td>
<td>SL82</td>
<td>SL92</td>
</tr>
</tbody>
</table>

Table Notes:
1. Internal and external edge beams must be arranged to form an integral structural grid (see clauses 5.3.8 and 5.3.9 of AS 2870).
2. A 10% increase in spacings is permitted where the spacing in the other direction is 20% less than that specified.
3. Where external beams are wider than 300 mm, an extra bottom bar or equivalent of the same bar size is required for each 100 mm additional width.
4. Where a reinforced single leaf masonry wall is constructed directly above and structurally connected to a concrete edge beam, the beam may be reduced to 300 mm wide by 300 mm deep and reinforced with 3-L8TM reinforcement.
5. Alternative reinforcement sizes must comply with AS 2870.
6. Internal beam details and spacings must comply with Figure 4.5.2a or Figure 4.2.14a or Figure 4.5.2b or Figure 4.2.14b. At a re-entrant corner where an external beam continues as an internal beam, the internal beam details must be continued for a length of 1 m into the external beam.

Table 4.5.2a: Reinforcement for stiffened raft footings for Class M sites

<table>
<thead>
<tr>
<th>Type of construction</th>
<th>Depth (D) (mm)</th>
<th>Bottom reinf.</th>
<th>Max. spacing c/l to c/l</th>
<th>Slab mesh where slab length ≤ 18m</th>
<th>Slab mesh where slab length ≤ 25m</th>
<th>Slab mesh where slab length ≤ 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clad frame</td>
<td>300</td>
<td>3-L11TM</td>
<td>6.0 Note 2</td>
<td>SL72</td>
<td>SL82</td>
<td>SL92</td>
</tr>
<tr>
<td>Articulated masonry</td>
<td>400</td>
<td>3-L11TM</td>
<td>6.0 Note 2</td>
<td>SL72</td>
<td>SL82</td>
<td>SL92</td>
</tr>
<tr>
<td>Masonry veneer</td>
<td>400</td>
<td>3-L11TM</td>
<td>5.0 Note 2</td>
<td>SL72</td>
<td>SL82</td>
<td>SL92</td>
</tr>
<tr>
<td>Articulated full</td>
<td>500</td>
<td>3-L12TM</td>
<td>4.0</td>
<td>SL82</td>
<td>SL82</td>
<td>SL92</td>
</tr>
<tr>
<td>Masonry</td>
<td>8500</td>
<td>3-N16</td>
<td>4.0</td>
<td>SL92</td>
<td>SL92</td>
<td>SL92</td>
</tr>
</tbody>
</table>

Table Notes:
1. Internal and external edge beams must be arranged to form an integral structural grid (see clauses 5.3.8 and 5.3.9 of AS 2870).
2. A 10% increase in spacings is permitted where the spacing in the other direction is 20% less than that specified.
3. Where external beams are wider than 300 mm, an extra bottom bar or equivalent of the same bar size is required for each 100 mm additional width.
4. Where a reinforced single leaf masonry wall is constructed directly above and structurally connected to a concrete edge beam, the beam may be reduced to 300 mm wide by 300 mm deep and reinforced with 3-L8TM reinforcement.
5. Alternative reinforcement sizes must comply with AS 2870.
6. Internal beam details and spacings must comply with Figure 4.5.2b or Figure 4.2.14b. At a re-entrant corner where an external beam continues as an internal beam, the internal beam details must be continued for a length of 1 m into the external beam.

Figure 4.5.2a: Footing slab and stiffened raft slab details for Class A and S sites
Figure 4.5.2b: Footing slab and stiffened raft slab details for Class M, M-D, H and H-D sites

4.2.15 Strip footings Class A, S and M sites

Strip footings for Class A, S and M sites must comply with—

(a) for Class A and S sites — Tables 4.2.15a, 4.2.15b and Figure 4.2.15a; and

(b) for Class M sites — Table 4.2.15c and Figure 4.2.15b.

Table 4.5.2i2.15a: Dimensions and reinforcement for strip footing systems for Class A sites

<table>
<thead>
<tr>
<th>Type of construction</th>
<th>D (mm)</th>
<th>B (mm)</th>
<th>Reinforcement (top and bottom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clad frame</td>
<td>300</td>
<td>300</td>
<td>3–L8TM</td>
</tr>
<tr>
<td>Articulated masonry veneer</td>
<td>300</td>
<td>300</td>
<td>3–L8TM</td>
</tr>
<tr>
<td>Masonry veneer</td>
<td>300</td>
<td>300</td>
<td>3–L8TM</td>
</tr>
<tr>
<td>Articulated full masonry</td>
<td>300</td>
<td>400</td>
<td>4–L8TM</td>
</tr>
<tr>
<td>Full masonry</td>
<td>300</td>
<td>400</td>
<td>4–L8TM</td>
</tr>
</tbody>
</table>

Table Notes:
1. All masonry walls must be supported on strip footings.
2. Internal strip footings must be of the same proportions as the external footings and run from external footing to external footing. “Side slip joints” consisting of a double layer of polyethylene must be provided at the sides of the footing only.
3. Infill floors may be concrete slabs, brick paving, stone flags or compacted and stabilised earth. For concrete slab infill panels, mesh may be required to control shrinkage in slab panels and around openings or restrained regions. Concrete infill slabs must use a minimum of SL62 mesh to control shrinkage (see also 4.5.41.2.19).
4. Where footings are wider than the specified width, an extra bottom bar or equivalent of the same bar size is required for each 100 mm additional width. If strip footings deeper than those required are used, the reinforcement must be increased to match that specified for the deepened proportions.
5. The measurement of Df is greater or equal to D plus 75 mm.
6. Alternative reinforcing sizes must comply with AS 2870.
Table 4.2j2.15b: Dimensions and reinforcement for strip footing systems for Class S sites

<table>
<thead>
<tr>
<th>Type of construction</th>
<th>D (mm)</th>
<th>B (mm)</th>
<th>Reinforcement (top and bottom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clad frame</td>
<td>400</td>
<td>300</td>
<td>3–L8TM</td>
</tr>
<tr>
<td>Articulated masonry veneer</td>
<td>400</td>
<td>300</td>
<td>3–L8TM</td>
</tr>
<tr>
<td>Masonry veneer</td>
<td>400</td>
<td>300</td>
<td>3–L8TM</td>
</tr>
<tr>
<td>Articulated full masonry</td>
<td>400</td>
<td>400</td>
<td>4–L11TM</td>
</tr>
<tr>
<td>Full masonry</td>
<td>500</td>
<td>400</td>
<td>4–L11TM</td>
</tr>
</tbody>
</table>

Table Notes:
1. All masonry walls must be supported on strip footings.
2. Internal strip footings must be of the same proportions as the external footings and run from external footing to external footing. “Side slip joints” consisting of a double layer of polyethylene must be provided at the sides of the footing only.
3. Infill floors may be concrete slabs, brick paving, stone flags or compacted and stabilised earth. For concrete slab infill panels, mesh may be required to control shrinkage in slab panels and around openings or restrained regions. Concrete infill slabs must use a minimum of SL62 mesh to control shrinkage (see also 4.5.4.1.219).
4. Where footings are wider than the specified width, an extra bottom bar or equivalent of the same bar size is required for each 100 mm additional width. If strip footings deeper than those required are used, the reinforcement must be increased to match that specified for the deepened proportions.
5. The measurement of D_f is greater or equal to D plus 75 mm.
6. Alternative reinforcing sizes must comply with AS 2870.

Table 4.5.2k2.15c: Dimensions and reinforcement for strip footing systems for Class M sites

<table>
<thead>
<tr>
<th>Site-Class</th>
<th>Type of construction</th>
<th>D (mm)</th>
<th>B (mm)</th>
<th>Reinforcement (top and bottom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class-M</td>
<td>Clad frame</td>
<td>400</td>
<td>300</td>
<td>3-L11TM</td>
</tr>
<tr>
<td>Class-M</td>
<td>Articulated masonry veneer</td>
<td>450</td>
<td>300</td>
<td>3-L11TM</td>
</tr>
<tr>
<td>Class-M</td>
<td>Masonry veneer</td>
<td>500</td>
<td>300</td>
<td>3-L12TM</td>
</tr>
<tr>
<td>Class-M</td>
<td>Articulated full masonry</td>
<td>600</td>
<td>400</td>
<td>4-L12TM</td>
</tr>
<tr>
<td>Class-M</td>
<td>Full masonry</td>
<td>900</td>
<td>400</td>
<td>4-L12TM</td>
</tr>
</tbody>
</table>

Table Notes:
1. All masonry walls must be supported on strip footings.
2. For beams 700 mm or deeper, as specified in the table above, internal footings must be provided at no more than 6 m centres and at re-entrant corners to continue footings to the opposite external footing. Internal strip footings must be of the same proportions as the external footings and run from external footing to external footing. “Side slip joints” consisting of a double layer of polyethylene must be provided at the sides of the footing only.
3. Infill floors must only be used for Class A and S sites.
4. Where footings are wider than the specified width, an extra bottom bar or equivalent of the same bar size is required for each 100 mm additional width. If strip footings deeper than those required are used, the reinforcement must be increased to match that specified for the deepened proportions.
5. The measurement of D_f is greater or equal to D plus 75 mm.
6. Alternative reinforcing sizes must comply with AS 2870.
7. For Class M articulated full masonry and full masonry, internal strip footings must be of the same proportions as the external footing and run from external footing to external footing.
Figure 4.5.2c2.15a: Strip footing systems for Class A and S sites

Figure 4.5.2d2.15b: Strip footing system for Class M, M-D and H sites

4.2.16 Footing slabs for Class A sites

Footing slabs for Class A sites supporting the following external wall types must comply with Figure 4.2.16:

(a) Clad frame.
(b) Articulated masonry.
Footings and slabs

(c) Masonry veneer.
(d) Articulated full masonry.
(e) Full masonry.

Figure 4.2.15e: Footing slabs for Class A sites suitable for clad frame, articulated masonry veneer, masonry veneer, articulated full masonry and full masonry

Figure Notes:
1. Use SL63 when slab length is less than 12 m.
2. Use SL62 when slab length is less than 18 m.
3. In parts of Western Australia (around Perth) and other locations where the site consists of extremely stable sands, and where specified by a professional engineer, the slab thickness may be reduced to 85 mm and reinforced as follows:
 a. Use SL53 when slab length is less than or equal to 12 m.
1. Dune sands may require compaction.

4.2.17 Footings for single leaf masonry, mixed construction and earth wall construction

Footings supporting the following external wall types must comply with the equivalent footing construction set out in Tables 4.2.17a, 4.2.17b and 4.2.17c:
(a) Single leaf masonry.
(b) Mixed construction.
(c) Earth wall structures.

Table 4.2.17a: Equivalent wall construction: single leaf masonry

<table>
<thead>
<tr>
<th>Actual construction: external walls</th>
<th>Actual construction: internal walls</th>
<th>Equivalent wall construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforced single leaf masonry</td>
<td>Articulated masonry on Class A and Class S sites, or framed</td>
<td>Articulated masonry veneer</td>
</tr>
<tr>
<td>Reinforced single leaf masonry</td>
<td>Articulated masonry or reinforced single leaf masonry</td>
<td>Masonry veneer</td>
</tr>
<tr>
<td>Articulated single leaf masonry</td>
<td>Articulated masonry</td>
<td>Articulated full masonry</td>
</tr>
</tbody>
</table>
4.5.6.2.18 Footings for fireplaces on Class A and S sites

[2019: 3.2.5.5]

(1) Fireplaces must be supported on a pad footing—
 (a) 150 mm thick for single storey (one trafficable floor and a wall height not more than 4.2 m) construction; and
 (b) 200 mm thick for 2 storey (two trafficable floors and a wall height not more than 8 m) construction; and
 (c) reinforced top and bottom with SL72 mesh; and
 (d) extending 300 mm past the edges of the masonry except for any edge flush with the outer wall.

(2) The pad footing must form an integral part of the slab.

4.5.4.2.19 Shrinkage control

[2019: 3.2.5.3]

(1) Where brittle floor coverings, such as ceramic tiles, are to be used over an area greater than 16 m², one of the following additional measures must be taken to control the effect of shrinkage cracking—
 (a) the amount of shrinkage reinforcement (steel reinforcement mesh in the slab panel) must be—
 (i) increased to SL92 or equivalent throughout the affected slab area; or
 (ii) doubled reinforced top and bottom with an additional sheets of slab mesh throughout the affected slab area; or
 (b) the bedding system for brittle coverings must be selected on the basis of the expected slab movement and the characteristics of the floor covering (including the use of expansion joints etc.); or
 (c) the placement of floor covering must be delayed for not less than 3 months after the concrete has been poured.

(2) At re-entrant or internal corners, two strips, minimum 2 m in length, of 3–L8TM or one strip of 3–L11TM (or 3–N12 bars) must be placed diagonally across the corner in accordance with Figure 4.5.4.

(2) Where a footing or slab supports a concentrated load from a structural steel column, localised thickening must—
 (a) be provided in accordance with—
 (i) for tiled floor and tiled roof, Tables 4.2.19a, 4.2.19b or 4.2.19c; or
 (ii) for timber floor and metal roof, Tables 4.2.19d, 4.2.19e or 4.2.19f; and
 (b) be centred under the structural steel column; and
 (c) have SL72 reinforcement with a minimum 50 mm of concrete cover (see Figure 4.2.19).
Table 4.2.19a: **Localised thickening under concentrated load — tiled floor and tiled roof — roof load area = 0 \text{ m}^2**

<table>
<thead>
<tr>
<th>Localised thickening</th>
<th>Floor load area (m(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Square thickening size (mm)</td>
<td>450 x 450</td>
</tr>
<tr>
<td>Thickening depth (mm)</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
</tbody>
</table>

Table Notes:
1. **Load accounted for includes 0.98 \text{kPa} permanent tiled floor, 0.85 \text{kPa} permanent tiled roof, 1.16 \text{kN/m} permanent wall, permanent member self-weight, 1.5 \text{kPa} or 1.1 \text{kN} imposed floor and 0.25 \text{kPa} imposed roof.**
2. **Load combinations included are G + 0.5Q for ULS.**
3. **Minimum bearing pressure is 1000 \text{kPa} for pad footings.**
4. **A roof load area of “0” must be used for footings not supporting roof loads.**
5. **The length of wall allowed for is equal to the square root of the floor area.**

Table 4.2.19b: **Localised thickening under concentrated load — tiled floor and tiled roof — roof load area = 9 \text{ m}^2**

<table>
<thead>
<tr>
<th>Localised thickening</th>
<th>Floor load area (m(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Square thickening size (mm)</td>
<td>650 x 650</td>
</tr>
<tr>
<td>Thickening depth (mm)</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>450</td>
</tr>
</tbody>
</table>

Table Notes:
1. **Load accounted for includes 0.98 \text{kPa} permanent tiled floor, 0.85 \text{kPa} permanent tiled roof, 1.16 \text{kN/m} permanent wall, permanent member self-weight, 1.5 \text{kPa} or 1.1 \text{kN} imposed floor and 0.25 \text{kPa} imposed roof.**
2. **Load combinations included are G + 0.5Q for ULS.**
3. **Minimum bearing pressure is 1000 \text{kPa} for pad footings.**
4. **The length of wall allowed for is equal to the square root of the floor area.**

Table 4.2.19c: **Localised thickening under concentrated load — tiled floor and tiled roof — roof load area = 18 \text{ m}^2**

<table>
<thead>
<tr>
<th>Localised thickening</th>
<th>Floor load area (m(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Square thickening size (mm)</td>
<td>750 x 750</td>
</tr>
<tr>
<td>Thickening depth (mm)</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>

Table Notes:
1. **Load accounted for includes 0.98 \text{kPa} permanent tiled floor, 0.85 \text{kPa} permanent tiled roof, 1.16 \text{kN/m} permanent wall, permanent member self-weight, 1.5 \text{kPa} or 1.1 \text{kN} imposed floor and 0.25 \text{kPa} imposed roof.**
2. **Load combinations included are G + 0.5Q for ULS.**
3. **Minimum bearing pressure is 1000 \text{kPa} for pad footings.**
4. **The length of wall allowed for is equal to the square root of the floor area.**
Table 4.2.19d: Localised thickening under concentrated load — timber floor and metal roof — roof load area = 0 m²

<table>
<thead>
<tr>
<th>Localised thickening</th>
<th>Floor load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Square thickening size (mm)</td>
<td>400 x 400</td>
</tr>
<tr>
<td>Thickening depth (mm)</td>
<td>250</td>
</tr>
</tbody>
</table>

Table Notes:
1. Load accounted for includes 0.53 kPa permanent timber floor, 0.4 kPa permanent metal roof, 1.16 kN/m permanent wall, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor and 0.25 kPa imposed roof.
2. Load combinations included are G + 0.5Q for ULS.
3. Minimum bearing pressure is 1000 kPa for pad footings.
4. A roof load area of “0” must be used for footings not supporting roof loads.
5. The length of wall allowed for is equal to the square root of the floor area.

Table 4.2.19e: Localised thickening under concentrated load — timber floor and metal roof — roof load area = 9 m²

<table>
<thead>
<tr>
<th>Localised thickening</th>
<th>Floor load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Square thickening size (mm)</td>
<td>500 x 500</td>
</tr>
<tr>
<td>Thickening depth (mm)</td>
<td>300</td>
</tr>
</tbody>
</table>

Table Notes:
1. Load accounted for includes 0.53 kPa permanent timber floor, 0.4 kPa permanent metal roof, 1.16 kN/m permanent wall, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor and 0.25 kPa imposed roof.
2. Load combinations included are G + 0.5Q for ULS.
3. Minimum bearing pressure is 1000 kPa for pad footings.
4. The length of wall allowed for is equal to the square root of the floor area.

Table 4.2.19f: Localised thickening under concentrated load — timber floor and metal roof — roof load area = 18 m²

<table>
<thead>
<tr>
<th>Localised thickening</th>
<th>Floor load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Square thickening size (mm)</td>
<td>600 x 600</td>
</tr>
<tr>
<td>Thickening depth (mm)</td>
<td>300</td>
</tr>
</tbody>
</table>

Table Notes:
1. Load accounted for includes 0.53 kPa permanent timber floor, 0.4 kPa permanent metal roof, 1.16 kN/m permanent wall, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor and 0.25 kPa imposed roof.
2. Load combinations included are G + 0.5Q for ULS.
3. Minimum bearing pressure is 1000 kPa for pad footings.
4. The length of wall allowed for is equal to the square root of the floor area.
4.5.2.20 Minimum edge beam dimensions

[2019: 3.2.5.4]

Except for waffle raft slabs, where the edge rebate is more than 150 mm in depth, for footing slabs located on a Class A or Class S sites, the width of the edge beam at the base of the rebate must not be less than 200 mm, except that if R10 or N10 ties at 900 mm spacing (or equivalent) are provided to resist vertical forces, the width of the edge beam at the base of the rebate can be reduced to 150 mm.

4.2.21 Recessed areas of slabs

[New for 2022]

(1) Where a recess in a slab is provided, it must comply with one of the following:
 (a) For recess depths less than or equal to half the nominal slab thickness, the reinforcing mesh must have a minimum lap length of 400 mm measured from the inside face of the recess (see Figure 4.2.21a).
 (b) For recess depths greater than half the nominal slab thickness (see Figure 4.2.21b)—
 (i) top reinforcing mesh must overlap the bottom reinforcing mesh by not less than 400 mm; and
 (ii) bottom reinforcing mesh must be two layers of SL72.
(2) Concrete cover to reinforcing in (1)(a) and (b) must comply with 4.2.11(5).
Figure 4.2.21a: Recess depths less than or equal to nominal slab thickness

Figure 4.2.21b: Recess depths greater than nominal slab thickness
5 Masonry

Part 5.1 Scope and application of Section 5

5.1.1 Scope
5.1.2 Application

Part 5.2 Masonry veneer

5.2.1 Application of Part 5.2
5.2.2 Height of wall limitation
5.2.3 Openings in masonry veneer
5.2.4 Damp-proof courses and flashing materials
5.2.5 Vertical articulation joints
5.2.6 Engaged piers

Part 5.3 Cavity masonry

5.3.1 Application of Part 5.3
5.3.2 Height of wall limitation
5.3.3 External walls
5.3.4 Internal walls
5.3.5 Openings in cavity masonry
5.3.6 Damp-proof courses and flashing materials
5.3.7 Vertical articulation joints

Part 5.4 Unreinforced single leaf masonry

5.4.1 Application of Part 5.4
5.4.2 External walls
5.4.3 Internal walls
5.4.4 Vertical articulation joints
5.4.5 Damp-proof courses and flashing materials

Part 5.35 Isolated masonry piers

5.35.1 Application of Part 5.35
5.35.2 Piers supporting carports, verandahs, porches and similar roof structures
5.35.3 Piers supporting tiled roofs
5.35.4 Piers supporting sheet roofs
5.35.5 Piers for freestanding carports
5.35.6 Subfloor piers

Part 5.6 Masonry components and accessories

5.6.1 Application of Part 5.6
5.6.2 Masonry units
5.46.3 Mortar mixes
5.56.4 Mortar joints
5.2.10 Wall ties
5.6.6 Fixing straps and tie-down systems
5.2.12 Lintels
5.2.12.8 Vertical articulation joints

Part 5.7 Weatherproofing of masonry

5.7.1 Application of Part 5.7
5.2.6.7 Cavities
5.2.7.3 Damp-proof courses and flashings – material
5.2.7.4 Damp-proof courses and flashings – installation
5.2.9.7.5 Weepholes

5.7.6 Weatherproofing for single leaf masonry walls
Part 5.1 Scope and application of Section 5

5.1.1 Scope

[New for 2022]

(1) This Section of the ABCB Housing Provisions sets out the Deemed-to-Satisfy Provisions for—

(a) masonry veneer (see Part 5.2); and

(b) cavity masonry (see Part 5.3); and

(c) single leaf unreinforced masonry (see Part 5.4); and

(d) isolated masonry piers (see Part 5.5); and

(e) masonry components and accessories (see Part 5.6); and

(f) weatherproofing of masonry (see Part 5.7).

(2) For other masonry provisions not included in this Section of the ABCB Housing Provisions, refer to the following Deemed-to-Satisfy Provisions in NCC Volume Two:

(a) reinforced masonry (see H1D5(4)).

(b) Masonry accessories (see H1D5(1)).

(c) Weatherproofing of masonry (see H2D4).

5.1.2 Application

[New for 2022]

The application of Section 5 of the ABCB Housing Provisions is subject to the following:

(a) The Governing Requirements of NCC 2022 Volume Two.

(b) Any conditions set out within the following Deemed-to-Satisfy Provisions of NCC Volume Two:

(i) H1D5(3)(a), H1D5(1), for masonry veneer.

(ii) H1D5(2), for cavity masonry.

(iii) H1D5(3), for unreinforced masonry.

(iv) H1D5(3)(b), H1D5(5), for isolated masonry piers.

(v) H1D5(6), for masonry accessories.

(vi) H2D4(2)(c), for weatherproofing of masonry.

(c) The State and Territory variations, additions and deletions contained in the Schedules to the ABCB Housing Provisions and NCC Volume Two.

Explanatory Information:

In NCC 2019, the content of Section 5 of the ABCB Housing Provisions (other than content added in NCC 2022 or later) was contained in the acceptable construction practices for Parts 3.3.5 and 3.3.6 of NCC 2019 Volume Two.

NCC 2019 Volume Two did not include an acceptable construction practice for Parts 3.3.1, 3.3.2, 3.3.3 or 3.3.4.
Part 5.2 Masonry veneer

5.2.1 Application of Part 5.2

(1) Part 5.2 is subject to the limitations set out at H1D5(3)(a) H1D5(1)(c).

(2) Part 5.2 need not be complied with if H1D5(1)(a) or (b) is complied with.

5.2.2 Height of wall limitation

Masonry veneer walls must not be greater than 8.5 m in height when measured above the adjacent finished ground level.

5.2.3 Openings in masonry veneer

(1) Except where excluded by (2), openings in masonry veneer must be spanned by steel lintels.

(2) Openings in masonry veneer not more than 500 mm wide need not be provided with a steel lintel provided the opening is adequately supported.

5.2.4 Damp-proof courses and flashing materials

Damp-proof courses and flashing materials must be in accordance with 5.7.3 and 5.7.4.

5.2.5 Vertical articulation joints

Vertical articulation joints are to be installed in accordance with 5.6.8.

5.2.6 Engaged piers

Where engaged piers are installed to support subfloor framing, they must comply with the provisions of this Part and be constructed as follows:

(a) Footings for piers must comply with Section 4.

(b) Engaged piers must not support more than a single storey with a roof framing span of not more than 12 m.

(c) Piers must be spaced at not more than 3 m centres with floor framing complying with—

(i) H1D6(2) H1D6(3) for steel framing; and

(ii) H1D6(3) H1D6(4) for timber framing; and

(iii) H1D6(4) H1D6(5) for structural steel framing.

(d) Piers must be—

(i) not more than 1.2 m high; and

(ii) a minimum thickness of 100 mm inclusive of mortar; and

(iii) a width greater than the depth of the timber or steel section which it is supporting (See Figure 5.2.14).
5.2.6).

(e) Notwithstanding (c), engaged piers must be located beneath—

(i) each side of window and door openings; and

(ii) concentrated roof loads, inclusive of any roof beams and girder trusses.

(f) Piers must be tied or bonded to the external masonry wall, and where ties are used they must comply with 5.2.10 5.6.5.

(g) Piers formed from hollow-core masonry units must be filled with grout.

Figure 5.2.142.6: Engaged pier
5.3.1 Application of Part 5.3

(1) Part 5.3 applies subject to the limitations set out at H1D5(2)(c).
(2) Part 5.3 need not be complied with if H1D5(2)(a) or (b) is complied with.

5.3.2 Height of wall limitation

Cavity masonry walls must not be greater than 8.5 m in height when measured above the adjacent finished ground level.

5.3.3 External walls

(1) Cavity masonry walls must comply with the relevant provisions of this Part and Parts 5.6 and 5.7 and be constructed as follows:
 (a) The height of the wall between lateral support (floor or ceiling or roof diaphragm) must be not more than 3 m.
 (b) Cavity masonry walls subject to wind loads must be supported by masonry cross walls.
 (c) Masonry cross walls must be—
 (i) not less than 2 m in length; and
 (ii) at not more than 5.1 m centres where the length of the cavity wall being supported does not contain any opening or control joint; and
 (iii) not more than 2.5 m from the edge of a control joint in the length of the cavity wall being supported; and
 (iv) not more than a distance from the edge of an opening in the length of cavity wall being supported as stated in Table 5.3.3; and
 (v) located at both edges of openings of width greater than 2700 mm; and
 (vi) directly connected to the internal leaf of the cavity wall being supported using—
 (A) properly bonded units with at least 90 mm engagement on each side of the interface with the selected bond pattern but not less than every fourth course of masonry; or
 (B) medium duty Type A cavity wall ties in aligning mortar bed joints at a vertical spacing of not more than 300 mm; and
 (vii) connected by a floor or ceiling diaphragm to the wall being supported where floor or ceiling connections are designed in accordance with the relevant material design standard AS/NZS 4600, AS 1720.1 or AS 3600, as appropriate.

(2) Cavity masonry walls must be constructed of two leaves, with each leaf not less than 90 mm wide.
(3) In cavity masonry construction, a cavity must be provided between the inner and outer masonry leaves as follows:
 (a) The cavity must be not less than 35 mm and not more than 75 mm in width.
 (b) Except for steel mullions, the minimum cavity width specified in (a) is to be maintained between the outer masonry leaf and any insulation or services located in the cavity.
 (c) Where steel mullions are located in a cavity as permitted by (b), a vertical damp-proof course must be placed between the outer masonry leaf and the mullion to prevent moisture penetration.
Table 5.3.3: Spacing of return walls for cavity walls with openings — distance from the edge of an opening (mm)

<table>
<thead>
<tr>
<th>Wind class</th>
<th>Opening width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>900</td>
</tr>
<tr>
<td>N3</td>
<td>2100</td>
</tr>
<tr>
<td>N2</td>
<td>3200</td>
</tr>
<tr>
<td>N1</td>
<td>2500</td>
</tr>
</tbody>
</table>

Table Notes:
The spacing for N1 is smaller than for N2 because 5.6.5 states that for cavity walls with N1, light duty cavity ties are to be used. This results in only relying on one leaf to resist the load instead of sharing it equally as per clause 7.7.3 of AS 3700.

Explanatory Information:
Steel mullions complying with AS 4773.1 and 4773.2 used to support wind loads may be placed within a cavity. Flat ceiling capable of performing diaphragm action may act as lateral support to walls provided the structure has been specifically designed.

5.3.4 Internal walls

(1) Where internal masonry walls intersect with other internal or external walls they must comply with the relevant provisions of this Part and be—
 (a) not less than 75 mm thick; and
 (b) either—
 (i) bonded at the junctions of the intersecting walls; or
 (ii) provided with an articulation joint in accordance with 5.6.8.

(2) Where a vertical articulation joint is provided in an internal masonry wall it must be formed in accordance with 5.6.8.

5.3.5 Openings in cavity masonry

(1) Except where excluded by (2), openings in cavity masonry must be spanned by steel lintels in accordance with 5.6.7.

(2) Openings in cavity masonry not more than 600 mm wide need not be provided with a steel lintel provided the opening is adequately supported.

5.3.6 Damp-proof courses and flashing materials

Damp-proof courses and flashing must be provided in accordance with 5.7.3 and 5.7.4.

5.3.7 Vertical articulation joints

Vertical articulation joints are to be installed in accordance with 5.6.8.
5.4.1 Application of Part 5.4

(1) Part 5.4 applies subject to the limitations set out at H1D5(3)(c).

(2) Part 5.4 need not be complied with if H1D5(3)(a) or (b) is complied with.

5.4.2 External walls

(1) Single leaf unreinforced masonry walls with engaged piers and return walls must comply with the relevant provisions of this Part and be constructed in accordance with the following:

 (a) The roof frame must be connected continuously to the top of the wall (see Figure 5.4.2a).

 (b) Stack bonded piers must have wall ties at every fourth course.

 (c) Pier and return supports size limitations for—

 (i) single leaf unreinforced masonry walls with engaged piers must comply with Table 5.4.2a and Figure 5.4.2b; and

 (ii) single leaf unreinforced masonry walls with return supports must comply with Table 5.4.2b and Figure 5.4.2c.

 (d) An engaged pier or return wall must be provided at both sides of an opening.

 (e) Openings must be not more than the spacing between the engaged piers.

 (f) For openings more than the spacing width, the engaged piers either side of the opening must be designed in accordance with AS 3700.

 (g) Articulation joints must be located within 300 mm of vertical supports in accordance with 5.6.8.

(2) A Class 10a building containing not more than 1 storey may be enclosed with single leaf masonry external walls not less than 110 mm in thickness, provided that—

 (a) the building measured in the direction of the span of the roof is not more than 9 m and the height is not more than 2.4 m; and

 (b) piers are formed that are not less than 230 mm wide, project not less than 1200 mm and are spaced at not more than 550mm centres; and

 (c) the roof does not place any spreading thrust onto the external walls; and

 (d) the Class 10a building is located in an area with a design wind speed of not more than N2.

Table 5.4.2a: Piers in external single leaf masonry walls to AS 3700

<table>
<thead>
<tr>
<th>Element</th>
<th>Symbol used in Figure 5.4.2b</th>
<th>Thickness of wall (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>Pier size (minimum) (not more than N2)</td>
<td>A x B</td>
<td>290 x 190 (800 spacing)</td>
</tr>
<tr>
<td>Pier size (minimum) (not more than N3)</td>
<td>A x B</td>
<td>290 x 290 (700 spacing)</td>
</tr>
<tr>
<td>Spacing of returns (maximum)</td>
<td>S</td>
<td>700</td>
</tr>
<tr>
<td>Height (maximum)</td>
<td>H</td>
<td>2400</td>
</tr>
</tbody>
</table>
Table Notes:
1. Dimensions are in mm.
2. Return supports are not required for 140 mm and 190 mm thickness walls.

Table 5.4.2b: Return support limitations for external; single leaf masonry walls to AS 3700

<table>
<thead>
<tr>
<th>Element</th>
<th>Symbol used in Figure 5.4.2c</th>
<th>Thickness of wall (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return length (minimum)</td>
<td>R</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450</td>
</tr>
<tr>
<td>Spacing of returns (maximum)</td>
<td>S</td>
<td>1050</td>
</tr>
<tr>
<td>(N2)</td>
<td></td>
<td>1300</td>
</tr>
<tr>
<td>Spacing of returns (maximum)</td>
<td>S</td>
<td>600</td>
</tr>
<tr>
<td>(N3)</td>
<td></td>
<td>750</td>
</tr>
<tr>
<td>Height (maximum)</td>
<td>H</td>
<td>2400</td>
</tr>
</tbody>
</table>

Table Notes:
1. Dimensions are in mm.
2. Return supports are not required for 140 mm and 190 mm thickness walls.

Figure 5.4.2a: Top lateral restraint detail for unreinforced single leaf masonry walls

Wall plate fixing to roof framing and tie down in accordance with AS 1684.2

Figure Notes:
Tie down of wall must comply with 5.6.6.
Figure 5.4.2b: Piers in external single leaf masonry walls to AS 3700

Piers each side of door opening
5.4.3 Internal walls

Internal masonry walls must be engaged with other walls, must comply with the relevant provisions of this Part and must be—

(a) not less than 75 mm thick; and

(b) supported by either—

(i) the ceiling structure in accordance with Figure 5.4.3a; or

(ii) return walls in accordance with Figure 5.4.3b.
Figure 5.4.3a: **Support for internal walls—supported by ceiling structure**

Figure Notes:
1. Timber joist to be fixed to top plate in accordance with H1D6(4).
2. Fixing of top plate to masonry wall to be in accordance with 5.6.6.
Figure 5.4.3b: Support for internal walls—supported by return walls

Figure Notes:
1. An opening of not more than 600 mm x 900 mm is allowed to internal walls without additional support.
2. Openings larger than as described in Note 1 and door openings must be supported.
3. The maximum allowable height for the wall is described in Figure 5.4.3a.
4. Articulation joints must be in accordance with 5.6.8.

Explanatory Information:
A full height door frame or stud fastened at the roof framing and tied to the wall at 300 mm centres can be considered equivalent to a return wall.

5.4.4 Vertical articulation joints

[New for 2022]
Vertical articulation joints must be provided in accordance with 5.6.8.

5.4.5 Damp-proof courses and flashing materials

[New for 2022]
Where required, damp-proof courses and flashing must be provided in accordance with 5.7.3 and 5.7.4.
Part 5.3.5 Isolated masonry piers

5.3.15.1 Application of Part 5.3.5

[New for 2022]

(1) Part 5.3 Part 5.5 is subject to the limitations set out in H1D5(5)(c).

(2) Part 5.3 Part 5.5 need not be complied with if H1D5(5)(a) or (b) is complied with.

5.3.25.2 Piers supporting carports, verandahs, porches and similar roof structures

[2019: 3.3.6.2]

Isolated piers supporting carports, verandahs, porches and similar roof structures, or vehicle access door openings, which form part of the main roof, or are attached to a wall of a Class 1 building must—

(a) be not less than 290 x 290 mm in section; and

(b) be not more than 2.7 m high (see Figure 5.3.2 Figure 5.5.2); and

(c) be spaced at not more than 3 m centres (see Figure 5.3.2 Figure 5.5.2); and

(d) provide a bearing length of not less than 150 mm for any supported members; and

(e) comply with the relevant provisions of this Part.

Figure 5.3.25.2: Piers under main roof

2.7 m max.

3 m max. centres

Minimum 290 x 290 mm piers

5.3.25.3 Piers supporting tiled roofs

[2019: 3.3.6.3]

Isolated piers supporting tiled roofs must have—

(a) a built-in 32 x 0.8 mm galvanised steel strap fixed to the roof structure that extends the full height of the pier; and

(b) a 4.6 grade M12 galvanised steel rod which is cast into the footing when poured and looped and fixed around the galvanised steel strap required by (a).
5.3.45.4 Piers supporting sheet roofs

Isolated piers supporting sheet roofs must have—

(a) a built-in 32 x 0.8 mm galvanised steel strap fixed to the roof structure extending the full height of the pier which is looped and fixed around a 4.6 grade 16 mm diameter galvanised steel rod cast into the footing when poured;

(b) a 4.6 grade M16 galvanised steel rod cast into the footing, threaded at the top and extending the full height of the pier to connect to the roof structure.

5.3.55.5 Piers for freestanding carports

Piers for freestanding carports must—

(a) be not less than 290 x 290 mm with the central core filled with 20 MPa concrete, or an exposure class mortar (see Table 5.2.4 or Table 5.6.4) complying with 5.2.4 or 5.6.4; and

(b) have the core reinforced with one Y16 steel reinforcing rod cast into the footing and extending the full height of the pier to connect to the roof structure.

5.3.65.6 Subfloor piers

Subfloor isolated piers must be a minimum of 190 x 190 mm in section and comply with Figure 5.3.6 or Figure 5.5.6 for height requirements.
Figure 5.3.6.5.6: Sub-floor isolated piers — maximum height and sectional details

- 190 mm square pier (1.2 m max.)
- 230 mm square pier (1.5 m max.)
- 350 mm square pier (2.4 m max.)
- 350 mm square pier (1.2 m max.)
- 470 mm square pier (3 m max.)
5.6.1 Application of Part 5.6

(1) Part 5.6 is subject to the limitations set in H1D5(6)(c)(i), (ii) and (iii).

(2) Part 5.6 need not be complied with if H1D5(6)(a) or (b) is complied with.

5.2.3.6.2 Masonry units

(1) Masonry veneer masonry units must have a minimum characteristic unconfined compressive strength of—
 (a) 3 MPa for solid or cored units; or
 (b) 10 MPa for hollow units.

(2) Cavity masonry and single skin masonry units must have a minimum compressive strength of—
 (a) 5 MPa for solid or cored units; or
 (b) 10 MPa for hollow units.

(3) Masonry veneer cavity walls must have a minimum veneer leaf thickness of 90 mm.

(4) Subject to (45), masonry units must be—
 (a) either clay or calcium silicate brick or concrete brick or block; and
 (b) classified and used in the exposure conditions appropriate to their classification as described in (56).

(45) Mixing of panels consisting of clay masonry units with panels consisting of concrete or calcium silicate masonry units is not permitted unless—
 (a) at vertical junctions, a control joint is installed; and
 (b) at horizontal junctions between panels of different materials, a slip joint using a membrane similar to that used for damp-proof courses is installed.

(56) Masonry unit exposure classifications and corresponding masonry unit applications are as follows:
 (a) Protected (P) masonry units are suitable for use in locations such as—
 (i) internal walls; and
 (ii) external walls that are coated or rendered; and
 (iii) walls above damp-proof courses provided the wall is protected at the top by a roof, eaves, coping, topping or the like.
 (b) General Purpose (GP) masonry units are suitable for use in all locations except those where 'Exposure class' (Exp) is required.
 (c) Exposure class (Exp) masonry units are suitable for use in all locations including severe local conditions such as—
 (i) below the damp-proof course in areas where walls are expected to be attacked by salts in the ground water or brickwork itself (salt attack or salt damp); and
 (ii) on sea fronts where walls are exposed to attack from salt spray; and
 (iii) in heavily polluted areas subject to deposition of atmospheric pollution; and
 (iv) under regular cyclic freeze and thaw conditions.

Explanatory Information:
The exposure classification or durability of a masonry unit is a measure of its resistance to attack by soluble salts, either
in the ground or in the atmosphere. All masonry products manufactured are classified by their durability. The majority of uses will require either an Exposure class (Exp) product or a General Purpose (GP) product.

5.2.46.3 Mortar mixes

Mortar used for masonry construction must comply with AS 3700 or AS 4773 except that the mortar may be mixed by volume in the proportions stated in Table 5.2.4 and Table 5.6.3.

Table 5.2.46.3: Acceptable mortar mixes

<table>
<thead>
<tr>
<th>Brick exposure classification</th>
<th>Mortar mix by volume Note 1</th>
<th>Cement: lime: sand General use</th>
<th>Suitable for concrete masonry Note 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protected</td>
<td>1:2:9</td>
<td>1:0:5</td>
<td></td>
</tr>
<tr>
<td>General purpose</td>
<td>1:1:6</td>
<td>1:0:5</td>
<td></td>
</tr>
<tr>
<td>Exposure class</td>
<td>1:0.5:4.5</td>
<td>1:0:4.2</td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
1. Additives may be used provided they comply with the appropriate specified rate.
2. Mortar mixes for masonry require the use of methyl cellulose water thickener.

5.2.56.4 Mortar joints

(1) Unless otherwise specified, masonry bed and perpend joints must have a nominal thickness of 10 mm.
(2) Where raked joints are used they must not be—
 (a) raked deeper than 10 mm; or
 (b) used in saline environments or areas subject to heavy industrial airborne pollution; or
 (c) more than 5 mm for masonry units at least 90 mm wide; or
 (d) more than 10 mm for masonry units at least 110 mm wide.

5.2.106.5 Wall ties

(4) Veneer wall ties must—
 (a) comply with AS/NZS 2699.1 and be—
 (i) light duty veneer ties in areas where the design wind speed is not more than N2; and
 (ii) medium duty ties—
 (A) in areas where the design wind speed is more than N2; and
 (B) where engaged piers are provided; and
 (b) be spaced and fixed in accordance with Table 5.2.10a and Table 5.2.10b; and
 (c) be protected against corrosion in accordance with Table 5.2.10c.

(1) Masonry wall ties must—
 (a) comply with AS/NZS 2699.1 and—
 (i) for masonry veneer walls be—
 (A) minimum light duty veneer ties in areas where the design wind speed is not more than N2; and
(B) minimum medium duty veneer ties in areas where the design wind speed is more than N2; and

(ii) for cavity masonry walls be—

(A) minimum light duty cavity ties in areas where the design wind speed is N1; and

(B) minimum medium duty cavity ties in areas where the design wind speed is more than N1; and

(iii) where non-engaged piers are provided, piers must be tied to walls using medium duty ties; and

(iv) for monolithic or solid masonry construction be minimum medium duty ties; and

(b) be spaced and fixed in accordance with Tables 5.6.5a, 5.6.5b and 5.6.5c (see also Figures 5.6.5a and 5.6.5b); and

(c) be protected against corrosion in accordance with Table 5.6.5d.

Table 5.2.10a.5a: Wall tie spacings in masonry veneer

<table>
<thead>
<tr>
<th>Maximum spacings</th>
<th>450 mm wall stud spacing</th>
<th>600 mm wall stud spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>Maximum 450 mm centres</td>
<td>Maximum 600 mm centres</td>
</tr>
<tr>
<td>Vertical</td>
<td>Maximum 400 mm</td>
<td>Maximum 400 mm</td>
</tr>
</tbody>
</table>

Table Notes:
Wall ties that are suitable for higher duties are also suitable for use in lower duty conditions.

Table 5.6.5b: Wall tie spacing in cavity and solid masonry

<table>
<thead>
<tr>
<th>Maximum spacing</th>
<th>Cavity masonry</th>
<th>Solid or monolithic masonry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>600 mm</td>
<td>400 mm</td>
</tr>
<tr>
<td>Vertical</td>
<td>600 mm</td>
<td>400 mm</td>
</tr>
</tbody>
</table>

Table Notes:
Wall ties that are suitable for higher duties are also suitable for use in lower duty conditions.

Table 5.2.10b.6.5c: Placement of wall ties

<table>
<thead>
<tr>
<th>Location</th>
<th>Placement of wall ties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsupported panel sides and edges of openings</td>
<td>Within 300 mm of panel side or edge</td>
</tr>
<tr>
<td>Top of veneer panels and top of panels under openings</td>
<td>Within 300 mm or two courses (whichever is the lesser) of the top of veneer</td>
</tr>
<tr>
<td>Bottom of veneer panel in masonry rebate sealed with liquid applied damp-proof course</td>
<td>Within 300 mm or two courses (whichever is the lesser) from the bottom of the veneer</td>
</tr>
<tr>
<td>Bottom of veneer panel supported on steel lintel</td>
<td></td>
</tr>
<tr>
<td>Bottom of veneer panel in masonry rebate with membrane damp-proof course</td>
<td>In each of the first two courses</td>
</tr>
<tr>
<td>Intersection of internal and external walls</td>
<td>300 mm vertically</td>
</tr>
<tr>
<td>Where articulation joints occur</td>
<td>At both sides of the articulation joint within 300 mm from the joint</td>
</tr>
<tr>
<td>Engaged piers</td>
<td>Within 200 mm of the top of the pier</td>
</tr>
</tbody>
</table>

Table Notes:
1. Ties are to be embedded a minimum of 50 mm into each masonry leaf fixed to the supporting frame at all regular stud positions using screws or nails.
2. Masonry wall ties must be installed in such a manner as to prevent moisture travelling along the tie to the inner leaf of masonry or the frame.
Table 5.2.10c6.5d: Corrosion protection for wall ties

<table>
<thead>
<tr>
<th>Exposure condition</th>
<th>Tie specification (minimum corrosion protection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areas less than 1km from breaking surf, or less than 100 m from salt water not subject to breaking surf, or within heavy industrial areas.</td>
<td>Grade 316L stainless steel; or engineered polymer complying with the requirements of AS/NZS 2699.1.</td>
</tr>
<tr>
<td>Areas 1km or more but less than 10km from breaking surf, or 100m or more but less than 1km from salt water not subject to breaking surf.</td>
<td>Sheet steel and bar ties galvanised after manufacture - 470 g/m² on each side; or galvanised wire ties - 470 g/m² coating mass; or Grade 304L stainless steel.</td>
</tr>
<tr>
<td>All other areas</td>
<td>Galvanised sheet steel - 300 g/m² coating on each side; or sheet steel ties galvanised after manufacture - 300 g/m² on each side.</td>
</tr>
</tbody>
</table>

Figure 5.6.5a: Wall tie details (lowset)

Top of masonry

300 mm max.

600 mm max.

FFL
Figure 5.6.5b: Wall tie details (highset)

Explanatory Information:
Wall ties that are suitable for use in a more severe exposure condition are also suitable for use in less severe exposure conditions, i.e. stainless steel and engineered polymer ties are suitable for use in all conditions and 470g/m² galvanised ties can be used in all exposure conditions except the most severe.

5.6.6 Fixing straps and tie-down systems

(1) Timber door and window frames abutting cavity masonry must be—
 (a) fixed with 300 mm long 32 mm x 0.8 mm kinked galvanised steel straps; and
 (b) fixed to the back of frames; and
 (c) set into courses not less than 150 mm at not more than 400 mm intervals.

(2) For areas with a design wind speed of N1 or N2 and a building width from outside wall to outside wall of not more than 10 m in the direction of the roof span (see Figure 5.6.6a), sheet metal and tiled roofs must be tied down using one of the following methods:
 (a) 32 mm x 0.8 mm galvanised steel straps at not more than 1.2 m centres and corresponding with truss or rafter positions, looped around 10 mm diameter galvanised mild steel rods—
 (i) built-in across the cavity at a course not more than 900 mm below the top of the wall; and
 (ii) embedded not less than 50 mm into each leaf.
 (b) 25 mm x 1 mm galvanised steel straps at not more than 1.2 m centres and corresponding with truss or rafter positions, built-in to masonry inner leaf not less than 50 mm and 900 mm below the top of the wall (see Figure
5.6.6b).

(3) Roof framing supporting tiled roofs on single leaf unreinforced masonry walls with piers or return walls must have—

(a) a built-in 32 mm x 0.8 mm galvanised steel strap fixed to the roof structure that extends the full height of the pier or return wall; and

(b) a 4.6 grade M12 galvanised steel rod which is cast into the footing when poured and looped and fixed around the galvanised steel strap required by (a) (see Figure 5.6.6c).

(d) Roof framing supporting sheet roofs on single leaf unreinforced masonry with piers or return walls must have—

(a) a built-in 32 mm x 0.8 mm galvanised steel strap fixed to the roof structure extending the full height of the pier or return wall which is looped and fixed around a 4.6 grade 16 mm diameter galvanised steel rod cast into the footing when poured; or

(b) a 4.6 grade M16 galvanised steel rod cast into the footing, threaded at the top and extending the full height of the pier or return wall to connect to the roof structure.

Figure 5.6.6a: **Building width**

![Diagram of building width](image-url)
Figure 5.6.6b: **Suitable tie-down strap details**

- Fixed with 3 x 30 x 2.8 nails
- Timber dropper
- Battens
- Rafter
- 25 x 1.0 GS straps at 1.2 m crs

Explanatory Information:

Roof tie-down over openings greater than 1200 mm wide in masonry construction must be specifically designed in accordance with relevant material and structural design standards.

Figure 5.6.6c: **Typical tie-down to single leaf unreinforced masonry**

- Strap attached to top plate in accordance with AS 1684
- 32 x 0.8 mm galvanised steel strap full height of pier fixed to 4.6 grade gal steel rod cast into the footing or slab

Engaged pier
5.2.12.6.7 Lintels

Where a lintel is *required* it must comply with the following:

(a) Steel lintels must comply with this Part or H1D6(43).

(b) Steel lintels must—
 (i) be sized in accordance with Table 5.2.12a Table 5.6.7a; and
 (ii) be installed with the long leg of lintel angle vertical; and
 (iii) not carry more than a 110 mm thick veneer or otherwise be wide enough so that no more than 25 mm of masonry overhang is provided; and
 (iv) not carry masonry more than 3 m in height when measured above the opening; and
 (v) have a minimum bearing length at each end of the lintel of—
 (A) for clear spans not more than 1 m - 100 mm; or
 (B) for clear spans more than 1 m - 150 mm (See Figure 5.2.12 Figure 5.6.7); and
 (i) have a minimum of three courses of masonry over openings; and
 (ii) comply with the corrosion protection requirements of Table 5.2.12b Table 5.6.7b.

Table 5.2.12a6.7a: Masonry veneer lintel sizes

<table>
<thead>
<tr>
<th>Lintel</th>
<th>Maximum clear span of lintel (mm): ≤ 600 mm of masonry over opening</th>
<th>Maximum clear span of lintel (mm): > 600 mm of masonry over opening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat 75 x 8</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>Flat 100 x 10</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>Angle 90 x 90 x 6EA</td>
<td>3000</td>
<td>2650</td>
</tr>
<tr>
<td>Angle 90 x 90 x 8EA</td>
<td>3200</td>
<td>2800</td>
</tr>
<tr>
<td>Angle 100 x 100 x 6EA</td>
<td>3350</td>
<td>2900</td>
</tr>
<tr>
<td>Angle 100 x 100 x 8EA</td>
<td>3600</td>
<td>3040</td>
</tr>
<tr>
<td>Angle 150 x 90 x 8UA</td>
<td>4200</td>
<td>3850</td>
</tr>
</tbody>
</table>

Table Notes:
The lintels described in this Table must be not less than grade 300 MPa in accordance with AS 4100.

Table 5.2.12b6.7b: Corrosion protection – Lintels

<table>
<thead>
<tr>
<th>Durability class of lintel in accordance with AS/NZS 2699.3 Note 1</th>
<th>Material or protective requirements in accordance with AS/NZS 2699.3 Note 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R2</td>
<td>Hot dip galvanised with a minimum average coating thickness of 300 g/m²; or stainless steel 316L</td>
</tr>
<tr>
<td>R3</td>
<td>Hot dip galvanised with a minimum average coating thickness of 600 g/m²; or stainless steel 316L</td>
</tr>
<tr>
<td>R4</td>
<td>Stainless steel 316L</td>
</tr>
</tbody>
</table>

Table Notes:
1. AS/NZS 2699.3 contains information on the corrosivity category locations in Australia and provides a method for determining coating thickness for lintels.
2. Additional decorative coatings can be applied, but must not be considered for the purpose of satisfying the requirements of this Table.
3. Any lintel with a coating that is modified, i.e. by cutting, welding, or where damaged, must have the coating restored to provide an equivalent level of protection provided by the original coating.
Vertical articulation joints

5.2.13.6.8

(1) Vertical articulation joints must be provided in masonry veneer walls in accordance with (2), except in walls constructed on sites where the soil classification is A or S (see Part 4.4.4 4.2.2).

(2) Articulation joints between masonry elements must have a width of not less than 10 mm and be provided (see Figures 5.2.13a, Figures 5.6.8a and 5.6.8b, and 5.2.13c):
 (a) in straight, continuous walls having no openings with openings less than 900 mm x 900 mm or walls without openings - at not more than 6 m centres and within 4.5 m, but not closer than 470 mm of all corners; and
 (b) in straight, continuous walls with openings more than 900 mm x 900 mm - at not more than 5 m centres and located so that they are not more than 1.2 m away from openings; and
 (c) where the height of the wall changes by more than 20% - at the position of change in height; and
 (d) where a wall changes in thickness; and
 (e) at control or construction joints in footings or slabs; and
 (f) at junctions of walls constructed of different masonry materials.

(3) Articulation joints must not be constructed adjacent to arched openings.

(4) Articulation joints must either be filled with flexible sealant that is supported during installation by—
 (a) a compressible foam or polystyrene filler and a flexible sealant (see Figure 5.2.13c) (see Figures 5.6.8d and 5.6.8e); or
 (b) a purpose made backer rod and a flexible sealant (see Figure 5.2.13d, Figures 5.6.8c, 5.6.8d, 5.6.8e and 5.6.8f).
Figure 5.2.13a.6.8a: Example of vertical articulation joint locations in plan view.
Figure 5.2.13b and 6.8b: Vertical articulation joints

Opening more than 900 x 900 mm

Articulation joint

max. 1.2 m from openings

Figure 5.2.13c and 6.8c: Articulation joint with backer rod and sealant—single skin masonry and masonry veneer walls

Tubular polyethylene foam backing installed in open joint

10 mm

Wall

Mastic sealant
Figure 5.2.13d.6.8d: Articulation joint in unreinforced single leaf masonry wall with compressed foam
Figure 5.6.8e: Articulation joint in unreinforced masonry veneer wall with compressed foam

Compressible foam joint filler and mastic-backing

Mastic sealant
Figure 5.6.8f: Articulation joint in cavity masonry wall

Explanatory Information:
For the purposes of 5.2.136.8, the vertical articulation joint also performs the function of a contraction or expansion.
joint.
Part 5.7 Weatherproofing of masonry

5.7.1 Application of Part 5.7

(1) Part 5.7 applies subject to the limitation set out at H2D4(4)(c).
(2) Part 5.7 need not be complied with H2D4(4)(a) or (b) is complied with.

5.7.2 Cavities

(4) The clear width of a cavity between the masonry veneer and the exterior face of the supporting frame must be not less than 25 mm wide and where the masonry veneer is constructed on a slab-on-ground, the cavity must be drained to the outside in accordance with 5.2.9.
(1) For masonry veneer, the clear width of a cavity between the masonry veneer and the exterior face of the supporting frame must not be—
 (a) less than 25 mm wide; and
 (b) more than 75 mm wide.
(2) For cavity masonry, the clear width of a cavity between the inner and outer masonry leaves must not be—
 (a) less than 35 mm; and
 (b) more than 75 mm.
(3) Where masonry veneer and cavity masonry in (1) and (2) are constructed on a slab-on-ground, the cavity must be drained outside in accordance with 5.7.5.
(4) The exterior masonry leaf must not overhang more than 15 mm past the edge of the slab.

Explanatory Information:
The 25 mm clear width of the cavity needs to be maintained regardless of any wall membranes, sheet bracing or services installed to the supporting frame.
Where mullions are located within a cavity, a vertical damp-proof course must be placed between the outer masonry leaf and the mullion to prevent moisture penetration.

5.7.3 Damp-proof courses and flashings – material

Damp-proof courses and flashings must consist of—

(a) a material that complies with AS/NZS 2904; or
(b) embossed black polyethylene film of high impact resistance and low slip, with a nominal thickness of 0.5 mm prior to embossing, and comply with clause 7.6 of AS/NZS 2904; or
(c) polyethylene coated metal, that has an aluminium core of not less than 0.1 mm thick, is coated both sides with bitumen adhesive enclosed in polyethylene film of not less than 0.1 mm thick on each face, and has a nominal total thickness of not less than 0.5 mm prior to embossing; or
(d) bitumen impregnated materials of not less than 2.5 mm thick, that comply with clause 7.5 of AS/NZS 2904; or
(e) termite sheet materials complying with Part 3.4 (with no penetrations) serving the purpose of a damp-proof course and/or flashing that is continuous through the wall or pier.
5.2.87.4 Damp-proof courses and flashings – installation

[2019: 3.3.5.8]

(1) **Damp-proof courses** and **flashings** must be—

(a) located so as to form a continuous damp-proofing barrier—
 (i) around the bottom perimeter of walls where constructed on a concrete slab; and
 (ii) in walls and piers below suspended floors; and
 (iii) where a masonry wall passes through a roof; and
 (iv) where a roof abuts an external masonry wall; and
 (v) to the bottom and tops of windows and doors and the like in accordance with (3), except a damp-proof course or a flashing need not be provided to the top of a window or door where the opening is protected by an eave of a width more than 3 times the height of the masonry veneer above the opening; and
 (b) continuous through the wall or pier and be visible from the outside face of the wall.

(2) The location of a damp-proof course or flashing serving as a damp-proof course, must be not less than—

(a) 150 mm above the adjacent ground level; or
(b) 75 mm above the finished surface level of adjacent paved, concreted or landscaped areas that slope away from the wall; or
(c) 50 mm above finished paved, concreted or landscaped areas complying with 3.3.3(b)(ii) and protected from the direct effects of the weather by a carport, verandah or the like; or
(d) in low rainfall intensity areas—
 (i) 15 mm above finished paved, concreted or landscaped areas; or
 (ii) 50 mm above finished paved, concreted or landscaped areas if the damp-proof course is protected from the direct effects of the weather by a carport, verandah or the like.

(3) Sill and head flashings serving openings must be—

(a) installed so that the flashing extends not less than 150 mm beyond the reveals on each side of the opening; and
(b) located not more than—
 (i) one course below the sill brick course; and
 (ii) 300 mm above the opening; and
(c) turned up in the cavity not less than 150 mm above the opening; and
(d) embedded not less than 30 mm into the masonry veneer; and—
 (i) for masonry veneer, the masonry leaf; and
 (ii) for cavity masonry, the outer masonry leaf; and
(e) attached to the window or wall framing.

5.2.97.5 Weepholes

[2019: 3.3.5.9]

(1) Except where excluded by (2), open perpend joints (weepholes) must be created in the course immediately above any flashing (including above any damp-proof course acting as a flashing) and be—

(a) a minimum of 50 mm in height, by the width of the vertical mortar joint; and
(b) at not more than 1.2 m centres; and

(2) Weepholes are not required in the following locations:

(a) Where head openings are less than 1.2 m wide.
(b) Beneath window and door sills.
5.7.6 Weatherproofing for single leaf masonry walls

[New for 2022]

(1) A waterproof coating material must be applied to all external single skin masonry walls in accordance with the following:

 (a) The coating must extend from the uppermost exposed part of the wall—

 (i) to a level adjacent to the internal finished floor level, if the external masonry wall leaf overhangs the edge of the slab by not less than 10 mm; or

 (ii) 50 mm below the internal floor level if no edge overhang is provided to the blockwork.

 (b) Acceptable external waterproof finishes are—

 (i) three coats of 100% acrylic based exterior quality gloss paint; or

 (ii) one complete coat of cement based paint and two coats of 100% acrylic based exterior quality gloss paint; or

 (iii) clear water repellent, provided the wall is protected by a roof overhang.

(2) Windows must be installed in accordance with Figure 5.7.6a.

(3) A damp-proof course, vapour barrier or damp-proofing membrane must be installed in accordance with Figure 5.7.6b.
Figure 5.7.6a: Typical window installation for single skin masonry

(a) Head fixing

(b) Jamb fixing

(c) Sill fixing - 1

(d) Sill fixing - 2

(e) Sill fixing - 3

Concrete filled lintel
Masonry anchor
External coating to be applied before the window is fitted
Sealant

Concrete filled lintel
Masonry anchor
Sealant

Concrete filled core
Masonry anchor

Internal sill
Sealant to perimeter joint
Sill surface coating

20 mm min.

Internal sill
Sealant to perimeter joint

Sill tile
15 Degrees

Tile adhered with exterior tile adhesive
Figure 5.7.6b: Typical damp-proof course and weatherproofing detail for single skin masonry

(a) Arrangement A

(b) Arrangement B
6 Framing

Part 6.1 Scope and application of Section 6
 6.1.1 Scope
 6.1.2 Application

Part 6.2 Subfloor ventilation
 6.2.1 Subfloor ventilation

Part 6.3 Structural steel members
 6.3.1 Application of Part 6.3
 6.3.2 Structural steel members
 6.3.3 Bearers
 6.3.4 Strutting beams
 6.3.5 Lintels
 6.3.6 Columns
 6.3.7 Fixings and bearing for structural steel members
 6.3.8 Cuts and penetrations through structural steel members
 6.3.9 Corrosion protection
Part 6.1 Scope and application of Section 6

6.1.1 Scope

[New for 2022]

(1) This Section of the ABCB Housing Provisions sets out the Deemed-to-Satisfy Provisions for—

 (a) subfloor ventilation (see Part 6.2); and

 (b) structural steel members (see Part 6.3).

(2) For other framing provisions not included in this Section of the ABCB Housing Standard, refer to the following Deemed-to-Satisfy Provisions in NCC Volume Two:

 (a) Steel framing (see H1D6(2)).

 (b) Timber framing (see H1D6(3)).

 (c) Use of structural software (see H1D6(6)).

Explanatory Information:

Part 6.2 applies to the subfloor space of all suspended floors of a building or deck, including but not limited to, timber and steel-framed subfloors and suspended concrete slabs.

6.1.2 Application

[New for 2022]

The application of Section 6 of the ABCB Housing Provisions is subject to the following:

 (a) The Governing Requirements of NCC 2022 Volume Two.

 (b) The State and Territory variations, additions and deletions contained in the Schedules to the ABCB Housing Provisions and NCC Volume Two.

Explanatory Information:

In NCC 2019, the content of Section 6 of the ABCB Housing Provisions (other than content added in NCC 2022 or later) was contained in the acceptable construction practices for Parts 3.4.1 and 3.4.4 of NCC 2019 Volume Two.

NCC 2019 Volume Two did not include an acceptable construction practice for Parts 3.4.2 or 3.4.3.
Part 6.2 Subfloor ventilation

6.2.1 Subfloor ventilation

(1) Subfloor spaces must—
 (a) be provided with openings in external walls and internal subfloor walls in accordance with Table 6.2.1a for the climatic zones given in Figure 6.2.1a; and
 (b) have clearance between the ground surface and the underside of the lowest horizontal member in the subfloor in accordance with Table 6.2.1b (see Figure 6.2.1b and Figure 6.2.1c).

(2) In addition to (1), a subfloor space must—
 (a) be cleared of all building debris and vegetation; and
 (b) have the ground beneath the suspended floor graded in accordance with 3.3.3; and
 (c) contain no dead air spaces; and
 (d) have openings evenly spaced as far as practicable (see Figure 6.2.1d); and
 (e) have openings placed not more than 600 mm in from corners.

(3) In double leaf masonry walls, openings specified in (1) must be provided in both leaves of the masonry, with openings being aligned to allow an unobstructed flow of air (see Figure 6.2.1d).

(4) Openings in internal subfloor walls specified in (1) must have an unobstructed area equivalent to that required for the adjacent external openings (see Figure 6.2.1d).

(5) Where the ground or subfloor space is excessively damp or subject to frequent flooding, in addition to the requirements of (1) to (4)—
 (a) the subfloor ventilation required in (1) must be increased by 50%; or
 (b) the ground within the subfloor space must be sealed with an impervious membrane; or
 (c) subfloor framing must be—
 (i) where above ground — above ground durability Class 1 or 2 timbers or H3 preservative treated timbers in accordance with AS 1684.2, AS 1684.3 or AS 1684.4; or
 (ii) where in-ground — in-ground durability Class 1 or 2 timbers or H5 preservative treated timbers in accordance with AS 1684.2, AS 1684.3 or AS 1684.4; or
 (iii) steel in accordance with NASH Standard ‘Residential and Low-Rise Steel Framing’ Part 2.

Table 6.2.1a: Subfloor openings

<table>
<thead>
<tr>
<th>Climatic zone (see Figure 6.2.1a)</th>
<th>Minimum aggregate subfloor ventilation openings with no membrane (mm²/m of wall)</th>
<th>Minimum aggregate subfloor ventilation openings with ground sealed with impervious membrane (mm²/m of wall)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2000</td>
<td>1000</td>
</tr>
<tr>
<td>B</td>
<td>4000</td>
<td>2000</td>
</tr>
<tr>
<td>C</td>
<td>6000</td>
<td>3000</td>
</tr>
</tbody>
</table>

Table Notes:
In situations where openings in external walls and internal subfloor walls, including separating walls, are not able to be provided, additional measures must be provided to ensure that the overall level of ventilation of the subfloor space is maintained. This may include measures similar to those in 6.2.1(5) i.e. providing durability class timbers, or having the ground sealed in the subfloor space with an impervious membrane.
Table 6.2.1b: Ground clearance

<table>
<thead>
<tr>
<th>Climatic zone (see Figure 6.2.1a)</th>
<th>Minimum ground clearance height where termite inspection or management system is not required (mm)</th>
<th>Minimum ground clearance height where termite inspection is required (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B and C</td>
<td>150</td>
<td>400</td>
</tr>
</tbody>
</table>

Table Notes:

1. 400 mm clearance *required* only where termite management systems are installed that need to be inspected (see Part 2.2.4).

2. On sloping sites the 400 mm clearance *required* by 1 may be reduced to 150 mm within 2 m of external walls in accordance with Figure 6.2.1b.

Figure 6.2.1a: Climatic zones based on relative humidity

ZONE A - 9am RH < 60%
ZONE B - 9am RH > 60% and 3pm RH > 40%
ZONE C - 9am RH > 70% and 3pm RH > 60%
RH = Relative Humidity
Figure 6.2.1b: Subfloor clearance requirements

Figure Notes:
See notes to Tables 6.2.1a and 6.2.1b.

Figure 6.2.1c: Subfloor clearance requirements – detail
Figure Notes:
See notes to Tables 6.2.1a and 6.2.1b.

Explanatory Information:
Subfloor ventilation is cross ventilation of the subfloor space between the underside of the subfloor and the ground surface under a building.

Ground moisture rising into or entering the subfloor space can create a damp environment which encourages timber rot, fungus growth and the potential for termite activity. Subfloor ventilation increases air flow, reducing any damaging water vapour in the subfloor space.

Factors that can affect achieving satisfactory levels of subfloor ventilation include height above ground, prevailing breezes (air transfer), differential temperature and humidity between the subfloor and the external environment and good building practice.

The amount of subfloor ventilation required for a building is related to the relative humidity likely to be encountered in that location. Figure 6.2.1a shows three broad climatic zones based on the prevailing relative humidity and includes a description of the relative humidity conditions which define each zone. If reliable weather data is available, these descriptions may be useful in determining which zone a particular location is in.

The zones shown in Figure 6.2.1a were determined by analysis of the average relative humidity at 9 am and 3 pm in January and July. The season with the highest relative humidity is used. Generally this will be July for southern Australia and January for northern Australia.

Table 6.2.1a and Table 6.2.1b specify the minimum amount of subfloor ventilation openings and height of subfloor framing members above ground level for the three climatic zones illustrated in Figure 6.2.1a. The table allows subfloor ventilation rates to be halved if the ground within the subfloor space is sealed by an impervious membrane because humidity levels in the space will not be affected by moisture from the soil.

Clause 6.2.1(5) specifies additional requirements for preventing deterioration of subfloor members where the ground or subfloor space is excessively damp, as would occur in areas with high water tables, poor drainage or in areas frequently affected by flooding or water inundation.
6.3.1 Application of Part 6.3

(1) Part 6.3, other than clause 6.3.4, applies subject to the limitations set out at H1D6(7).

(2) Part 6.3 need not be complied with if H1D6(6)(a) or (b) are complied with.

6.3.2 Structural steel members

(1) Structural steel members may be used as follows:
 (a) Bearers supporting a timber floor or non-loadbearing stud wall — in accordance with Figure 6.3.2a, Table 6.3.2a and Table 6.3.2b.
 (b) Strutting beams supporting roof and ceiling loads — in accordance with Figure 6.3.2b and Table 6.3.2c to Table 6.3.2d.
 (c) Lintels supporting roof, ceiling, frame and timber floor — in accordance with Figure 6.3.2c and Table 6.3.2e to Table 6.3.2f.
 (d) Columns — in accordance with 6.3.3.

(2) Structural steel members in (1)(a), (b) and (c) must have a minimum nominal yield strength of 250 MPa.

(3) The yield strength of structural steel members in (1)(d) is nominated in 6.3.6.

(4) Structural steel members described in this Part must be protected against corrosion in accordance with 6.3.4.

3.4.9. Joists, bearers and lintels must be restrained from lateral movement or twisting along their length by fixing rafters or joists to the top flange of the member so that it prevents that member from moving laterally.

4. End supports for joists, bearers and lintels must transfer loads to the footings and have a bearing distance as follows:
 (a) For single spans, the bearing distance must not be less than the width of the member.
 (b) For continuous spans, internal bearing must not be less than two times the width of the member.

Table 6.3.2a: Maximum acceptable bearer span (single span) – bearers supporting a timber floor and non-loadbearing stud wall

<table>
<thead>
<tr>
<th>Steel Section</th>
<th>1.8 EBS</th>
<th>2.4 EBS</th>
<th>3.6 EBS</th>
<th>3.6 EBS</th>
<th>4.2 EBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>425TFB 8-m</td>
<td>4.1 m</td>
<td>3.8 m</td>
<td>3.6 m</td>
<td>3.4 m</td>
<td>3.2 m</td>
</tr>
<tr>
<td>180UB 16.1</td>
<td>5.1 m</td>
<td>4.7 m</td>
<td>4.5 m</td>
<td>4.3 m</td>
<td>4.1 m</td>
</tr>
<tr>
<td>200UB 19.2</td>
<td>5.6 m</td>
<td>5.2 m</td>
<td>5.0 m</td>
<td>4.7 m</td>
<td>4.6 m</td>
</tr>
<tr>
<td>250UB 25.7</td>
<td>6.8 m</td>
<td>6.4 m</td>
<td>6.0 m</td>
<td>5.8 m</td>
<td>5.6 m</td>
</tr>
<tr>
<td>250x150x9.0 RHS</td>
<td>7.7 m</td>
<td>7.1 m</td>
<td>6.7 m</td>
<td>6.4 m</td>
<td>6.2 m</td>
</tr>
<tr>
<td>250x150x5.0 RHS</td>
<td>6.8 m</td>
<td>6.3 m</td>
<td>5.9 m</td>
<td>5.7 m</td>
<td>5.5 m</td>
</tr>
<tr>
<td>310UB 32.0</td>
<td>7.9 m</td>
<td>7.3 m</td>
<td>7.0 m</td>
<td>6.7 m</td>
<td>6.4 m</td>
</tr>
<tr>
<td>125x75x2.0 RHS</td>
<td>3.1 m</td>
<td>2.8 m</td>
<td>2.6 m</td>
<td>2.5 m</td>
<td>2.4 m</td>
</tr>
<tr>
<td>125x75x3.0 RHS</td>
<td>3.5 m</td>
<td>3.2 m</td>
<td>3.0 m</td>
<td>2.8 m</td>
<td>2.7 m</td>
</tr>
<tr>
<td>150x50x2.0 RHS</td>
<td>3.4 m</td>
<td>3.1 m</td>
<td>2.8 m</td>
<td>2.7 m</td>
<td>2.5 m</td>
</tr>
<tr>
<td>150x50x3.0 RHS</td>
<td>3.7 m</td>
<td>3.4 m</td>
<td>3.2 m</td>
<td>3.0 m</td>
<td>2.9 m</td>
</tr>
</tbody>
</table>
Framing

<table>
<thead>
<tr>
<th>Table Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. EBS = Effective bearer spacing (m).</td>
</tr>
<tr>
<td>2. Steel is base grade.</td>
</tr>
<tr>
<td>3. Load must be evenly distributed along the member.</td>
</tr>
<tr>
<td>4. See 6.3.2 for provisions that apply to suspended floors in single-storey and ground floor construction of suspended steel floor frames.</td>
</tr>
<tr>
<td>5. Effective bearer spacing is a measure of the width of the load area being supported by the member (for single span members see Table H1D6a and Figure H1D6d).</td>
</tr>
</tbody>
</table>

Table 6.3.2b: Maximum acceptable bearer span (continuous span) - bearers supporting a timber floor and non-loadbearing stud wall

<table>
<thead>
<tr>
<th>Steel Section</th>
<th>1.8 EBS</th>
<th>2.4 EBS</th>
<th>3.0 EBS</th>
<th>3.6 EBS</th>
<th>4.2 EBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>100TFC</td>
<td>3.2 m</td>
<td>2.9 m</td>
<td>2.7 m</td>
<td>2.6 m</td>
<td>2.4 m</td>
</tr>
<tr>
<td>150PFC</td>
<td>4.8 m</td>
<td>4.5 m</td>
<td>4.2 m</td>
<td>4.0 m</td>
<td>3.9 m</td>
</tr>
<tr>
<td>180PFC</td>
<td>5.4 m</td>
<td>5.1 m</td>
<td>4.8 m</td>
<td>4.6 m</td>
<td>4.4 m</td>
</tr>
<tr>
<td>200PFC</td>
<td>5.9 m</td>
<td>5.5 m</td>
<td>5.2 m</td>
<td>5.0 m</td>
<td>4.8 m</td>
</tr>
<tr>
<td>250PFC</td>
<td>7.2 m</td>
<td>6.7 m</td>
<td>6.4 m</td>
<td>6.1 m</td>
<td>5.9 m</td>
</tr>
<tr>
<td>300PFC</td>
<td>8.1 m</td>
<td>7.6 m</td>
<td>7.2 m</td>
<td>6.9 m</td>
<td>6.6 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steel Section</th>
<th>1.8 EBS</th>
<th>2.4 EBS</th>
<th>3.0 EBS</th>
<th>3.6 EBS</th>
<th>4.2 EBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>125TFB</td>
<td>4.7 m</td>
<td>4.3 m</td>
<td>4.0 m</td>
<td>3.6 m</td>
<td>3.2 m</td>
</tr>
<tr>
<td>180UB16.1</td>
<td>5.9 m</td>
<td>5.6 m</td>
<td>5.3 m</td>
<td>5.0 m</td>
<td>4.7 m</td>
</tr>
<tr>
<td>200UB18.2</td>
<td>6.5 m</td>
<td>6.0 m</td>
<td>5.7 m</td>
<td>5.5 m</td>
<td>5.3 m</td>
</tr>
<tr>
<td>250UB25.7</td>
<td>7.9 m</td>
<td>7.4 m</td>
<td>7.0 m</td>
<td>6.7 m</td>
<td>6.4 m</td>
</tr>
<tr>
<td>250x150x9.0-RHS</td>
<td>8.8 m</td>
<td>8.2 m</td>
<td>7.8 m</td>
<td>7.0 m</td>
<td>7.1 m</td>
</tr>
<tr>
<td>250x150x5.0-RHS</td>
<td>7.8 m</td>
<td>7.2 m</td>
<td>6.8 m</td>
<td>6.5 m</td>
<td>6.3 m</td>
</tr>
<tr>
<td>310UB32.0</td>
<td>9.1 m</td>
<td>8.5 m</td>
<td>8.1 m</td>
<td>7.7 m</td>
<td>7.4 m</td>
</tr>
<tr>
<td>125x75x2.0-RHS</td>
<td>4.0 m</td>
<td>3.7 m</td>
<td>3.5 m</td>
<td>3.3 m</td>
<td>3.1 m</td>
</tr>
<tr>
<td>125X75X3.0-RHS</td>
<td>4.4 m</td>
<td>4.1 m</td>
<td>3.9 m</td>
<td>3.7 m</td>
<td>3.5 m</td>
</tr>
<tr>
<td>150x50x2.0-RHS</td>
<td>4.2 m</td>
<td>3.9 m</td>
<td>3.7 m</td>
<td>3.5 m</td>
<td>3.4 m</td>
</tr>
<tr>
<td>150x50x3.0-RHS</td>
<td>4.6 m</td>
<td>4.3 m</td>
<td>4.1 m</td>
<td>3.9 m</td>
<td>3.7 m</td>
</tr>
<tr>
<td>100TFC</td>
<td>3.7 m</td>
<td>3.2 m</td>
<td>2.9 m</td>
<td>2.6 m</td>
<td>2.4 m</td>
</tr>
<tr>
<td>150PFC</td>
<td>5.5 m</td>
<td>5.1 m</td>
<td>4.9 m</td>
<td>4.7 m</td>
<td>4.5 m</td>
</tr>
<tr>
<td>180PFC</td>
<td>6.3 m</td>
<td>5.9 m</td>
<td>5.6 m</td>
<td>5.3 m</td>
<td>5.1 m</td>
</tr>
<tr>
<td>200PFC</td>
<td>6.8 m</td>
<td>6.3 m</td>
<td>6.0 m</td>
<td>5.7 m</td>
<td>5.5 m</td>
</tr>
<tr>
<td>250PFC</td>
<td>8.4 m</td>
<td>7.8 m</td>
<td>7.4 m</td>
<td>7.1 m</td>
<td>6.8 m</td>
</tr>
<tr>
<td>300PFC</td>
<td>9.4 m</td>
<td>8.8 m</td>
<td>8.3 m</td>
<td>8.0 m</td>
<td>7.7 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. EBS = Effective bearer spacing (m).</td>
</tr>
<tr>
<td>2. Steel is base grade.</td>
</tr>
<tr>
<td>3. Load must be evenly distributed along the member.</td>
</tr>
<tr>
<td>4. For continuous floor bearers, the variation in span length should not be more than 10%.</td>
</tr>
<tr>
<td>5. See 6.3.2 for provisions that apply to suspended floors in single-storey and ground floor construction of suspended steel floor frames.</td>
</tr>
</tbody>
</table>
6. Effective bearer spacing is a measure of the width of the load area being supported by the member (for continuous span members see Table H1D6b and Figure H1D6e).

Table 6.3.2c: Maximum acceptable strutting beam span (steel sheet roof) – strutting beam supporting a roof and ceiling

<table>
<thead>
<tr>
<th>Steel Section</th>
<th>1.8 SBS</th>
<th>2.4 SBS</th>
<th>3.0 SBS</th>
<th>3.6 SBS</th>
<th>4.2 SBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>125TFB</td>
<td>5.7 m</td>
<td>5.4 m</td>
<td>5.1 m</td>
<td>4.9 m</td>
<td>4.6 m</td>
</tr>
<tr>
<td>150UB14.0</td>
<td>6.4 m</td>
<td>6.0 m</td>
<td>5.7 m</td>
<td>5.4 m</td>
<td>5.1 m</td>
</tr>
<tr>
<td>200UB18.2</td>
<td>7.9 m</td>
<td>7.4 m</td>
<td>7.1 m</td>
<td>6.8 m</td>
<td>6.5 m</td>
</tr>
<tr>
<td>250UB31.4</td>
<td>10.0 m</td>
<td>9.4 m</td>
<td>9.0 m</td>
<td>8.7 m</td>
<td>8.4 m</td>
</tr>
<tr>
<td>310UB46.2</td>
<td>11.9 m</td>
<td>11.3 m</td>
<td>10.8 m</td>
<td>10.5 m</td>
<td>10.1 m</td>
</tr>
<tr>
<td>100TFC</td>
<td>4.6 m</td>
<td>4.4 m</td>
<td>4.2 m</td>
<td>3.9 m</td>
<td>3.7 m</td>
</tr>
<tr>
<td>150PFC</td>
<td>6.7 m</td>
<td>6.3 m</td>
<td>6.0 m</td>
<td>5.8 m</td>
<td>5.6 m</td>
</tr>
<tr>
<td>200PFC</td>
<td>8.2 m</td>
<td>7.7 m</td>
<td>7.4 m</td>
<td>7.1 m</td>
<td>6.8 m</td>
</tr>
<tr>
<td>250PFC</td>
<td>10.0 m</td>
<td>9.4 m</td>
<td>9.0 m</td>
<td>8.7 m</td>
<td>8.4 m</td>
</tr>
<tr>
<td>300PFC</td>
<td>11.1 m</td>
<td>10.5 m</td>
<td>10.1 m</td>
<td>9.7 m</td>
<td>9.4 m</td>
</tr>
</tbody>
</table>

Table Notes:

1. **SBS** = Strutting beam spacing (m).
2. If point load applied, then it must be located within the middle third of the strutting beam span.
3. Top and bottom flanges of strutting beam must be laterally restrained at the loading point.
4. Strutting beam must be tied down at the support point, in the case of steel sheet roofs.
5. Steel is base grade.

Table 6.3.2d: Maximum acceptable strutting beam span (tiled roof) – strutting beam supporting a roof and ceiling

<table>
<thead>
<tr>
<th>Steel Section</th>
<th>1.8 SBS</th>
<th>2.4 SBS</th>
<th>3.0 SBS</th>
<th>3.6 SBS</th>
<th>4.2 SBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>125TFB</td>
<td>4.9 m</td>
<td>4.6 m</td>
<td>4.4 m</td>
<td>4.2 m</td>
<td>4.1 m</td>
</tr>
<tr>
<td>150UB14.0</td>
<td>5.5 m</td>
<td>5.2 m</td>
<td>4.9 m</td>
<td>4.7 m</td>
<td>4.5 m</td>
</tr>
<tr>
<td>200UB18.2</td>
<td>6.9 m</td>
<td>6.4 m</td>
<td>6.1 m</td>
<td>5.8 m</td>
<td>5.6 m</td>
</tr>
<tr>
<td>250UB31.4</td>
<td>8.8 m</td>
<td>8.2 m</td>
<td>7.8 m</td>
<td>7.5 m</td>
<td>7.2 m</td>
</tr>
<tr>
<td>310UB46.2</td>
<td>10.6 m</td>
<td>10.0 m</td>
<td>9.5 m</td>
<td>9.1 m</td>
<td>8.8 m</td>
</tr>
<tr>
<td>100TFC</td>
<td>4.0 m</td>
<td>3.7 m</td>
<td>3.6 m</td>
<td>3.4 m</td>
<td>3.2 m</td>
</tr>
<tr>
<td>150PFC</td>
<td>5.8 m</td>
<td>5.5 m</td>
<td>5.2 m</td>
<td>5.0 m</td>
<td>4.8 m</td>
</tr>
<tr>
<td>200PFC</td>
<td>7.2 m</td>
<td>6.7 m</td>
<td>6.4 m</td>
<td>6.1 m</td>
<td>5.9 m</td>
</tr>
<tr>
<td>250PFC</td>
<td>8.8 m</td>
<td>8.2 m</td>
<td>7.8 m</td>
<td>7.5 m</td>
<td>7.3 m</td>
</tr>
<tr>
<td>300PFC</td>
<td>9.8 m</td>
<td>9.2 m</td>
<td>8.8 m</td>
<td>8.4 m</td>
<td>8.2 m</td>
</tr>
</tbody>
</table>

Table Notes:

1. **SBS** = Strutting beam spacing (m).
2. If point load applied, then it must be located within the middle third of the strutting beam span.
3. Top and bottom flanges of strutting beam must be laterally restrained at the loading point.
4. Steel is base grade.
Table 6.3.2e: Maximum acceptable lintel span (steel sheet roof) – lintel supporting roof, frames and timber floors (m)

<table>
<thead>
<tr>
<th>Steel Section</th>
<th>1.8 ELW</th>
<th>2.4 ELW</th>
<th>3.0 ELW</th>
<th>3.6 ELW</th>
<th>4.2 ELW</th>
</tr>
</thead>
<tbody>
<tr>
<td>125TFB</td>
<td>3.7 m</td>
<td>3.4 m</td>
<td>3.2 m</td>
<td>3.0 m</td>
<td>2.8 m</td>
</tr>
<tr>
<td>150UB14.0</td>
<td>4.1 m</td>
<td>3.9 m</td>
<td>3.7 m</td>
<td>3.5 m</td>
<td>3.3 m</td>
</tr>
<tr>
<td>200UB25.4</td>
<td>5.6 m</td>
<td>5.3 m</td>
<td>5.0 m</td>
<td>4.8 m</td>
<td>4.7 m</td>
</tr>
<tr>
<td>250UB31.4</td>
<td>6.6 m</td>
<td>6.2 m</td>
<td>5.9 m</td>
<td>5.7 m</td>
<td>5.5 m</td>
</tr>
<tr>
<td>100TFC</td>
<td>2.8 m</td>
<td>2.6 m</td>
<td>2.4 m</td>
<td>2.3 m</td>
<td>2.1 m</td>
</tr>
<tr>
<td>150PFC</td>
<td>4.4 m</td>
<td>4.1 m</td>
<td>3.9 m</td>
<td>3.7 m</td>
<td>3.6 m</td>
</tr>
<tr>
<td>200PFC</td>
<td>5.4 m</td>
<td>5.0 m</td>
<td>4.8 m</td>
<td>4.6 m</td>
<td>4.4 m</td>
</tr>
<tr>
<td>250PFC</td>
<td>6.6 m</td>
<td>6.2 m</td>
<td>5.9 m</td>
<td>5.7 m</td>
<td>5.5 m</td>
</tr>
<tr>
<td>75x75x6EA</td>
<td>1.3 m</td>
<td>1.2 m</td>
<td>1.1 m</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>90x90x6EA</td>
<td>1.9 m</td>
<td>1.6 m</td>
<td>1.6 m</td>
<td>1.4 m</td>
<td>1.2 m</td>
</tr>
<tr>
<td>100x100x6EA</td>
<td>2.0 m</td>
<td>1.8 m</td>
<td>1.6 m</td>
<td>1.5 m</td>
<td>1.4 m</td>
</tr>
<tr>
<td>125x756UA</td>
<td>2.3 m</td>
<td>2.0 m</td>
<td>1.8 m</td>
<td>1.7 m</td>
<td>1.5 m</td>
</tr>
<tr>
<td>150x100x10UA</td>
<td>3.9 m</td>
<td>3.6 m</td>
<td>3.2 m</td>
<td>2.9 m</td>
<td>2.7 m</td>
</tr>
</tbody>
</table>

Table Notes:
1. **ELW =** Effective load width (m).
2. Top flange of lintel must be laterally restrained at the loading points.
3. Load must be evenly distributed along the member (e.g. joists).
4. Angle lintels – first dimension corresponds to vertical leg (e.g. 100x75x6UA, 100 mm leg is vertical).
5. For lintels supporting masonry walls, refer to H1D5(1).

Table 6.3.2f: Maximum acceptable lintel span (tiled roof) – lintel supporting roof, frames and timber floors

<table>
<thead>
<tr>
<th>Steel Section</th>
<th>1.8 ELW</th>
<th>2.4 ELW</th>
<th>3.0 ELW</th>
<th>3.6 ELW</th>
<th>4.2 ELW</th>
</tr>
</thead>
<tbody>
<tr>
<td>125TFB</td>
<td>3.6 m</td>
<td>3.3 m</td>
<td>3.0 m</td>
<td>2.9 m</td>
<td>2.7 m</td>
</tr>
<tr>
<td>150UB14.0</td>
<td>4.0 m</td>
<td>3.7 m</td>
<td>3.6 m</td>
<td>3.4 m</td>
<td>3.2 m</td>
</tr>
<tr>
<td>200UB25.4</td>
<td>5.4 m</td>
<td>5.1 m</td>
<td>4.8 m</td>
<td>4.6 m</td>
<td>4.5 m</td>
</tr>
<tr>
<td>250UB31.4</td>
<td>6.3 m</td>
<td>6.0 m</td>
<td>5.7 m</td>
<td>5.4 m</td>
<td>5.2 m</td>
</tr>
<tr>
<td>100TFC</td>
<td>2.7 m</td>
<td>2.5 m</td>
<td>2.3 m</td>
<td>2.1 m</td>
<td>2.0 m</td>
</tr>
<tr>
<td>150PFC</td>
<td>4.2 m</td>
<td>3.9 m</td>
<td>3.7 m</td>
<td>3.6 m</td>
<td>3.4 m</td>
</tr>
<tr>
<td>200PFC</td>
<td>5.1 m</td>
<td>4.8 m</td>
<td>4.6 m</td>
<td>4.4 m</td>
<td>4.2 m</td>
</tr>
<tr>
<td>250PFC</td>
<td>6.3 m</td>
<td>6.0 m</td>
<td>5.7 m</td>
<td>5.4 m</td>
<td>5.3 m</td>
</tr>
<tr>
<td>75x75x6EA</td>
<td>1.3 m</td>
<td>1.1 m</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>90x90x6EA</td>
<td>1.7 m</td>
<td>1.5 m</td>
<td>1.4 m</td>
<td>1.3 m</td>
<td>1.2 m</td>
</tr>
<tr>
<td>100x100x6EA</td>
<td>1.9 m</td>
<td>1.7 m</td>
<td>1.6 m</td>
<td>1.5 m</td>
<td>1.4 m</td>
</tr>
<tr>
<td>125x756UA</td>
<td>2.2 m</td>
<td>1.9 m</td>
<td>1.7 m</td>
<td>1.6 m</td>
<td>1.4 m</td>
</tr>
<tr>
<td>150x100x10UA</td>
<td>3.7 m</td>
<td>3.3 m</td>
<td>3.0 m</td>
<td>2.9 m</td>
<td>2.6 m</td>
</tr>
</tbody>
</table>

Table Notes:
1. **ELW =** Effective load width (m).
2. Top flange of lintel must be laterally restrained at the loading points.
3. Load must be evenly distributed along the member (e.g. joists).
4. Angle lintels – first dimension corresponds to vertical leg (e.g. 100x75x6UA, 100 mm leg is vertical).
5. For lintels supporting masonry walls, refer to H1D5(1).

Figure 6.3.2a: Bearer supporting a timber floor and non-loadbearing stud wall

Bearer connection examples

(a) Example A

(b) Example B

(c) Example C

(d) Example D

Figure 6.3.2b: Strutting beam supporting a roof and ceiling

Strutting beam application

Strutting beam spacing = 0.5(L1 + L2)*

*Replace 0.5 with 0.6 if hanging beams are continuous over strutting beams
6.3.3 Bearers

Structural steel bearers must comply with the following:

(a) **Effective bearer spacing must be determined in accordance with**—
 (i) for single span joists — Table H1D6a and Figure H1D6d; and
 (ii) for continuous span joists — Table H1D6b and Figure H1D6e.

(b) **Maximum acceptable bearer spans must be determined in accordance with**—
 (i) for single spans — Tables 6.3.3a and; and
 (ii) for continuous spans — Tables 6.3.3b.

(c) **All loads along the bearer must be evenly distributed.**

(d) **The difference in distance between supports for continuous span bearers must not be more than 10% of the span.**

(e) **Fixing of joists and columns to structural steel bearers must comply with 6.3.7.**

(f) **Bearers must be supported by structural steel columns that comply with 6.3.6 and are fixed in accordance with 6.3.7.**

<table>
<thead>
<tr>
<th>Table 6.3.3a: Maximum bearer span (m) — single span — bearer supporting timber floor and 3 m high non-loadbearing internal wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel section</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>125 TFB</td>
</tr>
</tbody>
</table>
Table Notes:

1. Load accounted for includes 0.53 kPa permanent floor, 0.92 kN/m permanent wall, permanent member self-weight, 1.5 kPa or 1.1 kN imposed.
2. Load combinations included are 1.35G and 1.25G+1.5Q for ULS and G + 0.7Q for SLS with a maximum deflection of span/300.
3. Bearers are assumed to have intermediate lateral restraints at joist locations and are considered fully laterally restrained.

Table 6.3.3b: Maximum bearer span (m) — continuous span — bearer supporting timber floor and 3 m high non-loadbearing internal wall

<table>
<thead>
<tr>
<th>Steel section</th>
<th>Effective load width (m)</th>
<th>1.8</th>
<th>2.4</th>
<th>3.0</th>
<th>3.6</th>
<th>4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 TFB</td>
<td></td>
<td>5.2</td>
<td>4.6</td>
<td>4.2</td>
<td>3.9</td>
<td>3.6</td>
</tr>
<tr>
<td>180 UB 16.1</td>
<td></td>
<td>6.8</td>
<td>6.0</td>
<td>5.5</td>
<td>5.1</td>
<td>4.7</td>
</tr>
<tr>
<td>200 UB 18.2</td>
<td></td>
<td>7.7</td>
<td>6.9</td>
<td>6.2</td>
<td>5.8</td>
<td>5.4</td>
</tr>
<tr>
<td>250 UB 25.7</td>
<td></td>
<td>10.2</td>
<td>9.1</td>
<td>8.3</td>
<td>7.6</td>
<td>7.1</td>
</tr>
<tr>
<td>250 x 150 x 9 RHS</td>
<td></td>
<td>12.4</td>
<td>11.5</td>
<td>10.5</td>
<td>9.8</td>
<td>9.1</td>
</tr>
<tr>
<td>250 x 150 x 5 RHS</td>
<td></td>
<td>9.5</td>
<td>8.4</td>
<td>7.7</td>
<td>7.1</td>
<td>6.6</td>
</tr>
<tr>
<td>310 UB 32.0</td>
<td></td>
<td>12.3</td>
<td>11.0</td>
<td>10.0</td>
<td>9.2</td>
<td>8.6</td>
</tr>
<tr>
<td>125 x 75 x 2 RHS</td>
<td></td>
<td>2.9</td>
<td>2.6</td>
<td>2.3</td>
<td>2.2</td>
<td>2.0</td>
</tr>
<tr>
<td>125 x 75 x 3 RHS</td>
<td></td>
<td>4.0</td>
<td>3.5</td>
<td>3.2</td>
<td>2.9</td>
<td>2.7</td>
</tr>
<tr>
<td>150 x 50 x 2 RHS</td>
<td></td>
<td>3.3</td>
<td>2.9</td>
<td>2.6</td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td>150 x 50 x 3 RHS</td>
<td></td>
<td>4.2</td>
<td>3.7</td>
<td>3.4</td>
<td>3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>100 TFB</td>
<td></td>
<td>3.4</td>
<td>3.0</td>
<td>2.7</td>
<td>2.5</td>
<td>2.4</td>
</tr>
<tr>
<td>150 PFC</td>
<td></td>
<td>6.5</td>
<td>5.8</td>
<td>5.3</td>
<td>4.9</td>
<td>4.6</td>
</tr>
<tr>
<td>180 PFC</td>
<td></td>
<td>7.8</td>
<td>6.9</td>
<td>6.3</td>
<td>5.8</td>
<td>5.4</td>
</tr>
<tr>
<td>200 PFC</td>
<td></td>
<td>8.5</td>
<td>7.6</td>
<td>6.9</td>
<td>6.4</td>
<td>5.9</td>
</tr>
</tbody>
</table>
Table Notes:
1. Load accounted for includes 0.53 kPa permanent floor, 0.92 kN/m permanent wall, permanent member self-weight, 1.5 kPa or 1.1 kN imposed.
2. Load combinations included are 1.35G and 1.25G+1.5Q for ULS and G + 0.7Q for SLS with a maximum deflection of span/300.
3. Bearers are assumed to have intermediate lateral restraints at joist locations and are considered fully laterally restrained.

<table>
<thead>
<tr>
<th>Steel section</th>
<th>Effective load width (m)</th>
<th>1.8</th>
<th>2.4</th>
<th>3.0</th>
<th>3.6</th>
<th>4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 PFC</td>
<td></td>
<td>11.6</td>
<td>10.4</td>
<td>9.5</td>
<td>8.7</td>
<td>8.2</td>
</tr>
<tr>
<td>300 PFC</td>
<td></td>
<td>13.4</td>
<td>12.0</td>
<td>10.9</td>
<td>10.1</td>
<td>9.4</td>
</tr>
</tbody>
</table>

Table 6.3.3c: Maximum bearer span (m) — single span — bearer supporting tiled floor and 3 m high non-loadbearing internal wall

Table Notes:
1. Load accounted for includes 0.98 kPa permanent floor, 0.92 kN/m permanent wall, permanent member self-weight, 1.5 kPa or 1.1 kN imposed.
2. Load combinations included are 1.35G and 1.25G+1.5Q for ULS and G + 0.7Q for SLS with a maximum deflection of span/300.
3. Bearers are assumed to have intermediate lateral restraints at joist locations and are considered fully laterally restrained.
Table 6.3.3d: Maximum bearer span (m) — continuous span — bearer supporting tiled floor and 3 m high non-loadbearing internal wall

<table>
<thead>
<tr>
<th>Steel section</th>
<th>Effective load width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>125 TFB</td>
<td>4.8</td>
</tr>
<tr>
<td>180 UB 16.1</td>
<td>6.3</td>
</tr>
<tr>
<td>200 UB 18.2</td>
<td>7.2</td>
</tr>
<tr>
<td>250 UB 25.7</td>
<td>9.5</td>
</tr>
<tr>
<td>250 x 150 x 9 RHS</td>
<td>11.6</td>
</tr>
<tr>
<td>250 x 150 x 5 RHS</td>
<td>8.8</td>
</tr>
<tr>
<td>310 UB 32.0</td>
<td>11.5</td>
</tr>
<tr>
<td>125 x 75 x 2 RHS</td>
<td>2.7</td>
</tr>
<tr>
<td>125 x 75 x 3 RHS</td>
<td>3.7</td>
</tr>
<tr>
<td>150 x 50 x 2 RHS</td>
<td>3.1</td>
</tr>
<tr>
<td>150 x 50 x 3 RHS</td>
<td>3.9</td>
</tr>
<tr>
<td>100 TFB</td>
<td>3.2</td>
</tr>
<tr>
<td>150 PFC</td>
<td>6.1</td>
</tr>
<tr>
<td>180 PFC</td>
<td>7.2</td>
</tr>
<tr>
<td>200 PFC</td>
<td>8.0</td>
</tr>
<tr>
<td>250 PFC</td>
<td>10.9</td>
</tr>
<tr>
<td>300 PFC</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Table Notes:

1. **Load accounted for includes 0.98 kPa permanent floor, 0.92 kN/m permanent wall, permanent member self-weight, 1.5 kPa or 1.1 kN imposed.**
2. **Load combinations included are 1.35G and 1.25G+1.5Q for ULS and G + 0.7Q for SLS with a maximum deflection of span/300.**
3. **Bearers are assumed to have intermediate lateral restraints at joist locations and are considered fully laterally restrained.**

6.3.4 Strutting beams

Structural steel strutting beams must comply with the following:

(a) **Acceptable strutting beam spacing must be determined in accordance with**—

 (i) for single span rafters — Table H1D6a and Figure H1D6d; and

 (ii) for continuous span rafters — Table H1D6b and Figure H1D6e.

(b) **Maximum acceptable strutting beam spans must be determined in accordance with**—

 (i) for metal sheet roofs — Tables 6.3.4a, 6.3.4b, 6.3.4c, 6.3.4d, 6.3.4e or 6.3.4f; and

 (ii) for tiled roofs — Tables 6.3.4g, 6.3.4h, 6.3.4i, 6.3.4j, 6.3.4k or 6.3.4l.

(c) **Any point load applied must be located within the middle third of the strutting beam.**

(d) **Strutting beams must be tied down in accordance with H1D6(3) where supporting metal roofs.**

(e) **Fixing and any cutting of strutting beams must comply with 6.3.7.**

(f) **Strutting beams must be supported by structural steel columns that comply with 6.3.6 and be fixed in accordance with 6.3.7.**
Table 6.3.4a: Maximum acceptable combined strutting/hanging beam span — combined strutting/hanging beam supporting metal sheet roof and gypsum ceiling — roof load area 4 m²

<table>
<thead>
<tr>
<th>Section</th>
<th>Ceiling load width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>125 TFB</td>
<td>3.5</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>3.6</td>
</tr>
<tr>
<td>200 UB 18.2</td>
<td>4.5</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>6.8</td>
</tr>
<tr>
<td>310 UB 46.2</td>
<td>8.9</td>
</tr>
<tr>
<td>100 TFB</td>
<td>2.0</td>
</tr>
<tr>
<td>150 PFC</td>
<td>4.7</td>
</tr>
<tr>
<td>200 PFC</td>
<td>5.5</td>
</tr>
<tr>
<td>250 PFC</td>
<td>7.5</td>
</tr>
<tr>
<td>300 PFC</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Table Notes:
1. Load accounted for includes 0.2 kPa permanent ceiling, 0.4 kPa permanent roof, permanent member self-weight, 0.25 kPa imposed roof, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. Load combinations included are 1.35G, 1.2G + 1.5Q, 1.2G + \(W_U + 0.4Q\), 0.9G + \(W_U\) for ULS and G + 0.7Q, G + \(W_S\).
3. 0.9G + \(W_S\) for SLS with a maximum deflection of span/300.
4. Strutting beams are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.

Table 6.3.4b: Maximum acceptable combined strutting/hanging beam span — combined strutting/hanging beam supporting metal sheet roof and gypsum ceiling — roof load area 8 m²

<table>
<thead>
<tr>
<th>Section</th>
<th>Ceiling load width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>125 TFB</td>
<td>2.6</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>2.8</td>
</tr>
<tr>
<td>200 UB 18.2</td>
<td>3.6</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>5.5</td>
</tr>
<tr>
<td>310 UB 46.2</td>
<td>7.3</td>
</tr>
<tr>
<td>100 TFB</td>
<td>1.4</td>
</tr>
<tr>
<td>150 PFC</td>
<td>3.7</td>
</tr>
<tr>
<td>200 PFC</td>
<td>4.4</td>
</tr>
<tr>
<td>250 PFC</td>
<td>6.0</td>
</tr>
<tr>
<td>300 PFC</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Table Notes:
1. Load accounted for includes 0.2 kPa permanent ceiling, 0.4 kPa permanent roof, permanent member self-weight, 0.25 kPa imposed roof, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. Load combinations included are 1.35G, 1.2G + 1.5Q, 1.2G + \(W_U + 0.4Q\), 0.9G + \(W_U\) for ULS and G + 0.7Q, G + \(W_S\).
3. \(0.9G + W_S\) for SLS with a maximum deflection of span/300.
4. Strutting beams are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.

Table 6.3.4c: Maximum acceptable combined strutting/hanging beam span — combined strutting/hanging beam supporting metal sheet roof and gypsum ceiling — roof load area = 12 m²

<table>
<thead>
<tr>
<th>Section</th>
<th>Ceiling load width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>125 TFB</td>
<td>2.2</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>2.4</td>
</tr>
<tr>
<td>200 UB 18.2</td>
<td>3.1</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>4.8</td>
</tr>
<tr>
<td>310 UB 46.2</td>
<td>6.4</td>
</tr>
<tr>
<td>100 TFC</td>
<td>1.1</td>
</tr>
<tr>
<td>150 PFC</td>
<td>3.1</td>
</tr>
<tr>
<td>200 PFC</td>
<td>3.7</td>
</tr>
<tr>
<td>250 PFC</td>
<td>5.2</td>
</tr>
<tr>
<td>300 PFC</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Table Notes:
1. Load accounted for includes 0.2 kPa permanent ceiling, 0.4 kPa permanent roof, permanent member self-weight, 0.25 kPa imposed roof, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. Load combinations included are 1.35G, 1.2G + 1.5Q, 1.2G + \(W_U + 0.4Q\), 0.9G + \(W_U\) for ULS and G + 0.7Q, G + \(W_S\).
3. \(0.9G + W_S\) for SLS with a maximum deflection of span/300.
4. Strutting beams are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.

Table 6.3.4d: Maximum acceptable counter-strutting beam span — counter-strutting beam supporting metal sheet roof and gypsum ceiling — roof load area = 4 m²

<table>
<thead>
<tr>
<th>Section</th>
<th>Ceiling load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>125 TFB</td>
<td>3.9</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>4.0</td>
</tr>
<tr>
<td>200 UB 18.2</td>
<td>5.4</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>8.9</td>
</tr>
<tr>
<td>310 UB 46.2</td>
<td>12.0</td>
</tr>
<tr>
<td>100 TFB</td>
<td>2.0</td>
</tr>
<tr>
<td>150 PFC</td>
<td>5.9</td>
</tr>
<tr>
<td>200 PFC</td>
<td>7.1</td>
</tr>
<tr>
<td>250 PFC</td>
<td>10.1</td>
</tr>
<tr>
<td>300 PFC</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Table Notes:
1. Load accounted for includes 0.2 kPa permanent ceiling, 0.4 kPa permanent roof, permanent member self-weight, 0.25 kPa imposed roof, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. Load combinations included are 1.35G and 1.25G + 1.5Q, 1.25G + W_{U} + 0.4Q, 0.9G + W_{U} for ULS and G + 0.7Q, G+W_{S}.

3. 0.9G + W_{S} for SLS with a maximum deflection of span/300.

4. Strutting beams are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.

5. A ceiling load area of “0” must be used for strutting beams not supporting ceiling loads.

Table 6.3.4e: Maximum acceptable counter-strutting beam span — counter-strutting beam supporting metal sheet roof and gypsum ceiling — roof load area = 8 m²

<table>
<thead>
<tr>
<th>Section</th>
<th>Ceiling load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>125 TFB</td>
<td>2.7</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>2.9</td>
</tr>
<tr>
<td>200 UB 18.2</td>
<td>4.0</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>6.8</td>
</tr>
<tr>
<td>310 UB 46.2</td>
<td>9.6</td>
</tr>
<tr>
<td>100 TFB</td>
<td>1.4</td>
</tr>
<tr>
<td>150 PFC</td>
<td>4.2</td>
</tr>
<tr>
<td>200 PFC</td>
<td>5.2</td>
</tr>
<tr>
<td>250 PFC</td>
<td>7.7</td>
</tr>
<tr>
<td>300 PFC</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Table Notes:

1. Load accounted for includes 0.2 kPa permanent ceiling, 0.4 kPa permanent roof, permanent member self-weight, 0.25 kPa imposed roof, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.

2. Load combinations included are 1.35G and 1.25G + 1.5Q, 1.25G + W_{U} + 0.4Q, 0.9G + W_{U} for ULS and G + 0.7Q, G+W_{S}.

3. 0.9G + W_{S} for SLS with a maximum deflection of span/300.

4. Strutting beams are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.

5. A ceiling load area of “0” must be used for strutting beams not supporting ceiling loads.

Table 6.3.4f: Maximum acceptable counter-strutting beam span — counter-strutting beam supporting metal sheet roof and gypsum ceiling — roof load area = 12 m²

<table>
<thead>
<tr>
<th>Section</th>
<th>Ceiling load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>125 TFB</td>
<td>2.2</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>2.4</td>
</tr>
<tr>
<td>200 UB 18.2</td>
<td>3.3</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>5.7</td>
</tr>
<tr>
<td>310 UB 46.2</td>
<td>8.2</td>
</tr>
<tr>
<td>100 TFB</td>
<td>1.1</td>
</tr>
<tr>
<td>150 PFC</td>
<td>3.4</td>
</tr>
<tr>
<td>200 PFC</td>
<td>4.2</td>
</tr>
<tr>
<td>250 PFC</td>
<td>6.4</td>
</tr>
<tr>
<td>300 PFC</td>
<td>6.9</td>
</tr>
</tbody>
</table>
Table Notes:

1. Load accounted for includes 0.2 kPa permanent ceiling, 0.4 kPa permanent roof, permanent member self-weight, 0.25 kPa imposed roof, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. Load combinations included are 1.35G and 1.25G + 1.5Q, 1.25G + W_u + 0.4Q, 0.9G + W_u for ULS and G + 0.7Q, G+W_S.
3. 0.9G + W_S for SLS with a maximum deflection of span/300.
4. Strutting beams are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.
5. A ceiling load area of “0” must be used for strutting beams not supporting ceiling loads.

Table 6.3.4g: Maximum acceptable combined strutting/hanging beam span — combined strutting/hanging beam supporting tiled roof and gypsum ceiling — roof load area = 4 m²

<table>
<thead>
<tr>
<th>Section</th>
<th>Ceiling load width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>125 TFB</td>
<td>2.0</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>2.2</td>
</tr>
<tr>
<td>200 UB 18.2</td>
<td>2.8</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>4.4</td>
</tr>
<tr>
<td>310 UB 46.2</td>
<td>5.8</td>
</tr>
<tr>
<td>100 TFB</td>
<td>1.1</td>
</tr>
<tr>
<td>150 PFC</td>
<td>2.8</td>
</tr>
<tr>
<td>200 PFC</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Table Notes:

1. Load accounted for includes 0.2 kPa permanent ceiling, 0.84 kPa permanent roof, permanent member self-weight, 0.25 kPa imposed roof, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. Load combinations included are 1.35G, 1.2G + 1.5Q, 1.2G + W_u + 0.4Q, 0.9G + W_u for ULS and G + 0.7Q, G+W_S.
3. 0.9G + W_S for SLS with a maximum deflection of span/300.
4. Strutting beams are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.

Table 6.3.4h: Maximum acceptable combined strutting/hanging beam span — combined strutting/hanging beam supporting tiled roof and gypsum ceiling — roof load area = 8 m²

<table>
<thead>
<tr>
<th>Section</th>
<th>Ceiling load width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>125 TFB</td>
<td>2.0</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>2.2</td>
</tr>
<tr>
<td>200 UB 18.2</td>
<td>2.8</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>4.4</td>
</tr>
<tr>
<td>310 UB 46.2</td>
<td>5.8</td>
</tr>
<tr>
<td>100 TFB</td>
<td>1.1</td>
</tr>
<tr>
<td>150 PFC</td>
<td>2.8</td>
</tr>
<tr>
<td>200 PFC</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Table Notes:

1. Load accounted for includes 0.2 kPa permanent ceiling, 0.84 kPa permanent roof, permanent member self-weight, 0.25 kPa imposed roof, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. Load combinations included are 1.35G, 1.2G + 1.5Q, 1.2G + W_{U} + 0.4Q, 0.9G + W_{U} for ULS and G + 0.7Q, G + W_{S}.
3. 0.9G + W_{S} for SLS with a maximum deflection of span/300.
4. Strutting beams are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.

Table 6.3.4i: Maximum acceptable combined strutting/hanging beam span — combined strutting/hanging beam supporting tiled roof and gypsum ceiling — roof load area = 12 m²

<table>
<thead>
<tr>
<th>Section</th>
<th>Ceiling load width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>250 PFC</td>
<td>4.7</td>
</tr>
<tr>
<td>300 PFC</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Table Notes:

1. Load accounted for includes 0.2 kPa permanent ceiling, 0.84 kPa permanent roof, permanent member self-weight, 0.25 kPa imposed roof, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. Load combinations included are 1.35G, 1.2G + 1.5Q, 1.2G + W_{U} + 0.4Q, 0.9G + W_{U} for ULS and G + 0.7Q, G + W_{S}.
3. 0.9G + W_{S} for SLS with a maximum deflection of span/300.
4. Strutting beams are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.

Table 6.3.4j: Maximum acceptable counter-strutting beam span — counter-strutting beam supporting tiled roof and gypsum ceiling — roof load area = 4 m²

<table>
<thead>
<tr>
<th>Section</th>
<th>Ceiling load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>125 TFB</td>
<td>3.4</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>3.5</td>
</tr>
<tr>
<td>200 UB 18.2</td>
<td>4.7</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>7.9</td>
</tr>
</tbody>
</table>
Framing

Table Notes:

1. Load accounted for includes 0.2 kPa permanent ceiling, 0.4 kPa permanent roof, permanent member self-weight, 0.25 kPa imposed roof, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. Load combinations included are 1.35G, 1.2G + 1.5Q, 1.2G + W_U + 0.4Q, 0.9G + W_U for ULS and G + 0.7Q, G + W_S for SLS with a maximum deflection of span/300.
3. Strutting beams are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.
4. A ceiling load area of “0” must be used for strutting beams not supporting ceiling loads.

Table 6.3.4k: Maximum acceptable counter-strutting beam span — counter-strutting beam supporting tiled roof and gypsum ceiling — roof load area = 8 m²

<table>
<thead>
<tr>
<th>Section</th>
<th>Ceiling load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>125 TFB</td>
<td>2.3</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>2.5</td>
</tr>
<tr>
<td>200 UB 18.2</td>
<td>3.4</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>5.9</td>
</tr>
<tr>
<td>310 UB 46.2</td>
<td>8.5</td>
</tr>
<tr>
<td>100 TFB</td>
<td>1.2</td>
</tr>
<tr>
<td>150 PFC</td>
<td>3.6</td>
</tr>
<tr>
<td>200 PFC</td>
<td>4.4</td>
</tr>
<tr>
<td>250 PFC</td>
<td>6.7</td>
</tr>
<tr>
<td>300 PFC</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Table Notes:

1. Load accounted for includes 0.2 kPa permanent ceiling, 0.4 kPa permanent roof, permanent member self-weight, 0.25 kPa imposed roof, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. Load combinations included are 1.35G, 1.2G + 1.5Q, 1.2G + W_U + 0.4Q, 0.9G + W_U for ULS and G + 0.7Q, G + W_S for SLS with a maximum deflection of span/300.
3. Strutting beams are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.
4. A ceiling load area of “0” must be used for strutting beams not supporting ceiling loads.
Table 6.3.4l: Maximum acceptable counter-strutting beam span — counter-strutting beam supporting tiled roof and gypsum ceiling — roof load area = 12 m²

<table>
<thead>
<tr>
<th>Section</th>
<th>Ceiling load area (m²)</th>
<th>0</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 TFB</td>
<td></td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td></td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>200 UB 18.2</td>
<td></td>
<td>2.8</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td></td>
<td>5.0</td>
<td>4.8</td>
<td>4.7</td>
</tr>
<tr>
<td>310 UB 46.2</td>
<td></td>
<td>7.1</td>
<td>7.0</td>
<td>6.8</td>
</tr>
<tr>
<td>100 TFB</td>
<td></td>
<td>0.9</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>150 PFC</td>
<td></td>
<td>2.8</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>200 PFC</td>
<td></td>
<td>3.6</td>
<td>3.5</td>
<td>3.4</td>
</tr>
<tr>
<td>250 PFC</td>
<td></td>
<td>5.5</td>
<td>5.4</td>
<td>5.2</td>
</tr>
<tr>
<td>300 PFC</td>
<td></td>
<td>5.9</td>
<td>5.8</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Table Notes:
1. **Load accounted for** includes 0.2 kPa permanent ceiling, 0.4 kPa permanent roof, permanent member self-weight, 0.25 kPa imposed roof, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. **Load combinations included** are 1.35G, 1.2G + 1.5Q, 1.2G + Wₚ + 0.4Q, 0.9G + Wₚ for ULS and G + 0.7Q. G + Wₜₚ for SLS with a maximum deflection of span/300.
3. **Strutting beams are assumed to be** partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.
4. A ceiling load area of “0” must be used for strutting beams not supporting ceiling loads.

6.3.5 Lintels

Structural steel lintels must comply with the following:

(a) **Acceptable spans** for lintels supporting roofs, frames and timber floors must be determined in accordance with—
 (i) for metal sheet roofs, Tables 6.3.5a, 6.3.5b or 6.3.5c; and
 (ii) for tiled roofs, Table 6.3.5d, 6.3.5e or 6.3.5f.
(b) **Effective load widths** for structural steel lintels must be determined in accordance with Figure 6.3.5 option (a) or (b).
(c) **All loads** along the structural steel lintel must be evenly distributed.
(d) **The top flange** of the structural steel lintel must be laterally restrained at the loading points.
(e) **Fixing of structural steel lintels** must comply with 6.3.7.
(f) **Structural steel lintels used in masonry** must also comply with H1D5.
(g) **Lintel beams** must be supported by structural steel columns that comply with 6.3.6.

Table 6.3.5a: Maximum acceptable lintel span — lintel supporting metal sheet roof, timber floor and 3 m high exterior wall — roof load width = 1.5 m

<table>
<thead>
<tr>
<th>Section</th>
<th>Floor load width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>4.4</td>
</tr>
</tbody>
</table>
Table Notes:

1. Load accounted for includes 0.53 kPa permanent floor, 1.16 kN/m permanent wall, 0.4 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.

2. Load combinations included are 1.35G and 1.2G + 1.5Q, 1.2G + W_{U} + 0.4Q, 0.9G + W_{U} for ULS and G + 0.7Q, G + W_{S} for SLS.

3. 0.9G + W_{S} for SLS with a maximum deflection of span/300.

4. Lintels are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.

5. A floor load of “0” must be used for lintels not supporting floor loads.

Table 6.3.5b:

Maximum acceptable lintel span — lintel supporting metal sheet roof, timber floor and 3 m high exterior wall — roof load width = 4.5 m

<table>
<thead>
<tr>
<th>Section</th>
<th>Floor load width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>200 UB 25.4</td>
<td>6.8</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>7.7</td>
</tr>
<tr>
<td>100 TFB</td>
<td>2.8</td>
</tr>
<tr>
<td>150 PFC</td>
<td>5.7</td>
</tr>
<tr>
<td>200 PFC</td>
<td>6.5</td>
</tr>
<tr>
<td>250 PFC</td>
<td>8.4</td>
</tr>
<tr>
<td>75 x 75 x 5 EA</td>
<td>2.0</td>
</tr>
<tr>
<td>90 x 90 x 6 EA</td>
<td>3.0</td>
</tr>
<tr>
<td>100 x 100 x 6 EA</td>
<td>3.0</td>
</tr>
<tr>
<td>125 x 75 x 6 UA</td>
<td>3.0</td>
</tr>
<tr>
<td>150 x 100 x 10 UA</td>
<td>4.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Floor load width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>3.1</td>
</tr>
<tr>
<td>200 UB 25.4</td>
<td>4.9</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>5.6</td>
</tr>
<tr>
<td>100 TFB</td>
<td>1.9</td>
</tr>
<tr>
<td>150 PFC</td>
<td>4.0</td>
</tr>
<tr>
<td>200 PFC</td>
<td>4.5</td>
</tr>
<tr>
<td>250 PFC</td>
<td>6.0</td>
</tr>
<tr>
<td>75 x 75 x 5 EA</td>
<td>1.0</td>
</tr>
<tr>
<td>90 x 90 x 6 EA</td>
<td>1.8</td>
</tr>
<tr>
<td>100 x 100 x 6 EA</td>
<td>1.8</td>
</tr>
<tr>
<td>125 x 75 x 6 UA</td>
<td>1.8</td>
</tr>
<tr>
<td>150 x 100 x 10 UA</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Table Notes:

1. Load accounted for includes 0.53 kPa permanent floor, 1.16 kN/m permanent wall, 0.4 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.

2. Load combinations included are 1.35G and 1.2G + 1.5Q, 1.2G + W_{U} + 0.4Q, 0.9G + W_{U} for ULS and G + 0.7Q, G + W_{S}.
3. $0.9G + W_s$ for SLS with a maximum deflection of span/300.

4. Lintels are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.

5. A floor load of “0” must be used for lintels not supporting floor loads.

Table 6.3.5c: Maximum acceptable lintel span — lintel supporting metal sheet roof, timber floor and 3 m high exterior wall — roof load width = 7.5 m

<table>
<thead>
<tr>
<th>Section</th>
<th>Floor load width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>2.6</td>
</tr>
<tr>
<td>200 UB 25.4</td>
<td>4.1</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>4.7</td>
</tr>
<tr>
<td>100 TFB</td>
<td>1.6</td>
</tr>
<tr>
<td>150 PFC</td>
<td>3.3</td>
</tr>
<tr>
<td>200 PFC</td>
<td>3.8</td>
</tr>
<tr>
<td>250 PFC</td>
<td>5.1</td>
</tr>
<tr>
<td>75 x 75 x 5 EA</td>
<td>–</td>
</tr>
<tr>
<td>90 x 90 x 6 EA</td>
<td>1.0</td>
</tr>
<tr>
<td>100 x 100 x 6 EA</td>
<td>1.0</td>
</tr>
<tr>
<td>125 x 75 x 6 UA</td>
<td>1.3</td>
</tr>
<tr>
<td>150 x 100 x 10 UA</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table Notes:
1. Load accounted for includes 0.53 kPa permanent floor, 1.16 kN/m permanent wall, 0.4 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. Load combinations included are $1.35G$ and $1.2G + 1.5Q$, $1.2G + W_s + 0.4Q$, $0.9G + W_s$ for ULS and $G + 0.7Q$, $G + W_s$ for G.
3. $0.9G + W_s$ for SLS with a maximum deflection of span/300.
4. Lintels are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.
5. A floor load of “0” must be used for lintels not supporting floor loads.

Table 6.3.5d: Maximum acceptable lintel span — lintel supporting tiled roof, tiled floor and 3 m high exterior wall — roof load width = 1.5 m

<table>
<thead>
<tr>
<th>Section</th>
<th>Floor load width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>4.0</td>
</tr>
<tr>
<td>200 UB 25.4</td>
<td>6.2</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>7.1</td>
</tr>
<tr>
<td>100 TFB</td>
<td>2.5</td>
</tr>
<tr>
<td>150 PFC</td>
<td>5.2</td>
</tr>
<tr>
<td>200 PFC</td>
<td>5.9</td>
</tr>
<tr>
<td>250 PFC</td>
<td>7.7</td>
</tr>
<tr>
<td>75 x 75 x 5 EA</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Table Notes:
1. Load accounted for includes 0.98 kPa permanent floor, 1.16 kN/m permanent wall, 0.85 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. Load combinations included are 1.35G, 1.2G + 1.5Q, 1.2G + W_u + 0.4Q, 0.9G + W_u for ULS G + 0.7Q, G + W_S.
3. 0.9G + W_S for SLS with a maximum deflection of span/300.
4. Lintels are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.
5. A floor load of “0” must be used for lintels not supporting floor loads.

Table 6.3.5e: Maximum acceptable lintel span — lintel supporting tiled roof, tiled floor and 3 m high exterior wall — roof load width = 4.5 m

<table>
<thead>
<tr>
<th>Section</th>
<th>Floor load width (m)</th>
<th>0</th>
<th>1.8</th>
<th>3.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 x 90 x 6 EA</td>
<td></td>
<td>2.5</td>
<td>1.3</td>
<td>–</td>
</tr>
<tr>
<td>100 x 100 x 6 EA</td>
<td></td>
<td>3.0</td>
<td>1.3</td>
<td>–</td>
</tr>
<tr>
<td>125 x 75 x 6 UA</td>
<td></td>
<td>2.5</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>150 x 100 x 10 UA</td>
<td></td>
<td>4.0</td>
<td>2.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table Notes:
1. Load accounted for includes 0.98 kPa permanent floor, 1.16 kN/m permanent wall, 0.85 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. Load combinations included are 1.35G, 1.2G + 1.5Q, 1.2G + W_u + 0.4Q, 0.9G + W_u for ULS G + 0.7Q, G + W_S.
3. 0.9G + W_S for SLS with a maximum deflection of span/300.
4. Lintels are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.
5. A floor load of “0” must be used for lintels not supporting floor loads.
Table 6.3.5f: Maximum acceptable lintel span — lintel supporting tiled roof, tiled floor and 3 m high exterior wall — roof load width = 7.5 m

<table>
<thead>
<tr>
<th>Section</th>
<th>Floor load width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>150 UB 14.0</td>
<td>2.4</td>
</tr>
<tr>
<td>200 UB 25.4</td>
<td>3.8</td>
</tr>
<tr>
<td>250 UB 31.4</td>
<td>4.3</td>
</tr>
<tr>
<td>100 TFB</td>
<td>1.5</td>
</tr>
<tr>
<td>150 PFC</td>
<td>3.0</td>
</tr>
<tr>
<td>200 PFC</td>
<td>3.4</td>
</tr>
<tr>
<td>250 PFC</td>
<td>4.6</td>
</tr>
<tr>
<td>75 x 75 x 5 EA</td>
<td>=</td>
</tr>
<tr>
<td>90 x 90 x 6 EA</td>
<td>=</td>
</tr>
<tr>
<td>100 x 100 x 6 EA</td>
<td>=</td>
</tr>
<tr>
<td>125 x 75 x 6 UA</td>
<td>1.0</td>
</tr>
<tr>
<td>150 x 100 x 10 UA</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table Notes:
1. Load accounted for includes 0.98 kPa permanent floor, 1.16 kN/m permanent wall, 0.85 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1 kN imposed floor, positive roof wind pressure of 0.95 kPa and negative roof wind pressure of -1.49 kPa.
2. Load combinations included are 1.35G, 1.2G + 1.5Q, 1.2G + W_H + 0.4Q, 0.9G + W_S for ULS G + 0.7Q, G + W_S.
3. 0.9G + W_S for SLS with a maximum deflection of span/300.
4. Lintels are assumed to be partially restrained at both ends with no rotational restraint and are designed as members without full lateral restraint.
5. A floor load of “0” must be used for lintels not supporting floor loads.

Figure 6.3.2e5: Lintels supporting roof, frames and timber floors

Lintels supporting roof and floors

(a) Floor and truss roof

(b) Floor and conventional roof

6.3.36 Columns

Columns may support the area provided for in Table 6.3.3a and Table 6.3.3b provided—
(a) the effective height of the column is determined in accordance with Figure 6.3.3a and Table 6.3.3c; and
(b) the floor area to be supported is determined in accordance with Figure 6.3.3b and Table 6.3.3d; and
(c) the load eccentricity between the centre of the column and the applied vertical loading complies with.

(1) Structural steel columns must comply with the following:
(a) Columns must support the area provided for in—
 (i) Tables 6.3.6a, 6.3.6b and 6.3.6c for columns supporting tiled floor and tiled roof load; and
 (ii) Tables 6.3.6d, 6.3.6e and 6.3.6f for columns supporting timber floor and metal roof load.
(b) The floor area to be supported is to be determined in accordance with Table 6.3.6g and Figure 6.3.6a.
(c) The flooring system supported by structural steel columns must be fully braced to the footing level either by—
 (i) subject to (d), adequately fixing the full height of the column to bracing walls of similar height in the two orthogonal directions of the building; or
 (ii) a bracing system designed in accordance with AS 1684.2, AS 1684.3, AS/NZS 4600, NASH standard or AS 3700 as appropriate to the materials being used.
(d) For the purposes of (c)(i), the bracing walls must be capable of resisting racking forces in each direction not less than a proportion of the building’s racking force equal to the proportion of floor area that the column is supporting compared to the total floor area of the building.
(e) Acceptable load eccentricity must not exceed 50% of the cross-sectional width plus 100 mm (see Figure 6.3.6b).

Table 6.3.3a: Columns—supporting timber floor only

<table>
<thead>
<tr>
<th>Column section</th>
<th>Column effective height</th>
<th>Floor area—supported: 5 m²</th>
<th>Floor area—supported: 10 m²</th>
<th>Floor area—supported: 15 m²</th>
<th>Floor area—supported: 20 m²</th>
<th>Floor area—supported: 25 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHS C250</td>
<td>600</td>
<td>60.3 x 3.6</td>
<td>88.9 x 4.0</td>
<td>101.6 x 5.0</td>
<td>114.4 x 5.4</td>
<td>139.7 x 5.0</td>
</tr>
<tr>
<td>CHS C250</td>
<td>1200</td>
<td>60.3 x 4.5</td>
<td>88.9 x 4.0</td>
<td>101.6 x 5.0</td>
<td>114.4 x 5.4</td>
<td>139.7 x 5.0</td>
</tr>
<tr>
<td>CHS C250</td>
<td>1800</td>
<td>60.3 x 4.5</td>
<td>88.9 x 4.0</td>
<td>101.6 x 5.0</td>
<td>114.4 x 5.4</td>
<td>139.7 x 5.0</td>
</tr>
<tr>
<td>CHS C250</td>
<td>2400</td>
<td>60.3 x 4.5</td>
<td>88.9 x 4.0</td>
<td>101.6 x 5.0</td>
<td>114.4 x 5.4</td>
<td>139.7 x 5.0</td>
</tr>
<tr>
<td>CHS C250</td>
<td>3600</td>
<td>76.1 x 3.6</td>
<td>101.6 x 4.0</td>
<td>114.3 x 4.5</td>
<td>139.7 x 5.0</td>
<td>139.7 x 5.0</td>
</tr>
<tr>
<td>CHS 350</td>
<td>600</td>
<td>60.3 x 2.9</td>
<td>88.9 x 2.6</td>
<td>101.6 x 3.2</td>
<td>114.3 x 3.6</td>
<td>139.7 x 3.5</td>
</tr>
<tr>
<td>CHS 350</td>
<td>1200</td>
<td>60.3 x 2.9</td>
<td>88.9 x 2.6</td>
<td>101.6 x 3.2</td>
<td>114.3 x 3.6</td>
<td>139.7 x 3.5</td>
</tr>
<tr>
<td>CHS 350</td>
<td>1800</td>
<td>60.3 x 2.9</td>
<td>101.6 x 2.6</td>
<td>114.3 x 3.2</td>
<td>139.7 x 3.5</td>
<td>139.7 x 3.5</td>
</tr>
<tr>
<td>CHS 350</td>
<td>2400</td>
<td>76.1 x 2.9</td>
<td>101.6 x 2.6</td>
<td>114.3 x 3.2</td>
<td>139.7 x 3.5</td>
<td>139.7 x 3.5</td>
</tr>
<tr>
<td>CHS 350</td>
<td>3600</td>
<td>88.9 x 2.6</td>
<td>101.6 x 2.6</td>
<td>114.3 x 3.2</td>
<td>139.7 x 3.5</td>
<td>165.1 x 3.0</td>
</tr>
<tr>
<td>SHS 350</td>
<td>600</td>
<td>50 x 50 x 2.5</td>
<td>75 x 75 x 2.5</td>
<td>75 x 75 x 4.0</td>
<td>100 x 100 x 4.0</td>
<td>100 x 100 x 4.0</td>
</tr>
<tr>
<td>SHS 350</td>
<td>1200</td>
<td>65 x 65 x 2.0</td>
<td>75 x 75 x 2.5</td>
<td>75 x 75 x 4.0</td>
<td>100 x 100 x 4.0</td>
<td>100 x 100 x 4.0</td>
</tr>
<tr>
<td>SHS 350</td>
<td>1800</td>
<td>65 x 65 x 2.0</td>
<td>75 x 75 x 3.0</td>
<td>100 x 100 x 3.0</td>
<td>100 x 100 x 4.0</td>
<td>100 x 100 x 4.0</td>
</tr>
<tr>
<td>SHS 350</td>
<td>2400</td>
<td>65 x 65 x 2.0</td>
<td>75 x 75 x 3.0</td>
<td>100 x 100 x 3.0</td>
<td>100 x 100 x 4.0</td>
<td>100 x 100 x 4.0</td>
</tr>
<tr>
<td>SHS 350</td>
<td>3600</td>
<td>65 x 65 x 2.5</td>
<td>75 x 75 x 4.0</td>
<td>100 x 100 x 3.0</td>
<td>100 x 100 x 4.0</td>
<td>100 x 100 x 4.0</td>
</tr>
<tr>
<td>SHS 450</td>
<td>600</td>
<td>50 x 50 x 1.6</td>
<td>65 x 65 x 2.5</td>
<td>75 x 75 x 3.0</td>
<td>100 x 100 x 2.8</td>
<td>100 x 100 x 3.0</td>
</tr>
<tr>
<td>SHS 450</td>
<td>1200</td>
<td>60 x 50 x 1.6</td>
<td>65 x 65 x 2.5</td>
<td>75 x 75 x 3.0</td>
<td>100 x 100 x 2.8</td>
<td>100 x 100 x 3.0</td>
</tr>
<tr>
<td>SHS 450</td>
<td>1800</td>
<td>50 x 50 x 1.6</td>
<td>75 x 75 x 2.3</td>
<td>75 x 75 x 3.3</td>
<td>100 x 100 x 2.8</td>
<td>100 x 100 x 3.0</td>
</tr>
</tbody>
</table>
Table Notes:
Tabulated values are the column sections to be used.

<table>
<thead>
<tr>
<th>Column section</th>
<th>Column effective height (mm)</th>
<th>Floor area supported: 5-m²</th>
<th>Floor area supported: 10-m²</th>
<th>Floor area supported: 15-m²</th>
<th>Floor area supported: 20-m²</th>
<th>Floor area supported: 25-m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHS-450</td>
<td>2400</td>
<td>65 x 65 x 2.0</td>
<td>75 x 75 x 2.5</td>
<td>75 x 75 x 3.5</td>
<td>100 x 100 x 2.0</td>
<td>100 x 100 x 2.3</td>
</tr>
<tr>
<td>SHS-450</td>
<td>3660.3 x 3.600</td>
<td>65 x 65 x 2.3</td>
<td>100 x 100 x 2.0</td>
<td>100 x 100 x 2.8</td>
<td>100 x 100 x 3.8</td>
<td>100 x 100 x 4.0</td>
</tr>
</tbody>
</table>

Table Notes:
Tabulated values are the column sections to be used.

Table 6.3.3b: Column supporting tile roof only

<table>
<thead>
<tr>
<th>Column section</th>
<th>Column effective height (mm)</th>
<th>5-m²</th>
<th>10-m²</th>
<th>15-m²</th>
<th>20-m²</th>
<th>25-m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHS-250</td>
<td>600</td>
<td>60.3 x 3.6</td>
<td>60.3 x 3.6</td>
<td>76.1 x 3.6</td>
<td>76.1 x 4.5</td>
<td>88.9 x 4.0</td>
</tr>
<tr>
<td>CHS-250</td>
<td>1200</td>
<td>60.3 x 3.6</td>
<td>60.3 x 3.6</td>
<td>76.1 x 3.6</td>
<td>76.1 x 4.5</td>
<td>101.6 x 4.0</td>
</tr>
<tr>
<td>CHS-250</td>
<td>1800</td>
<td>60.3 x 3.6</td>
<td>60.3 x 3.6</td>
<td>76.1 x 3.6</td>
<td>76.1 x 4.5</td>
<td>101.6 x 4.0</td>
</tr>
<tr>
<td>CHS-250</td>
<td>2400</td>
<td>60.3 x 3.6</td>
<td>60.3 x 4.5</td>
<td>76.1 x 3.6</td>
<td>88.9 x 4.0</td>
<td>101.6 x 4.0</td>
</tr>
<tr>
<td>CHS-250</td>
<td>3600</td>
<td>60.3 x 3.6</td>
<td>76.1 x 3.6</td>
<td>76.1 x 4.5</td>
<td>88.9 x 4.0</td>
<td>101.6 x 4.0</td>
</tr>
<tr>
<td>CHS-350</td>
<td>600</td>
<td>60.3 x 2.3</td>
<td>60.3 x 2.3</td>
<td>76.1 x 2.3</td>
<td>88.9 x 2.6</td>
<td>101.6 x 2.6</td>
</tr>
<tr>
<td>CHS-350</td>
<td>1200</td>
<td>60.3 x 2.3</td>
<td>60.3 x 2.3</td>
<td>76.1 x 2.3</td>
<td>88.9 x 2.6</td>
<td>101.6 x 2.6</td>
</tr>
<tr>
<td>CHS-350</td>
<td>1800</td>
<td>60.3 x 2.3</td>
<td>76.1 x 2.3</td>
<td>88.9 x 2.6</td>
<td>101.6 x 2.6</td>
<td>101.6 x 2.6</td>
</tr>
<tr>
<td>CHS-350</td>
<td>2400</td>
<td>60.3 x 2.3</td>
<td>76.1 x 2.3</td>
<td>88.9 x 2.6</td>
<td>101.6 x 2.6</td>
<td>101.6 x 2.6</td>
</tr>
<tr>
<td>CHS-350</td>
<td>3600</td>
<td>60.3 x 2.3</td>
<td>76.1 x 2.3</td>
<td>88.9 x 2.6</td>
<td>101.6 x 2.6</td>
<td>101.6 x 2.6</td>
</tr>
<tr>
<td>SHS-C350</td>
<td>600</td>
<td>50 x 50 x 2.0</td>
<td>50 x 50 x 2.5</td>
<td>65 x 65 x 2.5</td>
<td>75 x 75 x 2.5</td>
<td>75 x 75 x 3.0</td>
</tr>
<tr>
<td>SHS-C350</td>
<td>1200</td>
<td>50 x 50 x 2.0</td>
<td>50 x 50 x 2.5</td>
<td>65 x 65 x 2.5</td>
<td>75 x 75 x 2.5</td>
<td>75 x 75 x 3.0</td>
</tr>
<tr>
<td>SHS-C350</td>
<td>1800</td>
<td>50 x 50 x 2.0</td>
<td>65 x 65 x 2.0</td>
<td>65 x 65 x 2.5</td>
<td>75 x 75 x 2.5</td>
<td>75 x 75 x 3.0</td>
</tr>
<tr>
<td>SHS-C350</td>
<td>2400</td>
<td>50 x 50 x 2.0</td>
<td>65 x 65 x 2.0</td>
<td>65 x 65 x 2.5</td>
<td>75 x 75 x 2.5</td>
<td>75 x 75 x 4.0</td>
</tr>
<tr>
<td>SHS-C350</td>
<td>3600</td>
<td>50 x 50 x 2.0</td>
<td>65 x 65 x 2.0</td>
<td>65 x 65 x 2.5</td>
<td>75 x 75 x 2.5</td>
<td>75 x 75 x 4.0</td>
</tr>
<tr>
<td>SHS-C450</td>
<td>600</td>
<td>50 x 50 x 1.6</td>
<td>50 x 50 x 2.0</td>
<td>65 x 65 x 2.0</td>
<td>65 x 65 x 2.3</td>
<td>65 x 65 x 2.8</td>
</tr>
<tr>
<td>SHS-C450</td>
<td>1200</td>
<td>50 x 50 x 1.6</td>
<td>50 x 50 x 2.0</td>
<td>65 x 65 x 2.0</td>
<td>65 x 65 x 2.3</td>
<td>65 x 65 x 2.8</td>
</tr>
<tr>
<td>SHS-C450</td>
<td>1800</td>
<td>50 x 50 x 1.6</td>
<td>65 x 65 x 1.6</td>
<td>65 x 65 x 2.0</td>
<td>65 x 65 x 2.5</td>
<td>75 x 75 x 2.5</td>
</tr>
<tr>
<td>SHS-C450</td>
<td>2400</td>
<td>50 x 50 x 1.6</td>
<td>65 x 65 x 2.0</td>
<td>65 x 65 x 2.5</td>
<td>75 x 75 x 2.5</td>
<td>75 x 75 x 2.8</td>
</tr>
<tr>
<td>SHS-C450</td>
<td>3600</td>
<td>50 x 50 x 2.0</td>
<td>65 x 65 x 2.0</td>
<td>75 x 75 x 2.3</td>
<td>100 x 100 x 2.0</td>
<td>100 x 100 x 2.3</td>
</tr>
</tbody>
</table>

Table Notes:
Tabulated values are the column sections to be used.

Table 6.3.3c: Determining effective column height—column height factor (F1)

<table>
<thead>
<tr>
<th>Base detail</th>
<th>Fully-braced (1) construction</th>
<th>Unbraced construction (cantilever column) (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast into footing</td>
<td>1.00</td>
<td>2.60</td>
</tr>
<tr>
<td>Fixed by bolts to footing or slab</td>
<td>1.20</td>
<td>must not be used</td>
</tr>
<tr>
<td>Fixed by intermediate floor or bracing in both directions</td>
<td>1.20</td>
<td>2.60</td>
</tr>
</tbody>
</table>
Table Notes:
1. To determine the column effective height, the actual column height \(H\) in Figure 6.3.3a must be multiplied by a column height factor \(F_1\) in Table 6.3.3c.
2. \(H\) = Distance measured from the top of footing to underside of supported beam or bearer, or between intermediate lateral bracing points.
3. The flooring system must be fully braced to footing level by—
 a. a combination of column bracing sets, and timber or masonry bracing walls; or
 b. the provision of cantilever steel columns only (i.e. no column bracing sets, timber or masonry bracing walls).

Table 6.3.6a: Required column section — columns supporting tiled floor and tiled roof load — roof load area = 0 m²

<table>
<thead>
<tr>
<th>Column section</th>
<th>Effective height (mm)</th>
<th>Floor load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>CHS 250</td>
<td>2400</td>
<td>60.3 x 4.5 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>2700</td>
<td>60.3 x 4.5 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3000</td>
<td>60.3 x 4.5 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3300</td>
<td>60.3 x 5.4 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3600</td>
<td>60.3 x 5.4 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>2400</td>
<td>60.3 x 2.9 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>2700</td>
<td>60.3 x 2.9 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>3000</td>
<td>60.3 x 2.9 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>3300</td>
<td>76.1 x 2.3 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>3600</td>
<td>76.1 x 2.3 CHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>2400</td>
<td>65 x 65 x 2 SHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>2700</td>
<td>65 x 65 x 2 SHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>3000</td>
<td>65 x 65 x 2 SHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>3300</td>
<td>65 x 65 x 2 SHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>3600</td>
<td>65 x 65 x 2.5 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>2400</td>
<td>50 x 50 x 2 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>2700</td>
<td>65 x 65 x 2 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>3000</td>
<td>65 x 65 x 2 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>3300</td>
<td>65 x 65 x 2 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>3600</td>
<td>65 x 65 x 2 SHS</td>
</tr>
</tbody>
</table>

Table Notes:
1. Load accounted for includes 0.98 kPa permanent floor, 1.16 kN/m permanent wall, 0.85 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1kN imposed floor and 0.25 kPa imposed roof.
2. Load combinations included are 1.35G and 1.2G + 1.5Q for ULS.
3. Columns are assumed to be simply-supported at both ends with an effective length factor of 1.
4. A maximum load eccentricity of 100 mm has been accounted for in the columns.
5. A roof load area of “0” must be used for columns not supporting roof loads.
6. The length of wall load allowed for is equal to the square root of the floor area.
Table 6.3.6b: Required column section — columns supporting tiled floor and tiled roof load — roof load area = 9 m²

<table>
<thead>
<tr>
<th>Column section</th>
<th>Effective height (mm)</th>
<th>Floor load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CHS 250</td>
<td>2400</td>
<td>76.1 x 4.5 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>2700</td>
<td>76.1 x 4.5 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3000</td>
<td>76.1 x 5.9 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3300</td>
<td>76.1 x 5.9 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3600</td>
<td>76.1 x 5.9 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>2400</td>
<td>76.1 x 3.2 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>2700</td>
<td>76.1 x 3.2 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>3000</td>
<td>76.1 x 3.2 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>3300</td>
<td>88.9 x 2.6 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>3600</td>
<td>88.9 x 2.6 CHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>2400</td>
<td>89 x 89 x 3.5 SHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>2700</td>
<td>89 x 89 x 3.5 SHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>3000</td>
<td>89 x 89 x 3.5 SHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>3300</td>
<td>89 x 89 x 3.5 SHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>3600</td>
<td>89 x 89 x 3.5 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>2400</td>
<td>75 x 75 x 2.5 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>2700</td>
<td>75 x 75 x 2.5 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>3000</td>
<td>75 x 75 x 2.5 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>3300</td>
<td>75 x 75 x 2.5 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>3600</td>
<td>75 x 75 x 2.5 SHS</td>
</tr>
</tbody>
</table>

Table Notes:
1. **Load accounted for includes 0.98 kPa permanent floor, 1.16 kN/m permanent wall, 0.85 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1kN imposed floor and 0.25 kPa imposed roof.**
2. **Load combinations included are 1.35G and 1.2G + 1.5Q for ULS.**
3. **Columns are assumed to be simply-supported at both ends with an effective length factor of 1.**
4. **A maximum load eccentricity of 100 mm has been accounted for in the columns.**
5. A roof load area of “0” must be used for columns not supporting roof loads.
6. The length of wall load allowed for is equal to the square root of the floor area.

Table 6.3.6c: Required column section — columns supporting tiled floor and tiled roof load — roof load area = 18 m²

<table>
<thead>
<tr>
<th>Column section</th>
<th>Effective height (mm)</th>
<th>Floor load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CHS 250</td>
<td>2400</td>
<td>88.9 x 5 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>2700</td>
<td>88.9 x 5 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3000</td>
<td>88.9 x 5 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3300</td>
<td>88.9 x 5.9 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3600</td>
<td>88.9 x 5.9 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>2400</td>
<td>101.6 x 2.6 CHS</td>
</tr>
</tbody>
</table>
Table Notes:

1. **Load accounted for** includes 0.98 kPa permanent floor, 1.16 kN/m permanent wall, 0.85 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1kN imposed floor and 0.25 kPa imposed roof.
2. **Load combinations included** are 1.35G and 1.2G + 1.5Q for ULS.
3. **Columns are assumed to be simply-supported at both ends with an effective length factor of 1.**
4. **A maximum load eccentricity of 100 mm** has been accounted for in the columns.
5. **A roof load area of “0” must be used** for columns not supporting roof loads.
6. **The length of wall load allowed for** is equal to the square root of the floor area.

Table 6.3.6d:

Required column section — columns supporting timber floor and metal roof load — roof load area = 0 m²

<table>
<thead>
<tr>
<th>Column section</th>
<th>Effective height (mm)</th>
<th>Floor load area (m<sup>2</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CHS 250</td>
<td>2400</td>
<td>60.3 x 3.6 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>2700</td>
<td>60.3 x 3.6 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3000</td>
<td>60.3 x 4.5 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3300</td>
<td>60.3 x 4.5 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3600</td>
<td>60.3 x 4.5 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3900</td>
<td>60.3 x 2.9 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>4200</td>
<td>60.3 x 2.9 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>4500</td>
<td>60.3 x 2.9 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>4800</td>
<td>60.3 x 2.9 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>5100</td>
<td>60.3 x 2.9 CHS</td>
</tr>
<tr>
<td>SHS 250</td>
<td>2400</td>
<td>65 x 65 x 2 SHS</td>
</tr>
<tr>
<td>SHS 250</td>
<td>2700</td>
<td>65 x 65 x 2 SHS</td>
</tr>
<tr>
<td>SHS 250</td>
<td>3000</td>
<td>65 x 65 x 2 SHS</td>
</tr>
<tr>
<td>SHS 250</td>
<td>3300</td>
<td>65 x 65 x 2 SHS</td>
</tr>
<tr>
<td>SHS 250</td>
<td>3600</td>
<td>65 x 65 x 2 SHS</td>
</tr>
</tbody>
</table>
Table Notes:

1. Load accounted for includes 0.53 kPa permanent floor, 1.16 kN/m permanent wall, 0.4 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1kN imposed floor and 0.25 kPa imposed roof.
2. Load combinations included are 1.35G and 1.2G + 1.5Q for ULS.
3. Columns are assumed to be simply-supported at both ends with an effective length factor of 1.
4. A maximum load eccentricity of 100 mm has been accounted for in the columns.
5. A roof load area of “0” must be used for columns not supporting roof loads.
6. The length of wall load allowed for is equal to the square root of the floor area.

Table 6.3.6e: Required column section — columns supporting timber floor and metal roof load — roof load area = 9 m²

<table>
<thead>
<tr>
<th>Column section</th>
<th>Effective height (mm)</th>
<th>Floor load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>SHS 450</td>
<td>2400</td>
<td>50 x 50 x 2 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>2700</td>
<td>50 x 50 x 2 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>3000</td>
<td>50 x 50 x 2 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>3300</td>
<td>50 x 50 x 2.5 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>3600</td>
<td>50 x 50 x 2.5 SHS</td>
</tr>
</tbody>
</table>

Table Notes:

1. Load accounted for includes 0.53 kPa permanent floor, 1.16 kN/m permanent wall, 0.4 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1kN imposed floor and 0.25 kPa imposed roof.
2. Load combinations included are 1.35G and 1.2G + 1.5Q for ULS.
3. **Columns are assumed to be simply-supported at both ends with an effective length factor of 1.**
4. **A maximum load eccentricity of 100 mm has been accounted for in the columns.**
5. **A roof load area of “0” must be used for columns not supporting roof loads.**
6. **The length of wall load allowed for is equal to the square root of the floor area.**

Table 6.3.6f: Required column section — columns supporting timber floor and metal roof load — roof load area = 18 m²

<table>
<thead>
<tr>
<th>Column section</th>
<th>Effective height (mm)</th>
<th>Floor load area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CHS 250</td>
<td>2400</td>
<td>76.1 x 4.5 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>2700</td>
<td>76.1 x 5.9 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3000</td>
<td>76.1 x 5.9 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3300</td>
<td>76.1 x 5.9 CHS</td>
</tr>
<tr>
<td>CHS 250</td>
<td>3600</td>
<td>76.1 x 5.9 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>2400</td>
<td>76.1 x 3.2 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>2700</td>
<td>76.1 x 3.2 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>3000</td>
<td>88.9 x 2.6 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>3300</td>
<td>88.9 x 2.6 CHS</td>
</tr>
<tr>
<td>CHS 350</td>
<td>3600</td>
<td>88.9 x 2.6 CHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>2400</td>
<td>89 x 89 x 3.5 SHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>2700</td>
<td>89 x 89 x 3.5 SHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>3000</td>
<td>89 x 89 x 3.5 SHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>3300</td>
<td>89 x 89 x 3.5 SHS</td>
</tr>
<tr>
<td>SHS 350</td>
<td>3600</td>
<td>89 x 89 x 3.5 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>2400</td>
<td>75 x 75 x 2.5 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>2700</td>
<td>75 x 75 x 2.5 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>3000</td>
<td>75 x 75 x 2.5 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>3300</td>
<td>75 x 75 x 2.5 SHS</td>
</tr>
<tr>
<td>SHS 450</td>
<td>3600</td>
<td>75 x 75 x 2.5 SHS</td>
</tr>
</tbody>
</table>

Table Notes:
1. **Load accounted for includes 0.53 kPa permanent floor, 1.16 kN/m permanent wall, 0.4 kPa permanent roof, permanent member self-weight, 1.5 kPa or 1.1kN imposed floor and 0.25 kPa imposed roof.**
2. **Load combinations included are 1.35G and 1.2G + 1.5Q for ULS.**
3. **Columns are assumed to be simply-supported at both ends with an effective length factor of 1.**
4. **A maximum load eccentricity of 100 mm has been accounted for in the columns.**
5. **A roof load area of “0” must be used for columns not supporting roof loads.**
6. **The length of wall load allowed for is equal to the square root of the floor area.**

Table 6.3.3d6g: Area supported by columns

<table>
<thead>
<tr>
<th>Column descriptor (as shown in Figure 6.3.6a)</th>
<th>Total area supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.375L1 x 0.375LA0.4L1 x 0.4LA</td>
</tr>
<tr>
<td>C2</td>
<td>0.625(L1 + L2) x 0.375LA0.7(L1 + L2) x 0.4LA</td>
</tr>
<tr>
<td>C3</td>
<td>0.375L1 x 0.625(LA + LB)0.4L1 x 0.7(LA + LB)</td>
</tr>
</tbody>
</table>
Table Notes:
The total area supported equations marginally overestimate the total area to account for a difference between L1 and L2 by up to 30%.

1. The total area supported depends on the position of the column in the structure as shown in Figure 6.3.3b.
2. To calculate the correct area supported by a column, match the column’s position with those shown in Figure 6.3.3b, which shows a plan view of a floor and then calculate the total area supported from Table 6.3.3d.

Figure 6.3.3a: Determining effective column height—Column height (H)

Figure 6.3.36a: Determining floor area supported by columns
Figure 6.3.3c6b: Acceptable load eccentricity for columns

\[e = \frac{D}{2} + 100 \]

Explanatory Information: **Cantilever columns**

A cantilever column is not assisted by any lateral bracing element such as a column bracing set, timber or masonry wall.

Explanatory Information: **Calculating column size**

The following is an example of the steps required to calculate a suitable column to support typical floor loads in a residential building. It is proposed the column will—

- have an actual height of 1800 mm; and
- support a timber floor only; and
- be square in section; and
- be cast in to the footings; and
- be fully braced by column bracing sets.

Step 1 – Determining effective column height

The column height (H) is determined by multiplying the actual height by the relevant height factor (F1) in Tables 6.3.6d, 6.3.6e or 6.3.6f. In this case, the relevant value for F1 is 1.00 as the column is cast in to the footing and is fully braced.
Therefore:

- \[H = \text{actual height} \times F1 \]
- \[H = 1800 \text{ mm} \times F1 \]
- \[H = 1800 \text{ mm (1.8 m)} \]

Step 2 – Determine floor area to be supported

The column position selected is C4 as shown in Figure 6.3.6b and the dimensions of L1 and L2 are 2700 mm (2.7 m), LA is 1900 mm (1.9 m) and LB is 2100 mm (2.1 m).

The area supported by the column is determined by the formulae set out in Table 6.3.6g.

Therefore:

- \[\text{Total area supported (A)} = 0.625(L1 + L2) \times 0.625(LA + LB) \]
- \[A = 0.625(2.7 \text{ m} + 2.7 \text{ m}) \times 0.625 \times (1.9 \text{ m} + 2.1 \text{ m}) \]
- \[A = (0.625 \times 5.4 \text{ m}) \times (0.625 \times 4.0 \text{ m}) \]
- \[A = 3.38 \text{ m} \times 2.5 \text{ m} \]
- \[A = 8.5 \text{ m}^2 \]

Step 3 – Select column size from Tables 6.3.6d, 6.3.6e or 6.3.6f

The column with an effective height of 1800 mm supporting a floor area of 8.5 m² is selected from the 10 m² column in Table 6.3.6d ("0" roof load area) giving a SHS 350 75 x 75 x 3 size.

It should be noted there is a choice of CHS 250 88.9 x 4 or CHS 350 101.6 x 2.6 should a different section be desired.

6.3.7 Fixings and bearing for structural steel members

[New for 2022]

1. All bolts used in connections must be hot dip galvanised 300 g/m².

2. Bearer connections must be fixed in accordance with Figure 6.3.7a.

3. Joists, bearers and lintels must be restrained from lateral movement or twisting along their length by fixing rafters or joists to the top flange of the member so as to prevent the member from moving laterally.

4. End supports for bearers and lintels must transfer loads to the footings and have a bearing distance as follows:
 - (a) For single spans, the bearing distance must be not less than the width of the member.
 - (b) For continuous spans, internal bearing must be not less than two times the width of the member.

5. Strutting beams must—
 - (a) be supported and fixed in accordance with Figure 6.3.7b; and
 - (b) where ends are cut to suit roof pitch, be cut in accordance with Figure 6.3.7c.

6. Lintels must be fixed in accordance with Figures 6.3.7d, 6.3.7e, 6.3.7f, 6.3.7g and 6.3.7h.

Figure 6.3.2a7a: Bearer supporting a timber floor and non-loadbearing stud wall

- Min. shrinkage gap = 10% D
- Steel bearer
 - M10 at 900 centres
- Floor joist
 - 30 x 0.8 steel strap

(b) Example B

(a) Example A
Figure 6.3.7b: Strutting beam supporting roof and ceiling

Strutting beam application

Strutting beam span

Rafter and / or ceiling joists

Underpurlin and / or hanging beam

Alternately joists can run at right angles to strutting beam in place of hanging beam

Replace 0.5 with 0.6 if hanging beams are continuous over strutting beams

Figure 6.3.7c: End cuts to strutting beams

Strutting beam and top plate tied down in accordance with 3.4.3
Figure 6.3.2c7d: Lintels supporting roof, frames and timber floors

(c) Floor – example A

(d) Floor – example B

Figure 6.3.7e: Lintels supporting roof, frames and timber floors — sections

Timber plate

Lintel

M10 at 900 centres

Top plate

Steel lintel/ bearer

M10 at 900 centres (typical)

1st storey floor plate

1st storey floor joist

Rafters tied down in accordance with 3.4.3

Timber/steel supports tied down in accordance with 3.4.3
Figure 6.3.7f: **Typical universal beam to column connection detail**

Figure Notes:
1. 8 mm steel plates to be welded to the top and bottom of the column using 5 mm fillet welds.
2. Plate width must be the greater of the column width or the beam width.
3. Plate length must be such that there is not less than 40 mm from the centreline of the bolts to the ends.
4. All bolting between structural steel members be not less than 2 M12 4.6/S.

Figure 6.3.7g: **Typical PFC and RHS beam to column connection detail**

Figure Notes:
Fixing of the column base plate to the slab must be not less than 2 M12 4.6/S post-installed mechanical anchors.
Explanatory Information:
The ends of bearers and lintels must be sufficiently supported to ensure structural loads are transferred to the footing system. The amount of horizontal bearing (measured in millimetres) required on the vertical supports will depend on
the type of span of the bearer or lintel. For single spans, the amount of horizontal bearing is to be equal to or greater than the width of the bearer or lintel. For continuous spans it is to be twice the width of the bearer or lintel.

Bearing distance, see 6.3.7(4)(a) and (b).

Explanatory Figure 6.3.7 below depicts an example of a 200 PFC bearer or lintel supporting floor or roof loads over a single span.

Figure 6.3.7 (explanatory): Example of a 200 PFC bearer or lintel supporting floor or roof loads over a single span

![Diagram of 200 PFC bearer or lintel](image)

6.3.8 Cuts and penetrations through structural steel members

Penetrations through structural steel members must be within the allowable zones in Figure 6.3.8.
Figure 6.3.8: Allowable zones for penetrations through structural steel members

Explanatory Information:
Cutting and penetrations in structural steel should be avoided where possible. Figure 6.3.8 provides permissible zones for penetrations through structural steel and for end cuts to beams. However, it is recommended that a suitable qualified professional be consulted where penetrations or cuts are required to be made on site.

6.3.49 Corrosion protection

(1) Structural steel members that are not built into a masonry wall must be protected against corrosion in accordance with Table 6.3.4.

(1) Structural steel members that are not built in to a masonry wall must—
(a) be protected against corrosion in accordance with Tables 6.3.9a, 6.3.9b and 6.3.9c; and
(b) where a paint finish is applied to the surface, be free from rust; and
(c) where zinc coatings are applied to the surface, be provided with a barrier coat to prevent domestic enamels from peeling.

Table 6.3.9a: Minimum protective coatings for structural steel members

<table>
<thead>
<tr>
<th>Environment</th>
<th>Location</th>
<th>Minimum protective coating</th>
<th>Option 1 (hot dip galvanising)</th>
<th>Option 2 (duplex system)</th>
<th>Option 3 (paint)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (mild steel corrosion rate 1.3 to 25 μm/year)</td>
<td>Typically remote inland areas or more than 1 km from sheltered bays</td>
<td>HDG75</td>
<td>=</td>
<td>ACL2, ACC2, IZS1, PUR2A</td>
<td></td>
</tr>
<tr>
<td>Medium (mild steel corrosion rate 25 to 65 μm/year)</td>
<td>Typically more than 1 km from breaking surf</td>
<td>HDG225</td>
<td>=</td>
<td>ACL3, ACC4, ACC5, IZS1, PUR3, PUR4</td>
<td></td>
</tr>
</tbody>
</table>
Environment

<table>
<thead>
<tr>
<th>Location</th>
<th>Minimum protective coating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Option 1 (hot dip galvanising)</td>
</tr>
<tr>
<td></td>
<td>Option 2 (duplex system)</td>
</tr>
<tr>
<td></td>
<td>Option 3 (paint)</td>
</tr>
</tbody>
</table>

High (mild steel corrosion rate 50 to 80 μm/year)
- Typically more than 200 m from breaking surf or aggressive industrial areas or within 50 m from sheltered bays
- HDG450
- HDG150 (5 years) 4D (10-15 years) or HDG300 (10 years) 2D (5-10 years)
- ACC6, IZS3, PUR5

Very High (mild steel corrosion rate 80 to 200 μm/year)
- Typically extends from 100 m inland from breaking surf to 200 m inland from breaking surf, or within 200 m of aggressive industrial areas and within 100 m of breaking surf
- HDG900
- HDG300 (5 years) 5D (10-15 years) or HDG600 (10 years) 4D (5-10 years)
- ACC6 (C5-M only), PUR5

Table Notes:

Hot dip galvanising and duplex systems in accordance with AS 2312.2, paint systems in accordance with AS 2312.1.
Table 6.3.9b:
Paint coating system specification

<table>
<thead>
<tr>
<th>AS 2312.1 system</th>
<th>Surface preparation</th>
<th>1st coat</th>
<th>2nd coat</th>
<th>3rd coat</th>
<th>Total DFT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type of paint</td>
<td>DFT</td>
<td>Type of paint</td>
<td>DFT</td>
</tr>
<tr>
<td>ACC2</td>
<td>Sa 2.5</td>
<td>Epoxy primer</td>
<td>75</td>
<td>Acrylic (2 pack)</td>
<td>50</td>
</tr>
<tr>
<td>ACC4</td>
<td>Sa 2.5</td>
<td>Epoxy primer</td>
<td>75</td>
<td>High build epoxy</td>
<td>125</td>
</tr>
<tr>
<td>ACC5</td>
<td>Sa 2.5</td>
<td>Zinc rich primer</td>
<td>75</td>
<td>High build epoxy</td>
<td>125</td>
</tr>
<tr>
<td>ACC6</td>
<td>Sa 2.5</td>
<td>Zinc rich primer</td>
<td>75</td>
<td>High build epoxy</td>
<td>200</td>
</tr>
<tr>
<td>ACL2</td>
<td>Sa 2.5</td>
<td>Zinc rich primer</td>
<td>75</td>
<td>Acrylic latex</td>
<td>40</td>
</tr>
<tr>
<td>ACL3</td>
<td>Sa 2.5</td>
<td>Zinc rich primer</td>
<td>75</td>
<td>High build epoxy</td>
<td>125</td>
</tr>
<tr>
<td>IZS1</td>
<td>Sa 2.5</td>
<td>Inorganic zinc silicate</td>
<td>75</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>IZS3</td>
<td>Sa 2.5</td>
<td>Inorganic zinc silicate</td>
<td>125</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>PUR2A</td>
<td>Sa 2.5</td>
<td>Zinc rich primer</td>
<td>75</td>
<td>High build polyurethane</td>
<td>75</td>
</tr>
<tr>
<td>PUR3</td>
<td>Sa 2.5</td>
<td>Epoxy primer</td>
<td>75</td>
<td>High build epoxy</td>
<td>125</td>
</tr>
<tr>
<td>PUR4</td>
<td>Sa 2.5</td>
<td>Zinc rich primer</td>
<td>75</td>
<td>High build epoxy</td>
<td>125</td>
</tr>
<tr>
<td>PUR5</td>
<td>Sa 2.5</td>
<td>Zinc rich primer</td>
<td>75</td>
<td>High build epoxy</td>
<td>200</td>
</tr>
</tbody>
</table>

Table Notes:
DFT refers to Dry Film Thickness, measured in μm.
Table 6.3.9c: Duplex coating system specification

<table>
<thead>
<tr>
<th>AS 2312.2 duplex system</th>
<th>Surface preparation</th>
<th>1st coat</th>
<th>2nd coat</th>
<th>3rd coat</th>
<th>Total DFT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type of paint</td>
<td>DFT</td>
<td>Type of paint</td>
<td>DFT</td>
</tr>
<tr>
<td>2D</td>
<td>Degrease, wash and dry, sweep blast clean</td>
<td>Epoxy primer (2 pack), inhibitive</td>
<td>75</td>
<td>Polyurethane or acrylic gloss (2 pack)</td>
<td>100</td>
</tr>
<tr>
<td>4D</td>
<td>Degrease, wash and dry, sweep blast clean</td>
<td>High-build epoxy (2 pack)</td>
<td>250</td>
<td>Polyurethane or acrylic gloss (2 pack)</td>
<td>100</td>
</tr>
<tr>
<td>5D</td>
<td>Degrease, wash and dry, sweep blast clean</td>
<td>Epoxy primer (2 pack), inhibitive</td>
<td>75</td>
<td>High-build epoxy (2 pack)</td>
<td>225</td>
</tr>
</tbody>
</table>

Table Notes:
- DFT refers to Dry Film Thickness, measured in μm.

Table 6.3.4: Protective coatings for steelwork

<table>
<thead>
<tr>
<th>Environment</th>
<th>Location</th>
<th>Minimum protective coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate Note 1</td>
<td>Internal</td>
<td>No protection required in a permanently dry location Note 8</td>
</tr>
</tbody>
</table>
| Moderate Note 1 | External | Option 1: 2 coats alkyd primer
Option 2: 2 coats alkyd gloss
Option 3: Hot dip galvanised 300 g/m² min
Option 4: Hot dip galvanised 100 g/m² min plus either 1 coat solvent based vinyl primer or 1 coat vinyl gloss or alkyd |
| Severe Note 2 | Internal | Option 1: 2 coats alkyd primer
Option 2: 2 coats alkyd gloss |
| Severe Note 2 | External | Option 1: Inorganic zinc primer plus 2 coats vinyl gloss finishing coats
Option 2: Hot dip galvanised 300 g/m²
Option 3: Hot dip galvanised 100 g/m² min plus either 2 coats solvent based vinyl primer, or 2 coats vinyl gloss or alkyd |

Table Notes:
1. **Moderate** = More than 1 km from breaking surf or more than 100 m from salt water not subject to breaking surf or non-heavy industrial areas.
2. **Severe** = Within 1 km from breaking surf or within 100 m of salt water not subject to breaking surf or heavy industrial areas.
3. **Heavy industrial areas** means industrial environments around major industrial complexes.
4. The outer leaf and cavity of an external masonry wall of a building, including walls under open carports are considered to be external environments. A part of an internal leaf of an external masonry wall which is located in the roof space is considered to be in an internal environment.

5. Where a paint finish is applied the surface of the steel, work must be hand or power tool cleaned to remove any rust immediately prior to painting.

6. All zinc coatings (including inorganic zinc) require a barrier coat to stop conventional domestic enamels from peeling.

7. Refer to the paint manufacturer where decorative finishes are required on top of the minimum coating specified in the table for protection of the steel against corrosion.

8. Internal locations subject to moisture, such as in close proximity to kitchen or bathroom exhaust fans are not considered to be in a permanently dry location and protection as specified for external locations is required.

9. For applications outside the scope of this table, seek specialist advice.

Notes:

Clause 3.4.4.4 and Table 3.4.4.7 from NCC Volume Two 2019 (Amendment 1) may be used in place of 6.3.7 and Tables 6.3.9a, 6.3.9b and 6.3.9c until 1 September 2023.
7 Roof and wall cladding

Part 7.1 Scope and application of Section 7

7.1.1 Scope

7.1.2 Application

Part 7.2 Sheet roofing

7.2.1 Application of Part 7.2

7.2.2 Corrosion protection and compatibility requirements for roofing

7.2.3 Minimum pitches for metal sheet roofing profiles

7.2.4 Maximum spans

7.2.5 Fixing of metal sheet roofing

7.2.6 Installation of roofing sheets

7.2.7 Flashings and cappings

7.2.8 Water discharge

Part 7.3 Roof tiles and shingles

7.3.1 Application of Part 7.3

7.3.2 Fixing of roof tiles and ancillaries

7.3.3 Flashing

7.3.4 Sarking

7.3.5 Anti-ponding device/board

7.3.6 Water discharge

Part 7.4 Gutters and downpipes

7.4.1 Application of Part 7.4

7.4.2 Materials

7.4.3 Selection of guttering

7.4.4 Installation of gutters

7.4.5 Downpipes – size and installation

7.4.6 Acceptable continuous overflow measure

7.4.7 Acceptable dedicated overflow measure per downpipe

Part 7.5 Timber and composite wall cladding

7.5.1 Application of Part 7.5

7.5.2 Timber wall cladding

7.5.3 Wall cladding boards

7.5.4 Sheet wall cladding

7.5.5 Eaves and soffit linings

7.5.6 Flashings to wall openings

7.5.7 Clearance between cladding and ground

7.5.8 Parapet cappings
Part 7.1 Scope and application of Section 7

7.1.1 Scope

(1) This Section of the ABCB Housing Provisions sets out the Deemed-to-Satisfy Provisions for—

 (a) metal sheet roofing (see Part 7.2); and
 (b) roof tiles (see Part 7.3); and
 (c) gutters and downpipes (see Part 7.4); and
 (d) timber and composite wall cladding (see Part 7.5).

(2) For other roof and wall cladding provisions not included in this Section of the ABCB Housing Provisions, refer to the following Deemed-to-Satisfy Provisions in NCC Volume Two: metal wall cladding (see H1D7(6)).

Explanatory Information:
This Part contains requirements including weatherproofing and structural requirements, for wall and roof systems. Gutter and downpipe requirements are also contained in this Part.

It should be noted that other construction methods may be used to achieve the same results as specified in this Part provided they comply with the appropriate Performance Requirement.

7.1.2 Application

The application of Section 7 of the ABCB Housing Provisions is subject to the following:

 (a) The Governing Requirements of NCC 2022 Volume Two.
 (b) The State and Territory variations, additions and deletions contained in the Schedules to the ABCB Housing Provisions and NCC Volume Two.

Explanatory Information:
In NCC 2019, the content of Section 7 of the ABCB Housing Provisions (other than content added in NCC 2022 or later) was contained in the acceptable construction practices for Parts 3.5.1 to 3.5.4 of NCC 2019 Volume Two.

NCC 2019 Volume Two did not include an acceptable construction practice for Part 3.5.5.
7.2.1 Application of Part 7.2

(1) Part 7.2 applies subject to the limitations set out at H1D7(2)(c).

(2) Part 7.2 need not be complied with if H1D7(2)(a) or (b) is complied with.

Explanatory Information: Design wind speeds

Information on design wind speeds for particular areas may be available from the appropriate authority. Also see the table associated with the definition of ‘design wind speed’ for wind classes. A map indicating wind regions of Australia is contained in Part 2.2.

Explanatory Information: Other relevant sheet roof requirements

A number of other Volume Two provisions contain specific requirements relevant to sheet roofing, in addition to the provisions of this Part. They include—

(a) for the sizing and fixing of roof battens—
 (i) H1D6(2) for steel battens; and
 (ii) H1D6(3) for timber battens; and

(b) Housing Provisions Part 9.3 for requirements for roofing over a separating wall; and

(c) Housing Provisions Part 7.4 for gutters and downpipes.

7.2.2 Corrosion protection and compatibility requirements for roofing

(1) Metal sheet roofing must be protected from corrosion in accordance with Table 7.2.2a.

(2) Where different metals are used in a roofing system, including flashings, fasteners, guttering, downpipes, etc., they must be compatible with each other as described in Table 7.2.2b, Table 7.2.2c, Table 7.2.2d, to and Table 7.2.2e and—

(a) no lead materials can be used upstream from aluminium/zinc coated materials; and

(b) no lead materials can be used on roofs that form part of a potable (drinking) water catchment area; and

(c) no copper materials can be used upstream from galvanized coated materials.

Table 7.2.2a: Acceptable corrosion protection for metal sheet roofing

<table>
<thead>
<tr>
<th>Environment</th>
<th>Location</th>
<th>Minimum metal coating in accordance with AS 1397: Metallic coated steel</th>
<th>Minimum metal coating in accordance with AS 1397: Metallic and organic coated steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (Mild steel corrosion rate 1.3 to 25 µm/y)</td>
<td>Typically remote inland areas or more than 1 km from sheltered bays.</td>
<td>Z450 galvanised or AZ150 aluminium/zinc or AM125 aluminium/zinc/magnesium</td>
<td>Z275 galvanised or AZ150 aluminium/zinc or AM100 aluminium/zinc/magnesium</td>
</tr>
<tr>
<td>Medium (Mild steel corrosion rate 25 to 50 µm/y)</td>
<td>Typically more than 1 km from breaking surf or aggressive industrial areas or more than 50 m from sheltered bays.</td>
<td>Z450 galvanised or AZ150 aluminium/zinc or AM125 aluminium/zinc/magnesium</td>
<td>Z275 galvanised or AZ150 aluminium/zinc or AM100 aluminium/zinc/magnesium</td>
</tr>
</tbody>
</table>
Roof and wall cladding

Table Notes:

1. Low — remote inland includes dry rural areas remote from the coast or sources of pollution. Many areas of Australia beyond at least 50 km from the sea are in this category, including most cities and towns such as Canberra, Ballarat, Toowoomba, Alice Springs and some suburbs of cities on sheltered bays such as Melbourne, Hobart, Brisbane and Adelaide that are more than 1 km from the sea. However each of these have many exceptions which are in more corrosive categories.

2. Medium — urban inland, coastal or industrial typically coastal areas with low salinity around sheltered bays, such as Port Phillip Bay. This extends from about 50 m from the shoreline to a distance of about 1 km inland but seasonally or in semi-sheltered bays extends 3 to 6 km inland. Along ocean front areas with breaking surf and significant salt spray, it extends from 1 km inland to about 10 to 50 km depending on wind direction and topography. Much of the metropolitan areas of Wollongong, Sydney, Newcastle, Perth and the Gold Coast are in this category. This can extend to 30 to 70 km inland in South Australia while on some evidence, other southern Australian coastal zones are in this, or a more severe category. This also includes urban and industrial areas with low pollution and for several kilometres around large industries such as steel works and smelters.

3. High typically occurs on the coast around sheltered bays. Category high extends up to 50 m inland from the shoreline. In areas of rough seas and surf it extends from several hundred metres to about 1 km inland. As with other categories the extent depends on wind, wave action and topography. The category will also be found inside industrial plants and can influence a distance of 1.5 km down wind of the plant.

4. Very high is typical of offshore conditions and is found on the beachfront in regions of rough seas and surf beaches. It can extend inland for several hundred metres. It is also found in aggressive industrial areas with a pH of less than 5.

5. All locations described in the table contain variations of greater corrosion severity. If significant, this must be addressed by designing for the most severe environment.

6. In locations where metallic coatings are not a suitable form of corrosion protection, the roof sheeting must be of a type that has been designed and manufactured for such environments.

Table 7.2.2b: Acceptability of contact between different roofing materials – Stainless steel accessory or fastener

<table>
<thead>
<tr>
<th>Cladding material</th>
<th>Atmosphere classification - Medium to very high as per Table 7.2.2a</th>
<th>Atmosphere classification - Low as per Table 7.2.2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper and copper alloys</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Stainless steel (300 series)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Zinc-coated steel and zinc</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table Notes:
1. No — means the metal cannot be used in association with the other metal.
2. Yes — means the metal can be used in association with the other metal.

Table 7.2.2c: Acceptability of contact between different roofing materials – Zinc-coated steel and zinc accessory or fastener

<table>
<thead>
<tr>
<th>Cladding material</th>
<th>Atmosphere classification - Medium to very high as per Table 7.2.2a</th>
<th>Atmosphere classification - Low as per Table 7.2.2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper and copper alloys</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Stainless steel (300 series)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Zinc-coated steel and zinc</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Zinc/aluminium coated steel</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Aluminium/zinc (AZ) and aluminium/zinc/magnesium (AM) coated steel</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Lead</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table Notes:
1. No — means the metal cannot be used in association with the other metal.
2. Yes — means the metal can be used in association with the other metal.

Table 7.2.2d: Acceptability of contact between different roofing materials – Zinc/aluminium coated steel or aluminium/zinc (AZ) and aluminium/zinc/magnesium (AM) coated steel accessory or fastener

<table>
<thead>
<tr>
<th>Cladding material</th>
<th>Atmosphere classification - Medium to very high as per Table 7.2.2a</th>
<th>Atmosphere classification - Low as per Table 7.2.2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper and copper alloys</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Stainless steel (300 series)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Zinc-coated steel and zinc</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Zinc/aluminium coated steel</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Aluminium/zinc (AZ) and aluminium/zinc/magnesium (AM) coated steel</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Lead</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table Notes:
1. No — means the metal cannot be used in association with the other metal.
2. Yes — means the metal can be used in association with the other metal.
Table 7.2.2e: Acceptability of contact between different roofing materials – Lead accessory or fastener

<table>
<thead>
<tr>
<th>Cladding material</th>
<th>Atmosphere classification - Medium to very high as per Table 7.2.2a</th>
<th>Atmosphere classification - Low as per Table 7.2.2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper and copper alloys</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Stainless steel (300 series)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Zinc-coated steel and zinc</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Zinc/aluminium coated steel</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Aluminium/zinc (AZ) and aluminium/zinc/magnesium (AM) coated steel</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Lead</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table Notes:
1. No — means the metal cannot be used in association with the other metal.
2. Yes — means the metal can be used in association with the other metal.

Explanatory Information:
To prevent corrosion due to adverse chemical reaction of materials used, 7.2.2(2) ensures that the metal roofing and other materials that come in to contact with it, i.e. fasteners, flashings and cappings, etc. are compatible with each other.

7.2.3 Minimum pitches for metal sheet roofing profiles

[2019: 3.5.1.3]

Metal sheet roofing must comply with the minimum pitch requirements for the associated roof profile in accordance with Figure 7.2.3.

Figure 7.2.3: Minimum pitch requirements for metal roofing profiles – Roof slope and pitch drainage capacity

- **Corrugated**
 - Minimum pitch – 5 degrees

- **Close pitched trapezoidal**
 - Minimum pitch – 3 degrees

- **Trapezoidal**
 - Minimum pitch – 3 degrees

- **Concealed fastened**
 - Minimum pitch – 1 degree

Figure Notes:
1. For minimum end lap requirements see 7.2.6(b)(ii).
2. Consideration should be given to the drainage run off capacity of the roof sheeting when determining the minimum pitch and total length of the roof sheet.
7.2.4 Maximum spans

Metal sheet roofing must comply with the maximum span limitations between roofing supports in accordance with Table 7.2.4 and Figure 7.2.4.

Table 7.2.4: Maximum roofing spans between supports

<table>
<thead>
<tr>
<th>Sheet roofing profile</th>
<th>Sheet roofing base metal thickness (mm)</th>
<th>Max. end span (mm)</th>
<th>Max. internal span (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrugated</td>
<td>0.42</td>
<td>900</td>
<td>1200</td>
</tr>
<tr>
<td>Close pitched trapezoidal</td>
<td>0.42</td>
<td>1800</td>
<td>2400</td>
</tr>
<tr>
<td>Trapezoidal</td>
<td>0.42</td>
<td>1300</td>
<td>1700</td>
</tr>
<tr>
<td>Concealed fasteners —</td>
<td>0.42</td>
<td>1750</td>
<td>2100</td>
</tr>
<tr>
<td>narrow sheet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concealed fasteners —</td>
<td>0.48</td>
<td>1800</td>
<td>2100</td>
</tr>
<tr>
<td>wide sheet</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
1. Refer to Figure 7.2.4 for determination of end span and internal spans.
2. Thermal expansion - Maximum sheet run for pierced fixed metal roofing profiles must be not greater than 25 m when measured between the fasteners at the ends of the sheet.

Figure 7.2.4: Maximum spans for roofing between supports

Internal span (may be over one or more support battens)

Note: End span is also the end of sheets where they overlap with an adjoining sheet.

7.2.5 Fixing of metal sheet roofing

Metal sheet roofing must—
(a) be either fixed through the roofing (crest fastening) or have concealed fasteners; and
(b) be fixed at spacings in accordance with Table 7.2.5; and
(c) use fixings of a compatible metal to the roof in accordance with Tables 7.2.2b to 7.2.2e; and
(d) when using both clipped and pierced fastening systems, employ an anti-capillary feature in the side lap of the sheet (see Figure 7.2.5).

Table 7.2.5: Fixing requirements for sheet roofing

<table>
<thead>
<tr>
<th>Sheet roofing profile</th>
<th>Fixing: End span</th>
<th>Fixing: Internal spans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrugated</td>
<td>Side lap and every second rib</td>
<td>Side lap and every third rib</td>
</tr>
</tbody>
</table>
Figure 7.2.5: Side lap fastening detail

(a) Trapezoidal profile

(b) Corrugated profile

Explanatory Information:
An anti-capillary feature in the side lap of the sheet is used to prevent capillary action drawing moisture into the lap and to allow the lap to drain. This can also be achieved by not over tightening the sheet fixing.

Wherever possible, consideration should be given to laying the metal sheet roofing so that the side lap is facing away from prevailing weather.

7.2.6 Installation of roofing sheets

Sheets must be—

(a) laid wherever possible using complete lengths from the fascia to ridge; or

(b) where a complete length cannot be laid—

(i) each run must be laid from bottom to top before moving on to the next run (see Figure 7.2.6); and

(ii) the minimum end lap must be—

(A) for roof slopes above 15 degrees (1:4) – 150 mm; and

(B) for roof slopes between 5–15 degrees (1:12-1:4) – 200 mm; and

(c) stop ended (i.e. each valley turned up 60 degrees) at the ridge line of each length.
7.2.7 Flashings and cappings

[2019: 3.5.1.7]

1. Sheet metal roof flashings and cappings must comply with the following:

 (a) Roof flashings and cappings must be purpose made, machine-folded sheet metal sections of material compatible with all up and downstream metal roof covering materials in accordance with 7.2.2(2).

 (b) The type of fasteners for flashings and cappings must comply with 7.2.5.

 (c) The fastener and fixing frequency for flashings and cappings must comply with Table 7.2.7.

 (d) Joints in flashings and cappings must be not less than 75 mm, lapped in the direction of the fall of the roof, and fastened at intervals not more than 40 mm.

 (e) Wall and step flashings must be fastened into masonry walls with galvanized or zinc/aluminium sheet metal wedges at each end of each length and at intermediate intervals of not more than 500 mm and must overlap by not less than 75 mm in the direction of flow.

 (f) Lead flashings must not be used with prepainted steel or zinc/aluminium steel or on any roof if the roof is part of a potable (drinking) water catchment area.

 (g) Anti-capillary breaks must be installed in accordance with Figure 7.2.7a and be—

 (i) for flat surfaces – 10 mm/30 degree fold; and

 (ii) all other surfaces – 10 mm/90 degree or 135 degree fold.

 (h) Acceptable flashing configurations are shown in Figure 7.2.7b and Figure 7.2.7c.

2. Flashing of penetrations must comply with the following:

 (a) Collar flashings must permit the total drainage of the area above the penetration.

 (b) On completion of installation, the roof structure must be restored to its original strength by installing roof trimmers and soaker supports as necessary.

 (c) The type of fasteners for flashings and cappings must comply with 7.2.5.

 (d) Lead flashings must not be used with prepainted steel or zinc/aluminium steel or on any roof if the roof is part of a potable drinking water catchment area.

 (e) Acceptable flashings for penetrations are shown in Figure 7.2.7d, Figure 7.2.7e and Figure 7.2.7f.

 (f) Clearance for heating appliance roof support members must be in accordance with Part 12.4.

<table>
<thead>
<tr>
<th>Table 7.2.7: Fastener frequency for flashings and cappings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof type</td>
</tr>
<tr>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Concealed fastener roofs</td>
</tr>
<tr>
<td>Pierced fastener roofs</td>
</tr>
</tbody>
</table>
7.2.7

Roof and wall cladding

<table>
<thead>
<tr>
<th>Roof type</th>
<th>Fixing frequency</th>
<th>Fastener type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrugated roofs</td>
<td>Every fourth rib</td>
<td>Self-drilling screws or rivets</td>
</tr>
</tbody>
</table>

Figure 7.2.7a: Anti-capillary breaks

- Capping
- 10 mm / 90 degrees
- 10 mm / 30 degrees

(a) Roof capping

(b) Facia flashing

Figure 7.2.7b: Parapet flashing—Acceptable flashing details

- Anticapillary break
- 75 mm min.
Figure 7.2.7c: Parapet and end wall flashing—Acceptable flashing details

- Bituminous coated or soft zinc over flashing stepped and tapered to follow fall of roof
- Fasten at 500 mm centres
- Anticapillary break

Figure 7.2.7d: PVC aprons—Typical roof penetration flashing details
7.2.8 Water discharge

Where an eaves gutter is provided in accordance with H1D7(4), sheets must overhang the fascia, or end batten where there is no fascia, by not less than 35 mm.
Part 7.3 Roof tiles and shingles

7.3.1 Application of Part 7.3

(1) Part 7.3 applies subject to the limitations set out at H1D7(3)(c).

(2) Part 7.3 need not be complied with if H1D7(3)(a) or (b) is complied with.

Explanatory Information: Design wind speeds
Information on design wind speeds for particular areas may be available from the appropriate authority. Also see the table associated with the definition of ‘design wind speed’ for wind classes. A map indicating wind regions of Australia is contained in Part 2.2.

Explanatory Information: Other relevant roof tile requirements
A number of other Volume Two provisions contain specific requirements relevant to roof tiles, in addition to the provisions of this Part. They include—
(a) for the sizing and fixing of roof battens—
 (i) H1D6(2) for steel battens; and
 (ii) H1D6(3) for timber battens; and
(b) Housing Provisions Part 9.3 for requirements for roofing over a separating wall; and
(c) Housing Provisions Part 7.4 for gutters and downpipes.

7.3.2 Fixing of roof tiles and ancillaries

(1) Roof tiles and hip, ridge, barge and capping tiles must be fixed in accordance with Table 7.3.2 and Figures 7.3.2a to 7.3.2e.

(2) Fixing required by Table 7.3.2 must consist of one or a combination of the following:
 (a) Galvanized clout nails with a minimum diameter of 2.8 mm and of a length so that the nail will penetrate not less than 15 mm into the batten.
 (b) Self embedding head screws of 8-18 gauge and of a length so that the screw will penetrate not less than 15 mm into the batten.
 (c) Purpose made clips of non-ferrous metal, stainless steel or steel protected from corrosion in accordance with Tables 7.2.2a and 7.2.2b.
 (d) Flexible pointing material complying with AS 2050.

Table 7.3.2: Minimum fixing requirements

<table>
<thead>
<tr>
<th>Design wind speed</th>
<th>Tile fixing - edge of roof</th>
<th>Tile fixing - field of roof</th>
<th>Ridge, hip, barge and valley tiles including capping (see Figure 7.3.2d and 7.3.2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 and N2</td>
<td>Fix every full tile in second course in from the edge of roof.</td>
<td>In field of roof fix every second tile in every course, or every tile in each alternative course. (see</td>
<td>Fix each tile</td>
</tr>
</tbody>
</table>

ABCBC Housing Provisions Standard 2022 Page 156
Table Notes:
Refer to Figure 7.3.2a for determination of “edge of roof” and “field of roof”.

Figure 7.3.2a: Fixing of tile requirements — Identification of field and edge of roof

<table>
<thead>
<tr>
<th>Design wind speed</th>
<th>Tile fixing - edge of roof</th>
<th>Tile fixing - field of roof</th>
<th>Ridge, hip, barge and valley tiles including capping (see Figure 7.3.2d and 7.3.2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N3</td>
<td>Fix each full tile in every</td>
<td>Fix every second full tile in</td>
<td>Fix each tile</td>
</tr>
</tbody>
</table>

Every hip tile

Every ridge tile

Every barge tile

Field of roof

Edge of roof

Hip and gable (L-shaped) roof
Figure 7.3.2b: Fixing of tile requirements — Minimum tile fixing requirements N1/N2

Option 1

Ridge line

Eave line or outside edge of roof

Fix every tile in each alternate course (field of roof)

Edge of roof

Option 2

Ridge line

Eave line or outside edge of roof

Fix every second tile in every course (field of roof)

Edge of roof

Figure 7.3.2c: Fixing of tile requirements — Minimum tile fixing requirements N3

Ridge line

Eave line or outside edge of roof

Fix each full tile in every second course starting from the second course in

Edge of roof
Figure 7.3.2d: Fixing of ridge capping — ridge clip fixing

Ridge clip fixed to ridge batten

Figure 7.3.2e: Fixing of hip capping — clout or screw fixing

Hip tile

Clout/screw fixing to hip batten

Hip batten

Hip starter plate if used
Explanatory Information:
For the purposes of Figures 7.3.2a, 7.3.2b and 7.3.2c, “edge of roof” is a 1.2 m wide band bounded by the eaves, hips and barge measured toward the “ridge of roof”.

7.3.3 Flashing

(1) *Flashing* for roof tiles must comply with (2) to (7).

(2) Wall and step *flashings*:
 (a) For masonry or similar walls, *flashing* must—
 (i) follow the roof line, allowing not less than 75 mm upturn to the wall and a minimum of 150 mm in width and moulded into the tiles; and
 (ii) have a horizontal overflashing, stepped overflashing or raked overflashing built into the masonry leaf or veneer, except that one continuous *flashing* may be used as both an apron *flashing* or an overflashing; and
 (iii) have joints overlap the one below by not less than 75 mm in the direction of flow.
 (b) For *flashing* where the upturn can be fixed to or behind the supporting frame or cladding, it must—
 (i) follow the roof line, allowing not less than 75 mm upturn to the wall and a minimum of 150 mm in width and moulded into the tiles; and
 (ii) be fastened into or behind the wall cladding at each end and at a maximum of 600 mm centres; and
 (iii) have joints overlap the one below by not less than 75 mm in the direction of flow.

(3) *Flashing* of penetrations must—
 (a) be either collar, apron or other purpose made *flashings*; and
 (b) have a minimum upturn on the penetration of not less than 75 mm and a minimum of 150 mm in width surrounding the penetration and be moulded into the tiles; and
 (c) permit the total drainage of the area above the penetration.

(4) Joints in *flashing* must be not less than 75 mm and lapped in the direction of fall of the roof.

(5) Fixings for *flashings* must be compatible with the *flashing* material.

(6) Lead *flashings* must not be used on any roof that is part of a drinking water catchment area.

(7) Acceptable *flashing* configurations, including typical details for standard, and bedded and pointed valleys, are shown in Figures 7.3.3a to 7.3.3g.

Figure 7.3.3a: Flashing abutting a masonry wall

![Diagram of flashing abutting a masonry wall]
Figure 7.3.3b: Flashing abutting a weatherboard wall or similar cladding

Weatherboards

Apron flashing min. 150 mm wide

Flashing upturn min. 75 mm

Figure 7.3.3c: Stepped flashing to a masonry wall

Step flashing min. height 75 mm

Apron flashing min. 150 mm wide
Figure 7.3.3d:
Pipe penetration flashing

Collar flashing
min. height 75 mm

150 mm min.

Flashing moulded into tile profile

Figure 7.3.3e:
Chimney flashing

Steped flashing

Roof line

Expanded view of flashing

Figure 7.3.3f:
Standard valley

Tile

Metal valley tray

Valley board

Valley creeper

Valley batten

Valley rafter
Figure 7.3.3g: Bedded and pointed valley for high rainfall areas (refer definition of low rainfall intensity area)

7.3.4 Sarking

Sarking must—

(a) be provided in accordance with Table 7.3.4; and
(b) comply with AS/NZS 4200.1 and be installed with—
 (i) each adjoining sheet or roll being—
 (A) overlapped not less than 150 mm; or
 (B) taped together; and
 (ii) sarking fixed to supporting members at not more than 300 mm centres; and
 (iii) no sags greater than 40 mm in the sarking.

Table 7.3.4: Sarking requirements for tiled roofs

<table>
<thead>
<tr>
<th>Roof pitch</th>
<th>Maximum rafter/truss top chord length without sarking (mm) Note 1</th>
</tr>
</thead>
<tbody>
<tr>
<td><18°</td>
<td>N/A Note 2</td>
</tr>
<tr>
<td>≥18° <20°</td>
<td>4 500</td>
</tr>
<tr>
<td>≥20° <22°</td>
<td>5 500</td>
</tr>
<tr>
<td>≥22°</td>
<td>6 000</td>
</tr>
</tbody>
</table>

Table Notes:
1. The maximum rafter/truss top chord length is measured from the topmost point of the rafter/truss i.e. the apex downwards. Where the maximum length is exceeded, sarking must be installed over the remainder of the rafter/truss top chord length towards the eave line of the roof, or equivalent where the building has no eaves.
2. All tiled roofs with a pitch less than 18 degrees must be provided with sarking, regardless of rafter/truss chord length.

Explanatory Information:
Where sarking is also provided as reflective insulation for the purpose of energy efficiency, Section 13 of the ABCB Housing Provisions contains required R-Values and the necessary airspaces adjoining the reflective insulation.
7.3.5 Anti-ponding device/board

(1) An anti-ponding device/board must be provided where sarking is installed on—
 (a) roofs with a pitch less than 20°; and
 (b) roofs with no eaves overhang, regardless of the roof pitch.

(2) An anti-ponding device required by (1) must be water resistant and fixed along the eaves line from the top of the fascia back up the rafter with a clearance of approximately 50 mm below the first batten (See Figure 7.3.5).

Figure 7.3.5: Typical installation of anti-ponding device/board

Figure Notes:
1. Sarking is required by 7.3.4.
2. Anti-ponding device is required by 7.3.5.

7.3.6 Water discharge

Where an eaves gutter is provided in accordance with H1D7(4), tiles must overhang the fascia or tiling batten by not less than 35 mm (See Figure 7.3.5).
Part 7.4 Gutter and downpipes

7.4.1 Application of Part 7.4

(1) Part 7.4 applies subject to the limitations set out at H1D7(5).

(2) Part 7.4 need not be complied with if H1D7(4)(a) is complied with.

Explanatory Information:

1. The requirement to install drainage systems from roofs and sub-soil drains should be confirmed with the appropriate authority. These provisions need only be applied when drainage systems are necessary.

2. Information on drainage requirements outside the allotment can be obtained from the appropriate authority.

3. Where box gutters are proposed to be installed, AS/NZS 3500.3 may be used to calculate minimum sizes, falls and overflow requirements.

4. For Class 10 buildings it may not be necessary to comply with the requirements for removing surface water for a Class 10 building where the Class 10 building is not connected to a Class 1 building. For example, where a Class 10 garage is attached to a Class 1 dwelling, the run-off from the garage would most likely directly impact the dwelling and therefore be required to be removed. However, a garage that is separated by a reasonable distance from the dwelling so as to not have an impact would not necessarily have to comply with the requirements for removal of surface water.

5. The following are a number of other Parts of the ABCB Housing Provisions that contain requirements relative to drainage and roofing in addition to the provisions of this Part—
 a. 7.5.8 for parapet cappings; and
 b. 7.3.6 for water discharge; and
 c. 7.2.7 for flashings and cappings as they relate to penetrations through roofs; and
 d. Part 3.3 for drainage requirements.

Explanatory Information: Design of stormwater drainage systems

Stormwater drainage systems specified in the NCC Volume Two and the ABCB Housing Provisions are not designed to remove all water to an appropriate outfall during exceptionally heavy rain, particularly in tropical areas. Specifically, eaves gutter systems are designed to remove water arising from rainfall events with an annual exceedance probability average recurrence interval of 20 years 5% provided they are not blocked.

Accordingly, it is necessary to design and install the system to incorporate overflow measures so that when overflowing occurs, during a rainfall event with an annual exceedance probability average recurrence interval of up to 100 years 1%, any water is directed away in a manner which ensures it does not pond against, enter or damage the building, even if the stormwater drainage system is blocked.

Insufficient and poorly located downpipes are a frequent cause of poor roof drainage system performance. The installation of downpipes, especially near valley gutters, is designed to ensure rainwater from areas on the roof that have concentrated water flows is adequately removed.

Particular consideration needs to be given to box gutters, valley gutters etc. located above the internal areas of a building. There are several options available to designers using the requirements of NCC Volume Two and the ABCB Housing Provisions. The designer will need to choose an overflow system that will cope with the rainfall intensity for the particular location. Consideration needs to be given to the total capacity of overflow measures on lower level roofs where overflow measures adopted for a higher roof catchment will result in overflow to a lower one. Overflow discharge onto lower roofs may also require consideration of sarking, flashing and other weatherproofing precautions to the lower roof area.

The acceptable overflow measures in Table 7.4.4a and Table 7.4.4b were calculated using the following formulas:

- For continuous slots or rainhead:
7.4.2 Materials

Gutters, downpipes and flashings must—

(a) be manufactured in accordance with AS/NZS 2179.1 for metal; and
(b) be manufactured in accordance with AS 1273 for UPVC components; and
(c) be compatible with all upstream roofing materials in accordance with 7.2.2(2); and
(d) not contain any lead if used on a roof forming part of a drinking water catchment area.

7.4.3 Selection of guttering

The size of guttering must—

(a) for eaves gutters, be in accordance with Table 7.4.3a, Table 7.4.3b and Table 7.4.3c; and
(b) for box gutters, be in accordance with AS/NZS 3500.3; and
(c) be suitable to remove rainwater falling at the appropriate 5 minute duration rainfall intensity listed in Table 7.4.3d to Table 7.4.3k as follows—
 (i) for eaves gutters — 20 year average recurrence interval 5% annual exceedance probability; and
 (ii) for eaves gutter overflow measures — 100 year average recurrence interval 1% annual exceedance probability; and
 (iii) for box and valley gutters — 100 year average recurrence interval.
Table 7.4.3a:

Size of gutter required to drain roof catchment area into one (1) downpipe for various rainfall intensities and roof catchment areas (A, B, C, D, E and F defined in Table 7.4.3b)

<table>
<thead>
<tr>
<th>Design rainfall intensity (mm/h) (as per Table 7.4.3d to Table 7.4.3k)</th>
<th>Roof catchment area per downpipe — 30 m²</th>
<th>Roof catchment area per downpipe — 40 m²</th>
<th>Roof catchment area per downpipe — 50 m²</th>
<th>Roof catchment area per downpipe — 60 m²</th>
<th>Roof catchment area per downpipe — 70 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 mm/h</td>
<td>A or C</td>
</tr>
<tr>
<td>120 mm/h</td>
<td>A or C</td>
<td>A or C</td>
<td>A or C</td>
<td>A or C</td>
<td>A or D</td>
</tr>
<tr>
<td>140 mm/h</td>
<td>A or C</td>
<td>A or C</td>
<td>A or C</td>
<td>A or D</td>
<td>B or E</td>
</tr>
<tr>
<td>160 mm/h</td>
<td>A or C</td>
<td>A or C</td>
<td>A or C</td>
<td>A or E</td>
<td>B or E</td>
</tr>
<tr>
<td>175 mm/h</td>
<td>A or C</td>
<td>A or C</td>
<td>A or D</td>
<td>B or E</td>
<td>E</td>
</tr>
<tr>
<td>200 mm/h</td>
<td>A or C</td>
<td>A or C</td>
<td>A or D</td>
<td>B or E</td>
<td>F</td>
</tr>
<tr>
<td>225 mm/h</td>
<td>A or C</td>
<td>A or C</td>
<td>A or D</td>
<td>B or E</td>
<td>E</td>
</tr>
<tr>
<td>255 mm/h</td>
<td>A or C</td>
<td>A or D</td>
<td>B or E</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>275 mm/h</td>
<td>A or C</td>
<td>A or D</td>
<td>B or E</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>325 mm/h</td>
<td>A or C</td>
<td>B or E</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>425 mm/h</td>
<td>A or C</td>
<td>E</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Table 7.4.3b:

Gutter sizes for various rainfall intensities

<table>
<thead>
<tr>
<th>Gutter type</th>
<th>Gutter description</th>
<th>Minimum cross-sectional area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Medium rectangular gutter</td>
<td>6500</td>
</tr>
<tr>
<td>B</td>
<td>Large rectangular gutter</td>
<td>7900</td>
</tr>
<tr>
<td>C</td>
<td>115 mm D gutter</td>
<td>5200</td>
</tr>
<tr>
<td>D</td>
<td>125 mm D gutter</td>
<td>6300</td>
</tr>
<tr>
<td>E</td>
<td>150 mm D gutter</td>
<td>9000</td>
</tr>
<tr>
<td>F</td>
<td>Gutter must be designed in accordance with AS/NZS 3500.3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 7.4.3c:

Downpipe selection for gutter types (A, B, C, D, E and F defined in Table 7.4.3b)

<table>
<thead>
<tr>
<th>Downpipe section</th>
<th>Gutter type A</th>
<th>Gutter type B</th>
<th>Gutter type C</th>
<th>Gutter type D</th>
<th>Gutter type E</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 mm dia.</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>100 mm x 50 mm</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>90 mm dia.</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>100 mm x 75 mm</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table Notes:

1. Yes — downpipe is suitable for the eaves gutter selection.
2. No — downpipe is not suitable for the eaves gutter selection.

Table 7.4.3d:

5 minute duration rainfall intensities for the Australian Capital Territory

<table>
<thead>
<tr>
<th>Locality</th>
<th>Annual exceedance probability, 5%, average recurrence interval, once in 20 years (mm/h)</th>
<th>Annual exceedance probability, 1%, average recurrence interval, once in 100 years (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canberra</td>
<td>143</td>
<td>1923</td>
</tr>
</tbody>
</table>
Table Notes:
Locations used in this table are based on the nearest Bureau of Meteorology grid cell latitude and longitude to the central Post Office of each city or town.

Table 7.4.3e: 5 minute duration rainfall intensities for New South Wales

<table>
<thead>
<tr>
<th>Locality</th>
<th>Annual exceedance probability, 5%, average recurrence interval, once in 20 years (mm/h)</th>
<th>Annual exceedance probability, 1%, average recurrence interval, once in 100 years (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albury</td>
<td>139</td>
<td>180</td>
</tr>
<tr>
<td>Broken Hill</td>
<td>142</td>
<td>217phants</td>
</tr>
<tr>
<td>Goulburn</td>
<td>120</td>
<td>1548</td>
</tr>
<tr>
<td>Kiama</td>
<td>2256</td>
<td>3204</td>
</tr>
<tr>
<td>Newcastle</td>
<td>2256</td>
<td>316</td>
</tr>
<tr>
<td>Orange</td>
<td>1412</td>
<td>186</td>
</tr>
<tr>
<td>Sydney</td>
<td>2014</td>
<td>262</td>
</tr>
<tr>
<td>Avalon, Sydney</td>
<td>21048</td>
<td>28748</td>
</tr>
<tr>
<td>Campbelltown, Sydney</td>
<td>1662</td>
<td>2232</td>
</tr>
<tr>
<td>Penrith, Sydney</td>
<td>17880</td>
<td>2404</td>
</tr>
<tr>
<td>Windsor, Sydney</td>
<td>175</td>
<td>2343</td>
</tr>
<tr>
<td>Tweed Heads</td>
<td>252</td>
<td>3329</td>
</tr>
<tr>
<td>Wollongong</td>
<td>2187</td>
<td>31108</td>
</tr>
</tbody>
</table>

Table Notes:
Locations used in this table are based on the nearest Bureau of Meteorology grid cell latitude and longitude to the central Post Office of each city or town.

Table 7.4.3f: 5 minute duration rainfall intensities for the Northern Territory

<table>
<thead>
<tr>
<th>Locality</th>
<th>Annual exceedance probability, 5%, average recurrence interval, once in 20 years (mm/h)</th>
<th>Annual exceedance probability, 1%, average recurrence interval, once in 100 years (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice Springs</td>
<td>1656</td>
<td>239</td>
</tr>
<tr>
<td>Darwin</td>
<td>233</td>
<td>274</td>
</tr>
<tr>
<td>Katherine</td>
<td>216</td>
<td>250</td>
</tr>
</tbody>
</table>

Table Notes:
Locations used in this table are based on the nearest Bureau of Meteorology grid cell latitude and longitude to the central Post Office of each city or town.

Table 7.4.3g: 5 minute duration rainfall intensities for Queensland

<table>
<thead>
<tr>
<th>Locality</th>
<th>Annual exceedance probability, 5%, average recurrence interval, once in 20 years (mm/h)</th>
<th>Annual exceedance probability, 1%, average recurrence interval, once in 100 years (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bamaga</td>
<td>252</td>
<td>298</td>
</tr>
</tbody>
</table>
Table 7.4.3h: 5 minute duration rainfall intensities for South Australia

<table>
<thead>
<tr>
<th>Locality</th>
<th>Annual exceedance probability, 5% average recurrence interval, once in 20 years (mm/h)</th>
<th>Annual exceedance probability, 1% average recurrence interval, once in 100 years (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adelaide</td>
<td>1204</td>
<td>1784</td>
</tr>
<tr>
<td>Gawler, Adelaide</td>
<td>1110</td>
<td>158</td>
</tr>
<tr>
<td>Mt Gambier</td>
<td>103</td>
<td>144</td>
</tr>
<tr>
<td>Murray Bridge</td>
<td>120</td>
<td>1778</td>
</tr>
<tr>
<td>Port Augusta</td>
<td>133</td>
<td>199</td>
</tr>
<tr>
<td>Port Pirie</td>
<td>1232</td>
<td>1834</td>
</tr>
<tr>
<td>Yorketown</td>
<td>1155</td>
<td>166</td>
</tr>
</tbody>
</table>

Table Notes:
Locations used in this table are based on the nearest Bureau of Meteorology grid cell latitude and longitude to the central Post Office of each city or town.

Table 7.4.3i: 5 minute duration rainfall intensities for Tasmania

<table>
<thead>
<tr>
<th>Locality</th>
<th>Annual exceedance probability, 5% average recurrence interval, once in 20 years (mm/h)</th>
<th>Annual exceedance probability, 1% average recurrence interval, once in 100 years (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burnie</td>
<td>128</td>
<td>1788</td>
</tr>
<tr>
<td>Flinders Island</td>
<td>1242</td>
<td>1676</td>
</tr>
<tr>
<td>Hobart</td>
<td>865</td>
<td>1204</td>
</tr>
<tr>
<td>Launceston</td>
<td>919</td>
<td>1234</td>
</tr>
<tr>
<td>Queenstown</td>
<td>94</td>
<td>1234</td>
</tr>
</tbody>
</table>

Table Notes:
Locations used in this table are based on the nearest Bureau of Meteorology grid cell latitude and longitude to the central Post Office of each city or town.
Table Notes:
Locations used in this table are based on the nearest Bureau of Meteorology grid cell latitude and longitude to the central Post Office of each city or town.

Table 7.4.3j: 5 minute duration rainfall intensities for Victoria

<table>
<thead>
<tr>
<th>Locality</th>
<th>Annual exceedance probability, 5%, average recurrence interval, once in 20 years (mm/h)</th>
<th>Annual exceedance probability, 1%, average recurrence interval, once in 100 years (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballarat</td>
<td>134</td>
<td>1928</td>
</tr>
<tr>
<td>Benalla</td>
<td>146</td>
<td>194</td>
</tr>
<tr>
<td>Geelong</td>
<td>1032</td>
<td>1434</td>
</tr>
<tr>
<td>Horsham</td>
<td>1219</td>
<td>173</td>
</tr>
<tr>
<td>Lakes Entrance</td>
<td>145</td>
<td>1998</td>
</tr>
<tr>
<td>Melbourne</td>
<td>132</td>
<td>187</td>
</tr>
<tr>
<td>Hastings, Melbourne</td>
<td>1127</td>
<td>145</td>
</tr>
<tr>
<td>Sorrento, Melbourne</td>
<td>106</td>
<td>140</td>
</tr>
<tr>
<td>Mildura</td>
<td>142</td>
<td>2198</td>
</tr>
<tr>
<td>Stawell</td>
<td>130</td>
<td>1876</td>
</tr>
</tbody>
</table>

Table Notes:
Locations used in this table are based on the nearest Bureau of Meteorology grid cell latitude and longitude to the central Post Office of each city or town.

Table 7.4.3k: 5 minute duration rainfall intensities for Western Australia

<table>
<thead>
<tr>
<th>Locality</th>
<th>Annual exceedance probability, 5%, average recurrence interval, once in 20 years (mm/h)</th>
<th>Annual exceedance probability, 1%, average recurrence interval, once in 100 years (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albany</td>
<td>1275</td>
<td>1798</td>
</tr>
<tr>
<td>Broome</td>
<td>232</td>
<td>287</td>
</tr>
<tr>
<td>Bunbury</td>
<td>147</td>
<td>1989</td>
</tr>
<tr>
<td>Derby</td>
<td>211</td>
<td>256</td>
</tr>
<tr>
<td>Geraldton</td>
<td>138</td>
<td>1943</td>
</tr>
<tr>
<td>Kalgoorlie</td>
<td>1367</td>
<td>204</td>
</tr>
<tr>
<td>Perth</td>
<td>12039</td>
<td>172</td>
</tr>
<tr>
<td>Joondalup, Perth</td>
<td>133</td>
<td>180</td>
</tr>
<tr>
<td>Midland, Perth</td>
<td>122</td>
<td>1643</td>
</tr>
<tr>
<td>Port Hedland</td>
<td>168</td>
<td>2324</td>
</tr>
<tr>
<td>Tom Price</td>
<td>138</td>
<td>182</td>
</tr>
</tbody>
</table>

Table Notes:
Locations used in this table are based on the nearest Bureau of Meteorology grid cell latitude and longitude to the central Post Office of each city or town.
Explanatory Information:
The cross sectional area referred to in Table 7.4.3b is measured up to the lowest part of the relevant overflow facility including the lower edge of a slot, gutter back, end-stop weir, inverted nozzle, front-face weir or overflow opening in a rainhead.

Explanatory Information: Worked example — determining appropriate overflow measures
The location of a proposed building is in Wollongong, NSW. Using Table 7.4.3e the 5 minute duration rainfall intensity for a 100 year 1% annual exceedance probability average recurrence interval is 311.08 mm/h. The 5 minute duration rainfall intensities in Table 7.4.4a and Table 7.4.4b are provided in 25 mm/h increments, therefore for the purpose of the worked example 325 mm/h will be used.

Table 7.4.4a and Table 7.4.4b provide required overflow volumes in both litres per second for dedicated overflow measures and litres per second per metre for continuous overflow measures. Extrapolation of the values in these tables can be used to inform a Performance Solution complying with the Governing Requirements of the NCC. Where both dedicated and continuous measures are proposed, Table 7.4.4b can be used to determine the required overflow volume.

1. Multiple overflow measures are proposed to be used with a roof catchment area of 60 m2, incorporating a 10 m eaves gutter.
2. Using Table 7.4.4b for a 325 mm/h 5 minute duration rainfall intensity, the overflow volume in litres per second (L/s) for a roof catchment area of 60 m2 is 5.4 L/s.
3. Select an acceptable dedicated overflow measure from 7.4.7.
 a. The selected dedicated overflow measure is an end-stop weir which provides 0.5 L/s.
 b. One end-stop weir does not achieve the required overflow volume of 5.4 L/s, and additional overflow measures are required to remove the overflow volume.
4. To achieve the required overflow volume a continuous overflow measure is also selected from 7.4.6.
 a. A front face slotted gutter is the selected overflow measure as it provides 0.5 L/s/m.
 b. Taking account of the eaves gutter length (10 m), the combined overflow measures (0.5 L/s for the end-stop weir and 0.5 L/s/m × 10 m) will remove up to 5.5 L/s.
5. The 5.5 L/s capacity provided by the selected overflow measures exceeds the required 5.4 L/s overflow volume.

7.4.4 Installation of gutters

[2019: 3.5.3.4]

1. Eaves gutters must be installed with a fall of not less than
 a. installed with a fall of not less than 1:500; and
 b. supported by brackets securely fixed at stop ends and at not more than 1.2 m centres; and
 c. fitted with overflow measures capable of removing the overflow volume specified in Table 7.4.4a and Table 7.4.4b.
 a. 1:500 for eaves gutters, unless fixed to metal fascias; and
 b. 1:100 for box gutters.

2. Eaves gutters must be—
 a. supported by brackets securely fixed at stop ends and at not more than 1.2 m centres; and
 b. be capable of removing the overflow volume specified in Table 7.4.4a and Table 7.4.4b.

2. Overflow measures in accordance with 7.4.6 and 7.4.7 are deemed to be capable of removing the overflow volume specified in those provisions.

3. Where the overflow volume values for ridge-to-gutter lengths in Table 7.4.4a and roof catchment areas in Table 7.4.4b are not stated, interpolation may be used to determine the applicable overflow values.

4. Valley gutters must on a roof with a pitch—
 a. be installed on a roof with a pitch more than 12.5 degrees; and
 b. have dimensions in accordance with Table 7.4.4c for the relevant rainfall intensity; and
have minimum upturns along the edges of not less than 15 mm; and
have a side angle of not less than 12.5 degrees.

(a) more than 12.5 degrees — must have width of not less than 400 mm and be wide enough to allow the roof covering to overhang not less than 150 mm each side of the gutter; or
(b) not more than 12.5 degrees — must be designed as a box gutter.

The requirement of (1)(c) does not apply to eaves gutters fixed to a verandah or an eave that is greater than 450 mm in width, which—
(a) has no lining; or
(b) is a raked verandah or a raked eave with a lining sloping away from the building.

Table 7.4.4a: Overflow volume for continuous measure (L/s/m)

<table>
<thead>
<tr>
<th>Design 5 minute duration rainfall intensity (mm/h) (from Table 7.4.3d to Table 7.4.3k)</th>
<th>Ridge to gutter length — 2 m</th>
<th>Ridge to gutter length — 4 m</th>
<th>Ridge to gutter length — 6 m</th>
<th>Ridge to gutter length — 8 m</th>
<th>Ridge to gutter length — 10 m</th>
<th>Ridge to gutter length — 12 m</th>
<th>Ridge to gutter length — 14 m</th>
<th>Ridge to gutter length — 16 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 mm/h</td>
<td>0.08 L/s/m</td>
<td>0.17 L/s/m</td>
<td>0.25 L/s/m</td>
<td>0.33 L/s/m</td>
<td>0.42 L/s/m</td>
<td>0.50 L/s/m</td>
<td>0.58 L/s/m</td>
<td>0.67 L/s/m</td>
</tr>
<tr>
<td>175 mm/h</td>
<td>0.10 L/s/m</td>
<td>0.19 L/s/m</td>
<td>0.29 L/s/m</td>
<td>0.39 L/s/m</td>
<td>0.49 L/s/m</td>
<td>0.58 L/s/m</td>
<td>0.68 L/s/m</td>
<td>0.78 L/s/m</td>
</tr>
<tr>
<td>200 mm/h</td>
<td>0.11 L/s/m</td>
<td>0.22 L/s/m</td>
<td>0.33 L/s/m</td>
<td>0.44 L/s/m</td>
<td>0.56 L/s/m</td>
<td>0.67 L/s/m</td>
<td>0.78 L/s/m</td>
<td>0.89 L/s/m</td>
</tr>
<tr>
<td>225 mm/h</td>
<td>0.13 L/s/m</td>
<td>0.25 L/s/m</td>
<td>0.38 L/s/m</td>
<td>0.50 L/s/m</td>
<td>0.63 L/s/m</td>
<td>0.75 L/s/m</td>
<td>0.88 L/s/m</td>
<td>1.0 L/s/m</td>
</tr>
<tr>
<td>250 mm/h</td>
<td>0.14 L/s/m</td>
<td>0.28 L/s/m</td>
<td>0.42 L/s/m</td>
<td>0.56 L/s/m</td>
<td>0.69 L/s/m</td>
<td>0.83 L/s/m</td>
<td>0.97 L/s/m</td>
<td>1.1 L/s/m</td>
</tr>
<tr>
<td>275 mm/h</td>
<td>0.15 L/s/m</td>
<td>0.31 L/s/m</td>
<td>0.46 L/s/m</td>
<td>0.61 L/s/m</td>
<td>0.76 L/s/m</td>
<td>0.92 L/s/m</td>
<td>1.1 L/s/m</td>
<td>1.2 L/s/m</td>
</tr>
<tr>
<td>300 mm/h</td>
<td>0.17 L/s/m</td>
<td>0.33 L/s/m</td>
<td>0.50 L/s/m</td>
<td>0.67 L/s/m</td>
<td>0.83 L/s/m</td>
<td>1.0 L/s/m</td>
<td>1.2 L/s/m</td>
<td>1.3 L/s/m</td>
</tr>
<tr>
<td>325 mm/h</td>
<td>0.18 L/s/m</td>
<td>0.36 L/s/m</td>
<td>0.54 L/s/m</td>
<td>0.72 L/s/m</td>
<td>0.90 L/s/m</td>
<td>1.1 L/s/m</td>
<td>1.3 L/s/m</td>
<td>1.4 L/s/m</td>
</tr>
<tr>
<td>350 mm/h</td>
<td>0.19 L/s/m</td>
<td>0.39 L/s/m</td>
<td>0.58 L/s/m</td>
<td>0.78 L/s/m</td>
<td>0.97 L/s/m</td>
<td>1.2 L/s/m</td>
<td>1.4 L/s/m</td>
<td>1.6 L/s/m</td>
</tr>
<tr>
<td>375 mm/h</td>
<td>0.21 L/s/m</td>
<td>0.42 L/s/m</td>
<td>0.63 L/s/m</td>
<td>0.83 L/s/m</td>
<td>1.0 L/s/m</td>
<td>1.3 L/s/m</td>
<td>1.5 L/s/m</td>
<td>1.7 L/s/m</td>
</tr>
<tr>
<td>400 mm/h</td>
<td>0.22 L/s/m</td>
<td>0.44 L/s/m</td>
<td>0.67 L/s/m</td>
<td>0.89 L/s/m</td>
<td>1.1 L/s/m</td>
<td>1.3 L/s/m</td>
<td>1.6 L/s/m</td>
<td>1.8 L/s/m</td>
</tr>
</tbody>
</table>

Table 7.4.4b: Overflow volume for dedicated measure (L/s)

<table>
<thead>
<tr>
<th>Design 5 minute duration rainfall intensity (mm/h) (from Table 7.4.3d to Table 7.4.3k)</th>
<th>Roof catchment area — 30 m²</th>
<th>Roof catchment area — 40 m²</th>
<th>Roof catchment area — 50 m²</th>
<th>Roof catchment area — 60 m²</th>
<th>Roof catchment area — 70 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 mm/h</td>
<td>1.3 L/s</td>
<td>1.7 L/s</td>
<td>2.1 L/s</td>
<td>2.5 L/s</td>
<td>2.9 L/s</td>
</tr>
<tr>
<td>175 mm/h</td>
<td>1.5 L/s</td>
<td>1.9 L/s</td>
<td>2.4 L/s</td>
<td>2.9 L/s</td>
<td>3.4 L/s</td>
</tr>
<tr>
<td>200 mm/h</td>
<td>1.7 L/s</td>
<td>2.2 L/s</td>
<td>2.8 L/s</td>
<td>3.3 L/s</td>
<td>3.9 L/s</td>
</tr>
<tr>
<td>225 mm/h</td>
<td>1.9 L/s</td>
<td>2.5 L/s</td>
<td>3.1 L/s</td>
<td>3.8 L/s</td>
<td>4.4 L/s</td>
</tr>
<tr>
<td>250 mm/h</td>
<td>2.1 L/s</td>
<td>2.8 L/s</td>
<td>3.5 L/s</td>
<td>4.2 L/s</td>
<td>4.9 L/s</td>
</tr>
<tr>
<td>275 mm/h</td>
<td>2.3 L/s</td>
<td>3.1 L/s</td>
<td>3.8 L/s</td>
<td>4.6 L/s</td>
<td>5.3 L/s</td>
</tr>
<tr>
<td>300 mm/h</td>
<td>2.5 L/s</td>
<td>3.3 L/s</td>
<td>4.2 L/s</td>
<td>5.0 L/s</td>
<td>5.8 L/s</td>
</tr>
<tr>
<td>325 mm/h</td>
<td>2.7 L/s</td>
<td>3.6 L/s</td>
<td>4.5 L/s</td>
<td>5.4 L/s</td>
<td>6.3 L/s</td>
</tr>
<tr>
<td>350 mm/h</td>
<td>2.9 L/s</td>
<td>3.9 L/s</td>
<td>4.9 L/s</td>
<td>5.8 L/s</td>
<td>6.8 L/s</td>
</tr>
<tr>
<td>365 mm/h</td>
<td>3.1 L/s</td>
<td>4.2 L/s</td>
<td>5.2 L/s</td>
<td>6.3 L/s</td>
<td>7.3 L/s</td>
</tr>
<tr>
<td>400 mm/h</td>
<td>3.3 L/s</td>
<td>4.4 L/s</td>
<td>5.6 L/s</td>
<td>6.7 L/s</td>
<td>7.8 L/s</td>
</tr>
</tbody>
</table>
Table 7.4.4c: **Valley gutters — Dimensions**

<table>
<thead>
<tr>
<th>Design rainfall intensity (mm/h)</th>
<th>Sheet width (minimum, mm)</th>
<th>Effective depth (h_e, minimum, mm)</th>
<th>Effective width (w_e, minimum, mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤200</td>
<td>355</td>
<td>32</td>
<td>215</td>
</tr>
<tr>
<td>>200 to ≤250</td>
<td>375</td>
<td>35</td>
<td>234</td>
</tr>
<tr>
<td>>250 to ≤300</td>
<td>395</td>
<td>38</td>
<td>254</td>
</tr>
<tr>
<td>>300 to ≤350</td>
<td>415</td>
<td>40</td>
<td>273</td>
</tr>
<tr>
<td>>350 to ≤400</td>
<td>435</td>
<td>43</td>
<td>292</td>
</tr>
</tbody>
</table>

Explanatory Information: **Valley gutters**

1. Where roofs have pitches of 12.5 degrees valley gutters may be designed as box gutters in accordance with AS/NZS 3500.3 or as a Performance Solution by a professional engineer or other appropriately qualified person.

2. An example of a valley gutter profile is shown in Explanatory Figure 7.4.4.

Figure 7.4.4 (explanatory): Valley gutter profile

Downpipes — size and installation

[2019: 3.5.3.5]

Downpipes must—

(a) not serve more than 12 m of gutter length for each downpipe; and
(b) be located as close as possible to valley gutters; and
(c) be selected in accordance with the appropriate eaves gutter section as shown in Table 7.4.3a, Table 7.4.3b and Table 7.4.3c.

Explanatory Information:
A maximum 12 m gutter length served by each downpipe is to ensure effective fall and adequate capacity to discharge all water anticipated during a storm having an annual exceedance probability average recurrence interval of 20 years 5%.

Where a rainhead overflow device is incorporated in the top of the downpipe, its overflow discharge should be directed...
away from the building.

7.4.6 Acceptable continuous overflow measure

[2019: Table 3.5.3.4a]

1. For a front face slotted gutter with—
 - a minimum slot opening area of 1200 mm² per metre of gutter; and
 - the lower edge of the slots installed a minimum of 25 mm below the top of the fascia,
 the acceptable overflow capacity must be 0.5 L/s/m, constructed in accordance with Figure 7.4.6a.

2. For a controlled back gap with—
 - a permanent minimum 10 mm spacer installed between the gutter back and the fascia; and
 - one spacer per bracket, with the spacer not more than 50 mm wide; and
 - the back of the gutter installed a minimum of 10 mm below the top of the fascia,
 the acceptable overflow capacity must be 1.5 L/s/m, constructed in accordance with Figure 7.4.6b.

3. For the controlled back gap option, the spacer can be a proprietary clip or bracket that provides the required offset of the gutter from the fascia.

4. For controlled front bead height with the front bead of the gutter installed a minimum of 10 mm below the top of the fascia, the acceptable overflow capacity is 1.5 L/s/m constructed in accordance with Figure 7.4.6c.
Figure 7.4.6c: Construction of controlled front bead height

Figure Notes:
Front bead of gutter to be a minimum of 10 mm below the top of the fascia.

7.4.7 Acceptable dedicated overflow measure per downpipe

(1) For an end-stop weir with—
 (a) a minimum clear width of 100 mm; and
 (b) the weir edge installed a minimum 25 mm below the top of the fascia,
 the acceptable overflow is 0.5 L/s constructed in accordance with Figure 7.4.7a.

(2) An end-stop weir is not suitable where the end-stop abuts a wall.

(3) For an inverted nozzle installed within 500 mm of a gutter high point with—
 (a) a minimum nozzle size of 100 mm × 50 mm positioned lengthways in the gutter; and
 (b) the top of the nozzle installed a minimum of 25 mm below the top of the fascia,
 the acceptable overflow is 1.2 L/s constructed in accordance with Figure 7.4.7b.

(4) For a front face weir with—
 (a) a minimum clear width of 200 mm; and
 (b) a minimum clear height of 20 mm; and
 (c) the weir edge installed a minimum of 25 mm below the top of the fascia,
 the acceptable overflow capacity is 1.0 L/s constructed in accordance with Figure 7.4.7c.

(5) For a rainhead with—
 (a) a 75 mm diameter hole in the outward face of the rainhead; and
 (b) the centreline of the hole positioned 100 mm below the top of the fascia,
 the acceptable overflow capacity is 3.5 L/s constructed in accordance with Figure 7.4.7d.

(6) The rainhead should be detailed to avoid nuisance discharge from the overflow at rainfall intensities below the normal design level.
Figure 7.4.7a: Construction of end-stop weir

Figure 7.4.7b: Construction of inverted nozzle

Figure 7.4.7c: Construction of front face weir

Figure 7.4.7d: Construction of rainhead
Part 7.5 Timber and composite wall cladding

7.5.1 Application of Part 7.5

(1) Compliance with Part 7.5 for wall cladding is achieved if—
 (a) it is installed in accordance with—
 (i) 7.5.2 for timber cladding, including weatherboards and profiled boards; and
 (ii) 7.5.3 for fibre-cement and hardboard wall cladding boards; and
 (iii) 7.5.4 for fibre-cement, hardboard and plywood sheet wall cladding; and
 (b) fibre-cement sheet eaves where provided, are installed in accordance with 7.5.5; and
 (c) openings and penetrations in cladding are flashed in accordance with 7.5.6; and
 (d) the bottom surface of the cladding terminates in accordance with 7.5.7; and
 (e) parapets, where provided, are flashed in accordance with 7.5.8.

(2) Part 7.5 need not be complied with if H1D7(6)(a) is complied with.

Explanatory Information: Masonry wall cladding
Masonry wall cladding, including masonry veneer, is not covered by this Part but is covered by H1D5 and Section 5 of the ABCB Housing Provisions.

Explanatory Information: Alternative wall cladding materials and systems
The provisions of this Part and those of H1D5 and Section 5 (Masonry) of the ABCB Housing Provisions do not cover all of the wall cladding materials that may be used for a Class 1 or Class 10 building.

Wall cladding materials and systems not covered by the Deemed-to-Satisfy Provisions may be considered under a Performance Solution that complies with the relevant Performance Requirements.

One of the Assessment Methods that may be used to demonstrate compliance with the Performance Requirements is the use of documentary evidence in accordance with Part A5.

7.5.2 Timber wall cladding

(1) Timber wall cladding must be installed in accordance with (2), (3), (4) and (5).

(2) Splayed timber weatherboards must be fixed in accordance with Figure 7.5.2a and Figure 7.5.2b and with a lap not less than—
 (a) 30 mm for hardwood, Cypress and treated pine; and
 (b) 20 mm for Western Red Cedar; and
 (c) 25 mm for Baltic Pine.

(3) Profiled timber boards must be—
 (a) fixed in a horizontal, vertical or diagonal direction with the overlap and groove closely fitted, where provided; and
 (b) with tongue and groove profile, fixed with tongue edge up, where they are fixed in a horizontal or diagonal direction; and
 (c) where fixed in a vertical or diagonal direction, provided with a vapour permeable sarking complying with AS/NZS 4200.1 (see Figure 7.5.2c) installed behind boards with—
(i) each adjoining sheet or roll being—
 (A) overlapped not less than 150 mm; or
 (B) taped together; and

(i) sarking fixed to supporting members at not more than 300 mm centres.

(4) Splayed and profiled timber weatherboards must be fixed in accordance with Table 7.5.2, with—
 (a) one fixing at each stud or equivalent framing member for splayed timber weatherboards; and
 (b) one fixing provided at each stud or equivalent framing member for profiled timber boards not more than 130 mm wide; and
 (c) two fixings provided at each stud or equivalent framing member for profiled timber board more than 130 mm wide; and
 (d) fixings located so that the fixing does not penetrate the tip or thinner edge of the board beneath.

(5) Fixings used for timber cladding must comply with the following:
 (a) Where fixings are punched or countersunk and filled prior to painting, fixings must be standard steel flat head nails or standard steel self embedding head screws.
 (b) Uncoated copper or steel fixings must not be used for Western Red Cedar (silicon bronze, monel metal, stainless steel or hot-dipped galvanised are suitable).
 (c) Where the building is located within 200 m of breaking surf, fixings must be—
 (i) stainless steel when fixed into timber framing members; or
 (ii) hot-dipped galvanized (min 600 g/m2) when fixed into steel framing members.
 (d) In all other cases, fixings must be hot-dipped galvanised (min 600 g/m2) flat head nails or hot dipped galvanised (min 600 g/m2) self embedding head or wafer head screws.

Table 7.5.2: Fixing requirements—Splayed and profiled timber weatherboards

<table>
<thead>
<tr>
<th>Design wind speed</th>
<th>Maximum stud spacing (mm)</th>
<th>Minimum nominal stud fixings</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 - N3</td>
<td>600</td>
<td>Timber: 2.8 G or (8-18) S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel: (8-18) S</td>
</tr>
</tbody>
</table>

Table Notes:
1. G = galvanised plain shank, threaded or equivalent nails.
2. S = self embedding head or wafer head screw.
3. Fasteners must penetrate not less than 30 mm into timber frames and not less than two full screw threads through steel frames.
4. Wall cladding may be fixed through timber or metal battens attached to the wall frame in accordance with AS 1684.2, AS 1684.3, AS 1684.4 or NASH standard as appropriate (see fixing requirements for roof battens) so long as the minimum penetration into the wall frame is achieved.
5. Steel framing members must have a base metal thickness (BMT) not less than 1.2 mm that required for a roof batten in NASH standard.
Figure 7.5.2a: Fixing of wall cladding — Timber cladding

- **Shiplap weather board**
 - 25 mm from rebate
 - 25 mm from edge
 - Cladding

- **Splayed weather board**
 - Nail 35 mm from edge
 - Overlap 30 mm for hardwood etc.
 - Full length packing at end of board and over openings as necessary

- **Section at lower part of weatherboard building**
 - Packing
 - Plinth
 - Stump lining

- **Shiplap weather board fixed through batten**
 - Vertical timber batten attached to wall frame
 - Min. 25 mm from rebate
 - Cladding
 - Nail as specified
 - Min. 25 mm from rebate
Fixing of wall cladding — Wall cladding boards

- Timber stud nailing
- Timber stud clip
- Steel stud screwing
- Steel stud clip
- Metal furring channel attached to wall frame
- Steel stud screw through batten
Figure 7.5.2c: Fixing of vertical wall cladding

Explanatory Information: Fixing of wall cladding

7.5.2(4)(d) ensures the fixing of the wall cladding does not split the wall cladding board below. For example, for a 30 mm lap, fix 35 mm from the butt or 5 mm above the corresponding overlapping board (see Figure 7.5.2a).

Explanatory Information: Timber cladding profiles

7.5.2 covers the following types of timber cladding profiles:
- Horizontal bevel-back.
- Horizontal rebated bevel-back.
- Horizontal rusticated.
- Vertical and horizontal shiplap.
- Tongue and groove.

Explanatory Information: Machine and hand driven nails

Table 7.5.2 applies to both machine and hand driven nails.

7.5.3 Wall cladding boards

Wall cladding boards must—

(a) for 7.5 mm (minimum) thick fibre-cement — comply with AS/NZS 2908.2 or ISO 8336; and

(b) for 9.5 mm (minimum) thick hardboard — comply with AS/NZS 1859.4 for exterior grade; and

(c) be fixed in accordance with Table 7.5.3a and Table 7.5.3b with—

(i) one fixing provided at each stud or equivalent framing member for wall cladding boards not more than 130 mm wide; and

(ii) two fixings provided at each stud or equivalent framing member for wall cladding boards greater than 130 mm wide.
mm wide; and
(iii) fixings located along the studs at not more than 100 mm centres; and
(iv) fixings located so that they do not penetrate the tip or thinner edge of the board beneath; and
(d) have a lap not less than—
(i) for 7.5 mm (minimum) thick fibre-cement — 25 mm; or
(ii) for 9.5 mm (minimum) thick hardboard — 20 mm.

Table 7.5.3a: Fixing requirements—Minimum 7.5 mm thick fibre-cement wall cladding boards

<table>
<thead>
<tr>
<th>Design wind speed</th>
<th>Maximum stud spacing (mm)</th>
<th>Minimum nominal stud fixings</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 - N3</td>
<td>600</td>
<td>Timber: 2.8 GC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel: (8-18) S</td>
</tr>
</tbody>
</table>

Table Notes:
1. GC = galvanised fibre-cement nail.
2. S = self embedding or wafer head screw.
3. Fasteners must penetrate not less than 30 mm into timber frames and not less than two full screw threads through steel frames.
4. Steel framing members must have a base metal thickness (BMT) not less than 1.2 mm that required for a roof batten in NASH standard.
5. Wall cladding may be fixed through timber or metal battens attached to the wall frame in accordance with AS 1684.2, AS 1684.3, AS 1684.4 or NASH standard as appropriate (see fixing requirements for roof battens) so long as the minimum penetration into the wall frame is achieved.

Table 7.5.3b: Fixing requirements—Minimum 9.5 mm thick hardboard wall cladding boards

<table>
<thead>
<tr>
<th>Design wind speed</th>
<th>Maximum stud spacing (mm)</th>
<th>Minimum nominal stud fixings</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 - N3</td>
<td>600</td>
<td>Timber: 2.8 GC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel: (8-18) S</td>
</tr>
</tbody>
</table>

Table Notes:
1. GC = galvanised fibre-cement nail.
2. S = self embedding or wafer head screw.
3. Fasteners must penetrate not less than 30 mm into timber frames and not less than two full screw threads through steel frames.
4. Steel framing members must have a base metal thickness (BMT) not less than 1.2 mm that required for a roof batten in NASH standard.
5. Wall cladding may be fixed through timber or metal battens attached to the wall frame in accordance with AS 1684.2, AS 1684.3, AS 1684.4 or NASH standard as appropriate (see fixing requirements for roof battens) so long as the minimum penetration into the wall frame is achieved.

Explanatory Information:
Where the wall cladding boards contain a shiplap join as opposed to a lapped join, 7.5.3(d) does not apply, and the joins between the boards are required to have the overlap and groove closely fitted.

7.5.4 Sheet wall cladding

(1) Fibre-cement sheet wall cladding must—
(a) comply with AS/NZS 2908.2 or ISO 8336; and

(b) be fixed in accordance with Table 7.5.4a.

(2) Hardboard sheet wall cladding must—

(a) comply with AS/NZS 1859.4 for exterior grade; and

(b) be fixed in accordance with Table 7.5.4b.

(3) Structural plywood wall cladding must—

(a) comply with AS/NZS 2269.0; and

(b) be fixed in accordance with Table 7.5.4c.

Table 7.5.4a: Stud and fixing spacings for 6 mm fibre-cement sheet wall cladding

<table>
<thead>
<tr>
<th>Design wind speed</th>
<th>Maximum stud spacing (mm)</th>
<th>Maximum nail spacing within 1.2 m of the external corners of the building (mm) Note 1</th>
<th>Maximum nail spacing elsewhere (mm) Note 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>≤ 1.2 m of external building corners: 600 Elsewhere: 600</td>
<td>Body: 300, Edges: 200</td>
<td>Body: 300, Edges: 200</td>
</tr>
<tr>
<td>N2</td>
<td>≤ 1.2 m of external building corners: 600 Elsewhere: 600</td>
<td>Body: 200, Edges: 200</td>
<td>Body: 300, Edges: 200</td>
</tr>
<tr>
<td>N3</td>
<td>≤ 1.2 m of external building corners: 450 Elsewhere: 600</td>
<td>Body: 200, Edges: 200</td>
<td>Body: 200, Edges: 200</td>
</tr>
</tbody>
</table>

Table Notes:
1. Maximum nail spacing using 2.8 mm fibre-cement nails.
2. Fixings must be located not less than 50 mm from the edge of all corners.
3. Fasteners must penetrate not less than 30 mm into a timber frame.
4. Wall cladding may be fixed through timber or metal battens attached to the wall frame in accordance with AS 1684.2, AS 1684.3, AS 1684.4 or NASH standard as appropriate (see fixing requirements for roof battens) so long as the minimum penetration into the wall frame is achieved.

Table 7.5.4b: Stud and fixing spacings for 9.5 mm thick hardboard sheet wall cladding

<table>
<thead>
<tr>
<th>Design wind speed</th>
<th>Maximum stud spacing (mm)</th>
<th>Maximum nail spacing within 1.2 m of the external corners of the building (mm) Note 1</th>
<th>Maximum nail spacing elsewhere (mm) Note 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>600</td>
<td>Body: 300, Edges: 150</td>
<td>Body: 300, Edges: 150</td>
</tr>
<tr>
<td>N2</td>
<td>600</td>
<td>Body: 300, Edges: 150</td>
<td>Body: 300, Edges: 150</td>
</tr>
<tr>
<td>N3</td>
<td>600</td>
<td>Body: 300, Edges: 150</td>
<td>Body: 300, Edges: 150</td>
</tr>
</tbody>
</table>

Table Notes:
1. Maximum nail spacing using 2.8 mm galvanised clouts or flat head nails.
2. Fixings must be positioned a minimum of 12 mm from the edge of the sheet and not less than 50 mm from the edge of all corners.
3. Fasteners must penetrate not less than 30 mm into the timber frame.
4. Wall cladding may be fixed through timber or metal battens attached to the wall frame in accordance with AS 1684.2, AS 1684.3, AS 1684.4 or NASH standard as appropriate (see fixing requirements for roof battens) so long as the minimum penetration into the wall frame is achieved.
Table 7.5.4c: Stud and fixing spacings for plywood wall cladding equal to or greater than 6.5 mm thick

<table>
<thead>
<tr>
<th>Design wind speed</th>
<th>Maximum stud spacing (mm)</th>
<th>Maximum nail spacing within 1.2 m of the external corners of the building (mm) Note 1</th>
<th>Maximum nail spacing elsewhere (mm) Note 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>600</td>
<td>Body: 200, Edges: 100</td>
<td>Body: 200, Edges: 150</td>
</tr>
<tr>
<td>N2</td>
<td>600</td>
<td>Body: 200, Edges: 100</td>
<td>Body: 200, Edges: 150</td>
</tr>
<tr>
<td>N3</td>
<td>600</td>
<td>Body: 150, Edges: 100</td>
<td>Body: 200, Edges: 150</td>
</tr>
</tbody>
</table>

Table Notes:
1. Maximum nail spacing using 2.8 mm or 3.5 mm galvanised clouts or flat head nails.
2. Fixings must be positioned a minimum of 12 mm from the edge of the sheet and not less than 50 mm from the edge of all corners.
3. Fasteners must penetrate not less than 30 mm into the timber frame.
4. Wall cladding may be fixed through timber or metal battens attached to the wall frame in accordance with AS 1684.2, AS 1684.3, AS 1684.4 or NASH standard as appropriate (see fixing requirements for roof battens) so long as the minimum penetration into the wall frame is achieved.

Explanatory Information:
Where sheet bracing is also acting as structural bracing, fixing requirements are listed in AS 1684 and NASH Standard – Residential and Low-Rise Steel Framing, Part 2.

7.5.5 Eaves and soffit linings

Where provided, external fibre-cement sheets and linings used as eaves and soffit linings must—

(a) comply with AS/NZS 2908.2 or ISO 8336; and

(b) be fixed in accordance with Table 7.5.5 and Figure 7.5.5 using—

(i) 2.8 × 30 mm fibre-cement nails; or

(ii) No. 8 wafer head screws (for 4.5 mm and 6 mm sheets only); or

(iii) No. 8 self embedding head screws (for 6 mm sheets only).

Table 7.5.5: Trimmer and fastener spacings for 4.5 mm and 6 mm fibre-cement eaves and soffit linings

<table>
<thead>
<tr>
<th>Maximum eaves width</th>
<th>Design wind speed</th>
<th>Maximum trimmer spacings (mm)</th>
<th>Maximum fastener spacings (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Within 1200 mm of the external corners of the building</td>
<td>Elsewhere</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elsewhere</td>
<td>Within 1200 mm of the external corners of the building</td>
</tr>
<tr>
<td>600</td>
<td>N1</td>
<td>600</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>N3</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>1200</td>
<td>N1</td>
<td>600</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>600</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>N3</td>
<td>500</td>
<td>650</td>
</tr>
</tbody>
</table>
Figure 7.5.5: Eaves trimmer detail

(a) Masonry-veneer construction
(b) Clad frame construction

7.5.6 Flashings to wall openings

[2019: 3.5.4.6]

Openings in external wall cladding exposed to the weather must be flashed with materials complying with AS/NZS 2904 and in accordance with the following:

(a) Flashings must be provided to bottom, tops and sides of openings, except as permitted by (d), and must be installed so that the flashing—
(i) extends not less than 110 mm beyond the reveals on each side of the opening where practicable; and
(ii) is attached to the window and wall framing; and
(iii) at the top and bottom of the opening, drains to the outside face of the wall or cladding.

(b) Joins in the flashing must—
(i) overlap by not less than 75 mm in the direction of flow; and
(ii) be securely fastened at intervals of not more than 40 mm; and
(iii) have sealant installed between laps.

(c) The method of flashing must be suitable for the framing and cladding used and any reveal for the window or door system or any architrave or finishing trims that may be installed.

(d) The top of an opening need not be flashed where it is adequately protected by an eave of a width more than 3 times the height of the cladding above the opening (See Figure 7.5.6).

(e) Flashings must be securely fixed at least 25 mm under the cladding and extend over the ends and edges of the framing of the opening.
Explanatory Information:

7.5.6(a)(i) applies ‘where practicable’ because it is often impractical to extend the flashing 110 mm beyond the reveal; for example, where openings are positioned adjacent to a corner or where two windows are within 110 mm of each other. In such cases consideration should be given to ensure the flashing prevents the penetration of water into the external wall.

7.5.7 Clearance between cladding and ground

(1) The minimum clearance from the bottom of the wall cladding to the adjoining finished ground level must be—
 (a) 100 mm in low rainfall intensity areas or sandy, well-drained areas; or
 (b) 50 mm above impermeable (paved or concreted) areas that slope away from the building in accordance with 3.3.3(a); or
 (c) 150 mm in any other case.

(2) Wall cladding must extend a minimum of 50 mm below the bearer or lowest horizontal part of the suspended floor framing.
7.5.8 Parapet cappings

Where a wall cladding is used to form a parapet wall, the cladding must be attached to a supporting frame and have a capping installed that complies with the following:

(a) Cappings must—
 (i) be purpose made, machine-folded sheet metal or equivalent sections of a material compatible with all up and downstream metal roof covering materials in accordance with 7.2.2(2); and
 (ii) extend not less than 50 mm down the sides of the parapet; and
 (iii) be separated from the supporting framing by a vapour permeable sarking installed in accordance with (f); and
 (iv) be fixed with either self drilling screws or rivets with rubber washers at intervals of not more than 500 mm that do not penetrate the top of cappings, except at joints and corners.

(b) The top of the capping must slope a minimum of 5 degrees.

(c) Joints in cappings must—
 (i) overlap by not less than 50 mm in the direction of flow; and
 (ii) be securely fastened at intervals of not more than 40 mm; and
 (iii) have sealant installed between laps.

(d) Fixing for cappings must be compatible with the capping material.

(e) Lead cappings must not be used with prepainted steel or zinc/aluminium steel or on any roof if the roof is part of a potable (drinking) water catchment area.

(f) Sarking must comply with AS/NZS 4200.1 and be installed behind all wall cladding where parapets are installed, with—
 (i) each adjoining sheet or roll being—
 (A) overlapped not less than 150 mm; or
 (B) taped together; and
 (ii) sarking fixed to supporting members at not more than 300 mm centres.

Explanatory Information:
For the purposes of 7.5.8(f), sarking is required to be installed to the whole external wall which contains the parapet and extend to the top and back of the parapet. A gap should be provided between the sarking and the parapet capping to help control condensation.
8 Glazing

Part 8.1 Scope and application of Section 8
8.1.1 Scope
8.1.2 Application

Part 8.2 Glazing Windows and external glazed doors
8.2.1 Application of Part 8.2
8.2.2 Glazing sizes and installation
8.2.3 Installation of windows
8.2.4 Fully framed glazing installed in perimeter of buildings
8.2.5 Fixings
8.2.6 Number of fixings
8.2.7 Flashings

Part 8.3 Glass
8.3.1 Application of Part 8.3
8.3.2 Glazing sizes and installation
8.3.3 Fully framed glazing installed in perimeter of buildings

Part 8.4 Human impact safety requirements for glazing
8.4.1 Application of Part 8.4
8.4.2 Doors
8.4.3 Door side panels
8.4.4 Full height framed glazed panels
8.4.5 Glazed panels, other than doors or side panels, on the perimeter of rooms
8.4.6 Bathroom, ensuite and spa room and splash-black glazing
8.4.7 Visibility of glazing
8.4.8 Identification of safety glass
8.1.1 Scope

This Section of the ABCB Housing Provisions sets out the Deemed-to-Satisfy Provisions for—

(a) glazing windows and external glazed doors (see Part 8.2); and
(b) glass (see Part 8.3); and
(c) human impact safety requirements for glazing (see Part 8.4). Part 8.3).

Explanatory Information:

These provisions relate to the design, manufacture and installation of windows in external walls and the use of glass in Class 1 and 10 buildings. The selection of glass in Part 8.3 applies to other assemblies that may not be in an external wall of a Class 1 or 10 building.

The terms windows and glazed assemblies are used throughout Section 8. The term window is defined in the NCC and relates to a device which is capable of transmitting natural light directly from outside a building or room when it is in the closed position. This is distinct from glazed assemblies which may also include elements located in internal parts of a building. These may be glazed panels, splash-backs, mirrors, shower screens or window-type assemblies that are not subject to wind loads and weatherproofing requirements.

A number of other parts of NCC Volume Two and the ABCB Housing Provisions also contain requirements relating to glazing in addition to this Part. They include:

- H1D5 and Part 5.2 of the ABCB Housing Provisions for flashing material requirements.
- H7D2 for glazed barriers for swimming pool enclosures.
- H7D4 for windows in buildings in designated bushfire prone areas.
- Part 13.3 of the ABCB Housing Provisions for glazing subject to energy efficiency requirements.

8.1.2 Application

The application of Section 8 of the ABCB Housing Provisions is subject to the following:

(a) The Governing Requirements of NCC 2022 Volume Two.
(b) The State and Territory variations, additions and deletions contained in the Schedules to the ABCB Housing Provisions and NCC Volume Two.

Explanatory Information:

In NCC 2019, the content of Section 8 of the ABCB Housing Provisions (other than content added in NCC 2022 or later) was contained in the acceptable construction practice for Part 3.6 of NCC 2019 Volume Two.
8.2.1 Application of Part 8.2

(1) Part 8.2 applies subject to the limitations set out at H1D8(3) H1D8(1) and (2).

(2) Part 8.2 need not be complied with if H1D8(1) or (2) H1D8(2)(a) is complied with.

(3) Glazed assemblies subject to this Part must comply with—
 (a) 8.2.2 for the installation of windows; and
 (b) 8.2.3 for fixings; and
 (c) 8.2.4 for the number of fixings; and
 (d) 8.2.5 for flashings.

Explanatory Information:
This Part applies to the selection of glass only and does not include the installation of windows or framed glazed doors. This is due to window systems relying on the design and testing of structural system members to withstand wind loads (e.g. mullions, transom, and meeting rails and stiles) and the perimeter frame design, sealants and gaskets to resist water penetration.

This Part does not cover the installation of assemblies that are internal or revolving doors, fixed louvres, skylights, rooflights and windows not installed in the vertical plane, windows in greenhouses or horticultural buildings or frameless sliding doors.

The term ‘one piece framing’ in H1D8(1)(d) generally refers to glazing installed in the external wall of a building where the external fabric is forming the frame.

8.2.2 Glazing sizes and installation

Glazing used in buildings must comply with the following:
 (a) Glazing used in the perimeter of buildings and supported on all sides must comply with the appropriate provisions listed in 8.2.3.
 (b) Glazing used in areas where the potential for human impact could occur must comply with the appropriate provisions listed in 8.3.1.
 (c) For 3 mm monolithic annealed glass, the maximum area must not be more than 0.85 m².
 (d) For 3 mm annealed glass used in Insulated Glass Units (IGU), the maximum area must not be more than 1.36 m².
 (e) All exposed edges must have sharp edges removed.

Explanatory Information:
An Insulated Glass Unit consists of two or more panes of glass spaced apart and factory sealed with dry air or special gases in the cavity. The term is often abbreviated to IGU.

The selection of glass thickness relies not just on limit state wind loads but on a number of geometric criteria that include the influence of aspect ratio and slenderness factors. These factors are taken into account in Tables 8.2.3a, 8.2.3b and 8.2.3c.
8.2.2 Installation of windows

Windows must be installed in accordance with the following:

(a) Window assemblies are to be fixed in accordance with 8.2.3 and 8.2.4.
(b) Structural building loads must not be transferred to the window assembly.
(c) A minimum 10 mm gap must be provided between the top of the window assembly and any loadbearing framing or masonry wall element.
(d) The requirements of (c) may be increased where necessary to allow for frame settlement over wide openings.
(e) Gaps between the window assembly and the adjoining walls, sills or heads must be sealed with a flexible material to prevent the ingress of water.
(f) Packing, if provided between each window assembly and the frame, must be—
 (i) located along each side and bottom; and
 (ii) fixed to ensure the sides and bottom of the window assembly remain straight; and
 (iii) clear of any flashing material.
(g) Where aluminium sills may come into contact with masonry, they must be separated to prevent corrosion.
(h) Window assemblies must be flashed in accordance with 8.2.5.

Explanatory Information:

It is important for windows to be fixed correctly in the external frame or wall of a building to prevent buckling, diagonal distortion or twisting that may compromise weathertightness around the perimeter of the opening. Correct installation is also critical to ensure windows resist design wind pressures that the external walls of the building are subject to over its expected life. Consideration should be given to any additional details for systems designed specifically to meet acoustic or energy efficiency requirements.

Window assemblies should be installed so they are as close as possible to being perpendicular with the vertical and horizontal planes and where all corners form right-angles, have equal distances when measured diagonally to ensure they are square.

A gap provided between the top of the assembly and the external wall frame will allow for settlement after construction and prevent the transfer of structural loads. Where packing is used between the openings in the external wall and the window assembly, it should be of a material that is compatible with both the frame and the window assembly. It should also be positioned and fixed to stay in place permanently and ensure the sides and sills remain straight.

Where aluminium sills of a window assembly may contact masonry, particularly mortar, an isolating material such as bituminous membranes or paints and caulking compounds containing zinc chromates should be used. Care must be taken to minimise any gaps between sills and external skins to prevent excessive ingress of water.

Explanatory Figure 8.2.2 provide guidance on the installation of windows and positioning of relevant fixing points.
8.2.3 Fully framed glazing installed in perimeter of buildings

Fully framed (supported on all sides) ordinary annealed glass (including annealed patterned glass) installed in the perimeter of buildings must comply with—

(a) if the building is located in an area with a wind class not exceeding N1—Table 8.2.3a; or
(b) if the building is located in an area with a wind class not exceeding N2—Table 8.2.3b; or
(c) if the building is located in an area with a wind class not exceeding N3—Table 8.2.3c.

Table 8.2.3a: Glass thickness for wind class not exceeding N1: ordinary annealed glass (mm)

<table>
<thead>
<tr>
<th>Edge (mm)</th>
<th>200</th>
<th>450</th>
<th>600</th>
<th>750</th>
<th>900</th>
<th>1050</th>
<th>1200</th>
<th>1260</th>
<th>1500</th>
<th>1650</th>
<th>1800</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>450</td>
<td>3</td>
</tr>
<tr>
<td>600</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>750</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>900</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1050</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1200</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1260</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1500</td>
<td>4</td>
</tr>
<tr>
<td>1650</td>
<td>4</td>
</tr>
<tr>
<td>1800</td>
<td>4</td>
</tr>
<tr>
<td>2000</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure Notes:
Fixings to be in accordance with 8.2.4.
Table 8.2.3b: Glass thickness for wind class not exceeding N2: ordinary annealed glass (mm)

<table>
<thead>
<tr>
<th>Edge (mm)</th>
<th>300</th>
<th>450</th>
<th>600</th>
<th>750</th>
<th>900</th>
<th>1050</th>
<th>1200</th>
<th>1350</th>
<th>1500</th>
<th>1650</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1650</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1800</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1950</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2100</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2250</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2400</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2550</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2700</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 8.2.3c: Glass thickness for wind class not exceeding N3: ordinary annealed glass (mm)

<table>
<thead>
<tr>
<th>Edge (mm)</th>
<th>300</th>
<th>450</th>
<th>600</th>
<th>750</th>
<th>900</th>
<th>1050</th>
<th>1200</th>
<th>1350</th>
<th>1500</th>
<th>1650</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>450</td>
<td>3</td>
</tr>
<tr>
<td>600</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>750</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>900</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1050</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1200</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1350</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1500</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1650</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1800</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2000</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2150</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2400</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2550</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2700</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Explanatory Information:
1. For other types of perimeter glazing including toughened, wired, laminated and unframed glazing refer to AS 1288.
2. For ordinary annealed patterned glass thickness measurement refer to AS 1288.

8.2.3 Fixings

Fixings used in 8.2.4 must be—
(a) positioned as evenly as practicable around the window assembly; and
(b) at a distance from the edge of framing, brick or block masonry that is not less than five times their shaft diameter, and if fitted into—
 (i) timber or masonry walls, be embedded into the frame to a minimum of ten times the diameter of the fixing; and
 (ii) lightweight steel frames, be positioned in accordance with NASH Standard Part 2; and
(c) galvanised plain shank, threaded or equivalent nails or self embedding head or wafer head screws; and
(d) where the building is located within 200 m of breaking surf—
 (i) for nails, stainless steel when fixed into timber members; or
 (ii) in all other cases, hot-dipped galvanised (min. 350 g/m2) nails or hot-dipped galvanised (min. 350 g/m2) selfembedding head or wafer head screws.

Explanatory Information: Edge distance of fixings

The edge distance of fixings can be calculated using the following formula:

\[e \geq 5D \]

Where—
- \(e \) = distance from the edge of timber frame or masonry wall member
- \(D \) = diameter of main shaft of nail or screw.

For example, for a window using 7 mm masonry screw (anchor) into a masonry wall element:

\[e \geq 5 \times 7 \text{ mm} \]

therefore, \(e \geq 35 \text{ mm} \), as depicted in Explanatory Figure 8.2.3a, where the distance from the edge of the masonry wall element the fixing is being placed into must be at least 35 mm. This distance can be from either of the edges of the masonry wall element to suit the width of the window assembly frame.
Figure 8.2.3a (explanatory): Example of 7 mm masonry screw into masonry wall element

Explanatory Information: Embedment
The embedment depth of fixings to comply with 8.2.3(b)(i) can be calculated using the following formula:

\[E \geq 10D \]

where—
\[E = \text{embedment} \]
• = diameter of nail or screw
For example, for a window using 2.8 mm diameter nails into a timber frame—

\[E \geq 10 \times 2.8 \]

therefore, \(E \geq 28 \) mm, as depicted in Explanatory Figure 8.2.3b.

The embedment of the 2.8 mm nails into the timber jamb studs forming the framed opening of the window will need to be a minimum of 28 mm. The nail length will need to be established giving consideration to the calculated embedment depth, thickness of the window assembly jambs and the distance between the timber jamb stud and the window jamb after packing.

Figure 8.2.3b (explanatory): Example of window using 2.8 mm nails into a timber frame

8.2.4 **Number of fixings**

The minimum number fixings for windows must comply with, if the building is in an area with a wind speed not exceeding—

(a) N1 — Tables 8.2.4a, 8.2.4b or 8.2.4c; or

(b) N2 — Tables 8.2.4d, 8.2.4e or 8.2.4f; or

(c) N3 — Tables 8.2.4g, 8.2.4h or 8.2.4i.

Table 8.2.4a: Number of fixings for wind class N1 with 2.8 mm diameter nails into timber frames

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>600</th>
<th>900</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>2400</th>
<th>2700</th>
<th>3000</th>
<th>3300</th>
<th>3600</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>900</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>1200</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>
Table 8.2.4b: Number of fixings for wind class N1 with 10 gauge screw fixings into timber frames

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>600</th>
<th>900</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>2400</th>
<th>2700</th>
<th>3000</th>
<th>3300</th>
<th>3600</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>4</td>
</tr>
<tr>
<td>900</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>1200</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>1500</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>1800</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>2100</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>2400</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2700</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3000</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

Table Notes: Where the entire window is more than 1200 mm away from any corner of the building, the number of fixings may be reduced by 40%.

Table 8.2.4c: Number of fixings for wind class N1 with 10 gauge screw fixings into lightweight steel frames

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>600</th>
<th>900</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>2400</th>
<th>2700</th>
<th>3000</th>
<th>3300</th>
<th>3600</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>4</td>
</tr>
<tr>
<td>900</td>
<td>4</td>
</tr>
<tr>
<td>1200</td>
<td>4</td>
</tr>
<tr>
<td>1500</td>
<td>4</td>
</tr>
<tr>
<td>1800</td>
<td>4</td>
</tr>
<tr>
<td>2100</td>
<td>4</td>
</tr>
<tr>
<td>2400</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2700</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3000</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

Table Notes: Where the entire window is more than 1200 mm away from any corner of the building, the number of fixings may be reduced by 40%.
Table 8.2.4d: Number of fixings for wind class N2 with 2.8 mm diameter nails into timber frames

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>600</th>
<th>900</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>2400</th>
<th>2700</th>
<th>3000</th>
<th>3300</th>
<th>3600</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>900</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>1200</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>1500</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>1800</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>2100</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>2400</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>2700</td>
<td>6</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>28</td>
<td>32</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>3000</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>16</td>
<td>19</td>
<td>20</td>
<td>22</td>
<td>26</td>
<td>28</td>
<td>32</td>
<td>32</td>
<td>38</td>
</tr>
</tbody>
</table>

Table Notes: Where the entire window is more than 1200 mm away from any corner of the building, the number of fixings may be reduced by 40%.

Table 8.2.4e: Number of fixings for wind class N2 with 10 gauge screw fixings into timber frames

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>600</th>
<th>900</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>2400</th>
<th>2700</th>
<th>3000</th>
<th>3300</th>
<th>3600</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>900</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>1200</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>1500</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>1800</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>2100</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>2400</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>28</td>
<td>32</td>
<td>36</td>
</tr>
</tbody>
</table>

Table Notes: Where the entire window is more than 1200 mm away from any corner of the building, the number of fixings may be reduced by 40%.

Table 8.2.4f: Number of fixings for wind class N2 with 10 gauge screw fixings into lightweight steel frames

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>600</th>
<th>900</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>2400</th>
<th>2700</th>
<th>3000</th>
<th>3300</th>
<th>3600</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>4</td>
</tr>
<tr>
<td>900</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>1200</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>1500</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>1800</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>2100</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>2400</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>
Table 8.2.4g: Number of fixings for wind class N3 with 2.8 mm diameter nails into timber frames

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>600</th>
<th>900</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>2400</th>
<th>2700</th>
<th>3000</th>
<th>3300</th>
<th>3600</th>
</tr>
</thead>
<tbody>
<tr>
<td>2700</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>3000</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
Where the entire window is more than 1200 mm away from any corner of the building, the number of fixings may be reduced by 40%.

Table 8.2.4h: Number of fixings for wind class N3 with 10 gauge screw fixings into timber frames

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>600</th>
<th>900</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>2400</th>
<th>2700</th>
<th>3000</th>
<th>3300</th>
<th>3600</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>900</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>1200</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>1500</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>1800</td>
<td>6</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>2100</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>2400</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>44</td>
<td>48</td>
<td>54</td>
</tr>
<tr>
<td>2700</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>44</td>
<td>48</td>
<td>54</td>
<td>58</td>
</tr>
<tr>
<td>3000</td>
<td>10</td>
<td>16</td>
<td>20</td>
<td>26</td>
<td>30</td>
<td>34</td>
<td>40</td>
<td>44</td>
<td>50</td>
<td>54</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
Where the entire window is more than 1200 mm away from any corner of the building, the number of fixings may be reduced by 40%.
Table 8.2.4i: Number of fixings for wind class N3 with 10 gauge screw fixings into lightweight steel frames

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>600</th>
<th>900</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>2400</th>
<th>2700</th>
<th>3000</th>
<th>3300</th>
<th>3600</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2700</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
Where the entire window is more than 1200 mm away from any corner of the building, the number of fixings may be reduced by 40%.

Explanatory Information: Intent
The intent of Tables 8.2.4a to 8.2.4i is to provide the number of fixings required for different sizes of windows in varying external wall types for wind classes N1, N2 and N3.

Explanatory Information: Number of fixings
The number of fixings set out in Tables 8.2.4a to 8.2.4i refer to the number for each window rather than for each side, top and bottom face.

The number of fixings per window is dependent on the wind classification of the site, Ultimate Limit State (ULS) wind pressure set out in AS 4055, window dimensions and diameter of fixings. AS 4055 has higher ULS wind pressures for parts of external walls within 1200 mm of external corners. The number of fixings in the tables are based on these higher ULS wind pressures and can be used for windows in the general length of walls and where 25% or more of the width of a single panel of a window is within 1200 mm of an external corner.

Explanatory Information: Size of fixings
For each wind classification, Tables 8.2.4a to 8.2.4i provide the minimum number of 2.8 mm nail and 10 gauge screw fixings for windows. These sizes have been included as they represent a common range of fixings used in residential construction however, larger or smaller fixings can also be used. Where the diameter sizes selected are greater than those included in the tables, their use is still permissible under this Part and will result in a conservative solution.

In cases where windows are to be fixed to masonry walls, installers should refer to masonry insert manufacturers’ documentation.

Where diameter sizes selected are less than those included in the tables, they will be required to demonstrate compliance with the relevant Performance Requirements. The Performance Solution used can be achieved by using one or a combination of the Assessment Methods in A2G2.

8.2.5 Flashings

Windows in external walls must—
(a) be flashed in accordance with 5.2.8(3) and 7.5.6; and
(b) for masonry veneer, comply with Figures 8.2.5a and 8.2.5b; and
(c) for cavity masonry, comply with Figures 8.2.5c and 8.2.5d; and

(d) for walls clad in accordance with Part 7.5, comply with Figures 8.2.5e and 8.2.5f.

Figure 8.2.5a: Flashing locations — masonry veneer: window

[Diagram showing flashing locations: Head flashing, Lintel, Internal lining, Architrave, Weepholes, Reveal fixed to lintel, Sarking overlaps head flashing, Jamb flashing overlaps sarking, Alternate sill flashing position, 10mm clearance, Internal wall lining.]

[Diagram showing internal lining, Architrave, Sarking, Weepholes, Sill flashing, Sarking.]
Figure Notes:

1. Head flashing to be in accordance with 8.2.5.
2. Weepholes to be in accordance with 5.7.5.
3. Reveal to be fixed to lintel in accordance with 8.2.2.
4. Sill flashing to be in accordance with 8.2.5.
Figure 8.2.5b: Flashing locations — masonry veneer: door

- Sarking overlaps head flashing
- Head flashing
- Lintel
- Internal lining
- Architrave
- Reveal fixed to lintel
- 10mm clearance
- Weepholes

Figure Notes:
1. Head flashing to be in accordance with 8.2.5.
2. Weepholes to be in accordance with 5.7.5.
3. Reveal to be fixed to lintel in accordance with 8.2.2.
4. Jamb flashing to be in accordance with 8.2.5.

Figure 8.2.5c: Flashing locations — cavity masonry: window

- **Head flashing**
- **Outside skin**
- **Inside skin**
- **Weepholes**

![Diagram of flashing locations for cavity masonry: window](image_url)
<table>
<thead>
<tr>
<th>Figure Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Head flashing to be in accordance with 8.2.5.</td>
</tr>
<tr>
<td>2. Weepholes to be in accordance with 5.7.5.</td>
</tr>
<tr>
<td>3. Jamb flashing to be in accordance with 8.2.5.</td>
</tr>
<tr>
<td>4. Sill flashing to be in accordance with 8.2.5.</td>
</tr>
</tbody>
</table>
Figure 8.2.5d: Flashing locations — cavity masonry: door

Figure Notes:
1. Head flashing to be in accordance with 8.2.5.
2. Weepholes to be in accordance with 5.7.5.
3. Jamb flashing to be in accordance with 8.2.5.
4. Sill flashing to be in accordance with 8.2.5.

Figure 8.2.5e: Flashing locations — clad timber frame: window

- Sarking overlaps head flashing
- Cladding
- Internal wall lining
- Architrave
- Head flashing
- 10mm clearance
- Internal wall cladding
- Architrave
- Sarking
- Jamb flashing overlaps sarking
- Outside cladding
- Architrave
- Sill flashing
- Internal wall lining
Figure Notes:
Flashing to be in accordance with 8.2.5.

Figure 8.2.5f: Flashing locations — clad timber frame: door

- Sarking overlaps head flashing
- Lintel
- Internal wall lining
- Architrave
- 10mm clearance
- Sill flashing
- Cladding
- Jamb flashing
- Internal wall cladding
- Sarking
- Outside cladding
- Joist
- Architrave
Figure Notes:
Flashing to be in accordance with 8.2.5.
8.3.1 Application of Part 8.3

(4) The thickness and type of glazing installed in areas of a building that have a high potential for human impact (an area of a building frequented by the occupants during everyday activities in which a person could fall into or against the glazed panel) must comply as follows:

(a) Doors — in accordance with 8.3.2.
(b) Door side panels — in accordance with 8.3.3.
(c) Full height glass panels — in accordance with 8.3.4.
(d) Glazed panels, other than doors or side panels, on the perimeter of rooms — in accordance with 8.3.5.
(e) Bathrooms, ensuite and spa room glazing — in accordance with 8.3.6.
(f) Visibility of glazing — in accordance with 8.3.7.

(1) Glazing must comply with the following:

(a) 8.3.2 for glass sizes and installation.
(b) 8.3.3 for fully framed glazing installed in the perimeter of buildings.
(c) Part 8.4 for glazed assemblies subject to human impact.
(d) Glass used must be of a type within the scope of AS 1288.
(e) Glass used in barriers, except a window serving as a barrier, must withstand loading forces in accordance with AS 1170.1.
(f) Safety glass must be—
 (i) legibly marked in accordance with 8.4.7; and
 (ii) made visible in accordance with 8.4.8.

Explanatory Information:

1. This Part applies to the selection of glass only and does not include the installation of windows or framed glazed doors. This is due to window systems relying on the design and testing of structural members to withstand wind loads (e.g. mullions, transoms, and meeting rails and stiles) and the perimeter frame design, sealants and gaskets to resist water penetration.

2. This Part does not cover glazing in assemblies that are constructed on site and are architectural one-off windows which are not design tested in accordance with AS 2047 or other assemblies that are second-hand, reused, recycled or heritage.

3. Information on design wind speed for particular areas may be available from the appropriate authority.

4. For glazing in high wind areas, refer to Part 2.2.

8.2.3.2 Glazing sizes and installation

[2019: 3.6.2]

Glazing used in buildings must comply with the following:

(a) Glazing used in the perimeter of buildings and supported on all sides must comply with the appropriate provisions listed in 8.2.3.3.

(b) Glazing used in areas where the potential for human impact could occur must comply with the appropriate provisions listed in 8.3.4 Part 8.4.

(c) For 3 mm monolithic annealed glass, the maximum area must not be more than 0.85 m².
(d) For 3 mm annealed glass used in Insulated Glass Units (IGU), the maximum area must not be more than 1.36 m².

(e) All exposed edges must have sharp edges removed.

Explanatory Information:
An Insulated Glass Unit consists of two or more panes of glass spaced apart and factory sealed with dry air or special gases in the cavity. The term is often abbreviated to IGU.

The selection of glass thickness relies not just on limit state wind loads but on a number of geometric criteria that include the influence of aspect ratio and slenderness factors. These factors are taken into account in Tables 8.2.3a, 8.2.3b and 8.2.3c.

8.2.3.3 Fully framed glazing installed in perimeter of buildings

[2019: 3.6.3]

Fully framed (supported on all sides) ordinary monolithic annealed glass (including annealed patterned glass) installed in the perimeter of buildings must comply with—

(a) if the building is located in an area with a wind class not exceeding N1 – Table 8.3.3a Table 8.2.3a Table 8.3.3a,

(b) if the building is located in an area with a wind class not exceeding N2 – Table 8.3.3b Table 8.2.3b,

(c) if the building is located in an area with a wind class not exceeding N3 – Table 8.3.3c Table 8.2.3c.

<table>
<thead>
<tr>
<th>Table 8.2.3a 8.3.3a: Glass thickness for wind class not exceeding N1: ordinary monolithic annealed glass (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge (mm)</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>450</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>750</td>
</tr>
<tr>
<td>900</td>
</tr>
<tr>
<td>1050</td>
</tr>
<tr>
<td>1200</td>
</tr>
<tr>
<td>1350</td>
</tr>
<tr>
<td>1500</td>
</tr>
<tr>
<td>1650</td>
</tr>
<tr>
<td>1800</td>
</tr>
<tr>
<td>1950</td>
</tr>
<tr>
<td>2100</td>
</tr>
<tr>
<td>2250</td>
</tr>
<tr>
<td>2400</td>
</tr>
<tr>
<td>2550</td>
</tr>
<tr>
<td>2700</td>
</tr>
</tbody>
</table>
Table 8.2.3b: Glass thickness for wind class not exceeding N2: ordinary monolithic annealed glass (mm)

<table>
<thead>
<tr>
<th>Edge (mm)</th>
<th>300</th>
<th>450</th>
<th>600</th>
<th>750</th>
<th>900</th>
<th>1050</th>
<th>1200</th>
<th>1350</th>
<th>1500</th>
<th>1650</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>450</td>
<td>3</td>
</tr>
<tr>
<td>600</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>750</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>900</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1050</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1200</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1350</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1500</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1650</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1800</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1950</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2100</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2250</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2400</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2550</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2700</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 8.2.3c: Glass thickness for wind class not exceeding N3: ordinary monolithic annealed glass (mm)

<table>
<thead>
<tr>
<th>Edge (mm)</th>
<th>300</th>
<th>450</th>
<th>600</th>
<th>750</th>
<th>900</th>
<th>1050</th>
<th>1200</th>
<th>1350</th>
<th>1500</th>
<th>1650</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>450</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>600</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>750</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>900</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1050</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1200</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1350</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1500</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1650</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1800</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1950</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2100</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2250</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2400</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2550</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2700</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Explanatory Information:

1. For other types of perimeter glazing including toughened, wired, laminated and unframed glazing and insulated glass units, refer to AS 1288.

2. For ordinary monolithic annealed patterned glass thickness measurement refer to AS 1288.

3. The thickness of glass in Tables 8.3.3a, 8.3.3b and 8.3.3c is dependent on the wind classification of the site, Ultimate Limit State (ULS) wind pressure set out in AS 4055, and the dimensions of the glass panel. AS 4055 has higher ULS wind pressures for parts of external walls within 1200 mm of external corners. The thickness of glass in Tables 8.3.3a, 8.3.3b and 8.3.3c is based on these higher ULS wind pressures and can also be used for glass in the general length of walls.
8.4.1 Application of Part 8.4

(1) Part 8.4 applies subject to the limitations set out at H1D8(1).

(2) Part 8.4 need not be complied with if H1D8(4)(a) is complied with.

(3) The thickness and type of glazing installed in areas of a building that have a high potential for human impact (an area of a building frequented by the occupants during everyday activities in which a person could fall into or against the glazed panel) must comply as follows:

 (a) Door — in accordance with 8.4.2.

 (b) Door side panels — in accordance with 8.4.3.

 (c) Full height glass panels — in accordance with 8.4.4.

 (d) Glazed panels, other than doors or side panels, on the perimeter of rooms — in accordance with 8.4.5.

 (e) Bathrooms, ensuite and spa room glazing — in accordance with 8.4.6.

 (f) Visibility of glazing — in accordance with 8.4.7.

 (g) Identification of safety glass — in accordance with 8.4.8.

8.3.24 Doors

Glass in doors must be Grade A safety glazing material in accordance with Table 8.3.2Table 8.4.2 and Figure 8.3.2Figure 8.4.2, except that—

 (a) unframed doors, other than those incorporated in shower screens or bath enclosures, must be glazed with toughened safety glass with a minimum nominal thickness of 10 mm or laminated toughened safety glass with a minimum total thickness of 10 mm; and

 (b) individual pieces of ordinary monolithic annealed glass incorporated in leadlights may be used, to a maximum area of 0.05 m² with a minimum nominal thickness of 3 mm; and

 (c) for annealed and annealed decorated glass panels in doors—

 (i) for 3 mm and 4 mm annealed glass, the maximum area must not be more than 0.1 m² with a maximum panel width of 125 mm; and

 (ii) for 5 mm and 6 mm annealed glass, the maximum area must not be more than 0.26 m² with a maximum panel width of 300 mm; and

 (d) for annealed glass in fully framed panels with a thickness of 10 mm or more, with or without bevelled edges, the maximum area must not be more than 0.5 m²; and

 (e) doors in bathrooms, ensuites and spa rooms must be glazed in accordance with 8.3.68.4.6.

Table 8.3.24.2: Maximum areas of glazing material for framed glass doors, framed glass side panels and other framed glazed panels

<table>
<thead>
<tr>
<th>Type of glass</th>
<th>Minimum nominal thickness (mm)</th>
<th>Maximum area of pane (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patterned or clear ordinary monolithic annealed glass</td>
<td>5</td>
<td>0.3</td>
</tr>
<tr>
<td>Patterned or clear ordinary monolithic annealed glass</td>
<td>6</td>
<td>0.9</td>
</tr>
<tr>
<td>Grade A toughened and toughened</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 8.3.4.2: Identification of glazing requirements for doors and side panels

<table>
<thead>
<tr>
<th>Type of glass</th>
<th>Minimum nominal thickness (mm)</th>
<th>Maximum area of pane (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade A toughened and toughened laminated safety glass</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Grade A toughened and toughened laminated safety glass</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Grade A toughened and toughened laminated safety glass</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Grade A laminated safety glass</td>
<td>5.38</td>
<td>2.2</td>
</tr>
<tr>
<td>Grade A laminated safety glass</td>
<td>6.38</td>
<td>3</td>
</tr>
<tr>
<td>Grade A laminated safety glass</td>
<td>8.38</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure Notes:
1. **Door and side panel glazing areas** – see Table 8.3.2.
2. **Monolithic annealed glass** – see Table 8.4.3.

Explanatory Information:
Larger areas of **ordinary monolithic** annealed glass in leadlights are not permitted regardless of glass thickness.

8.3.3.4.3 Door side panels

[2019: 3.6.4.2]

1. All framed glass (except leadlight panels) in side panels with their nearest vertical sight line less than 300 mm from the nearest edge of the doorway opening must be Grade A safety glazing material in accordance with Table 8.3.2 and Figure 8.3.2, except that—
 - (a) where the lowest visible sight line is **less than** 1.2 m **or more** above the highest abutting finished floor level, **ordinary monolithic** annealed glass with a minimum thickness of 5 mm and an area of 0.3 m² in accordance with Table 8.3.3 and Table 8.4.3 may be used; or
(b) where the lowest visible sight line is less than 1.2 m above the highest abutting finished floor level, ordinary monolithic annealed glass with a minimum thickness of 10 mm in accordance with Table 8.3.3 Table 8.4.3, with an area of not more than 0.5 m², may be used; or

(c) where the side panel consists of glass louvres with exposed edges or where the louvres are installed less than 500 mm above the highest abutting finished floor level—

(i) for blade widths not more than 230 mm with blade lengths not more than 1 m, Grade A toughened safety glazing not less than 5 mm thick must be used; and

(ii) for blade widths more than 230 mm, Grade A toughened safety glazing not less than 10 mm thick must be used.

(2) Framed glass panels with the nearest vertical sight line not less than 300 mm from the nearest edge of the door opening are not considered to be side panels for the purposes of (1).

Table 8.3.3.4.3: Maximum areas of ordinary monolithic annealed glass in side panels

<table>
<thead>
<tr>
<th>Minimum nominal thickness (mm)</th>
<th>Maximum area of pane (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>1.4</td>
</tr>
<tr>
<td>5</td>
<td>2.2</td>
</tr>
<tr>
<td>6</td>
<td>3.3</td>
</tr>
</tbody>
</table>

8.3.4.4 Full height framed glazed panels

[2019: 3.6.4.3]

(1) A glazed panel located in a building so that it is capable of being mistaken for an unobstructed opening must be glazed with—Grade A safety glazing material in accordance with Table 8.3.2 Table 8.4.2, or

(a) ordinary monolithic annealed glass complying with Table 8.3.2 Table 8.4.2 provided the glazed area is not more than 0.9 m².

(2) Glazed panels are not considered an unobstructed opening where any of the following apply:

(a) The clear opening width is not more than 500 mm.

(b) The lowest sight line of the opening is not less than 500 mm above the highest abutting finished floor level.

(c) The glass is made apparent by means of transoms, colonial bars, other components of the glazing system, permanent motifs or other decorative treatment on or etched into the glass, of sufficient magnitude to be readily apparent, or the glass is opaquely coloured or patterned to indicate its presence.

(d) A chair rail or handrail not less than 40 mm thick, or the like, is provided at a height of no less than 865 ± 700 mm above the adjoining ground level.

(e) The difference in floor level on either side of the panel is greater than 500 ± 1000 mm.

8.3.5.4.5 Glazed panels, other than doors or side panels, on the perimeter of rooms

[2019: 3.6.4.4]

All framed glazing where the lowest sight line of the glazing panel is less than 500 mm from the highest abutting finished floor level (see Figure 8.3.5 Figure 8.4.5) must be—

(a) Grade A safety glazing material in accordance with Table 8.3.2 Table 8.4.2; or

(b) ordinary monolithic annealed glass not less than 5 mm nominal thickness provided that the area of the glazing panel is not more than 1.2 m².
8.3.64.6 Bathroom, ensuite, and spa room and splash-back glazing

[2019: 3.6.4.5]

(1) All glazing in bathrooms, ensuites, spa rooms or the like, including shower doors, shower screens, bath enclosures, and associated windows and doors, where the lowest sight line is less than 2.0 m above the highest abutting finished level of the floor, bottom of the bath, or shower base, must—

(a) for framed panels, be glazed with Grade A safety glazing material in accordance with Table 8.4.2; or

(i) Grade A safety glazing material in accordance with Table 8.3.2; or

(ii) Grade B safety glazing material in accordance with Table 8.3.6 (see also Figure 8.3.6); or

(b) for panels or doors with any edge exposed, be toughened safety glass in accordance with Table 8.4.2 Table 8.3.2 with a minimum nominal thickness of 6 mm.

(2) Windows referred to in (1), may incorporate annealed glass panels of not less than 4 mm thickness, provided that they are not more than 0.1 m² in area.

(32) Ordinary Monolithic annealed glass may be used for— including mirror, may be used provided a fixed vanity or bench with a height of not less than 760 mm, depth of not less than 300 mm and extending the full width of the glass or mirror is located in front of the glass or mirror.

(a) mirrors, provided a fixed vanity or bench with a height of not less than 760 mm, depth of not less than 300 mm and extending the full width of the glass or mirror is, located in front of the glass or mirror; or

(b) splash-backs, provided it is fully backed by and continuously adhered to a solid wall material or a fixed cabinet or bench that is—

(i) a height not less than 760 mm; and

(ii) a depth not less than 300 mm; and

(iii) extending the full width of the splash-back; and

(iv) located in front of the splash back.
Table 8.3.6.4.6: Maximum areas of grade B safety glazing materials for shower doors, shower screens and bath enclosures

<table>
<thead>
<tr>
<th>Type of glass</th>
<th>Standard nominal thickness (mm)</th>
<th>Maximum area of pane (m²)</th>
<th>Area (Figure 8.3.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety wired glass</td>
<td>≥6</td>
<td>2.5</td>
<td>A, B, C</td>
</tr>
<tr>
<td>Safety organic coated glass</td>
<td>3</td>
<td>1</td>
<td>A, B, C, D</td>
</tr>
<tr>
<td>Safety organic coated glass</td>
<td>4</td>
<td>1.5</td>
<td>A, B, C, D</td>
</tr>
<tr>
<td>Safety organic coated glass</td>
<td>5</td>
<td>2</td>
<td>A, B, C, D</td>
</tr>
<tr>
<td>Safety organic coated glass</td>
<td>≥6</td>
<td>3</td>
<td>A, B, C, D</td>
</tr>
</tbody>
</table>

Explanatory Information:
Care should be taken when using showers fitted with safety wired glass, safety organic-coated glass, and laminated safety glass products that are liable to damage from thermal shock. Thermal shock occurs from hot water from the shower hitting the shower screen during cold weather.

8.3.74.7 Visibility of glazing

(1) If the presence of glazing in a door, side panel or panel capable of being mistaken for a doorway or opening is not made apparent in accordance with 8.3.4(2)(c), the glass must be marked to make it readily visible in accordance with (2).

(2) Marking must be in the form of an opaque band not less than 20 mm in height located so that—
 - the upper edge is not less than 700 mm above the floor; and
 - the lower edge is not more than 1.2 m above the floor.

(3) A band or marking is not required where any of the following applies:
 - The height of the glazing is not more than 1 m in any part.
 - The width of the glazing panel is not more than 500 mm in any part.
There is no glazing within 700 mm of the floor.

The glazing is provided with not less than one fixed glazing bar which must—

(i) be firmly attached to the styles to locate and protect each face of the glass; and
(ii) be located with its upper edge not less than 500 mm and its bottom edge not more than 1 m above the floor; and
(iii) have a face width not less than 40 mm.

Explanatory Information:
1. Making the glass visible by marking is not a substitute for the use of safety glazing in accordance with this Part.
2. A broken line or patterns may be an acceptable form of marking provided it meets the criteria set out in 8.3.7(2) or 9.4.7(2).

8.4.8 Identification of safety glass

All safety glazing material in Tables 8.4.2 and 8.4.6 installed in accordance with this Part must comply with the following:

(a) Safety glass must be marked in the form of either permanent etching or a label that cannot be reused once removed.

(b) The permanent etching or label must state the following information:
 (i) The Standard to which the safety glass has been tested.
 (ii) Registered name of the manufacturer or supplier.
 (iii) Grade of the safety glass.
 (iv) Nominal thickness of the safety glass.

Explanatory Information:
The labelling of safety glass is not intended to remain after completion of construction. Labelling complying with 8.4.8 should remain in place on safety glass to allow relevant practitioners to confirm and certify that the correct type of safety glass has been installed in a specific area of the building.

If a label is able to be removed from the glass, it must be comprised of a material that self-destructs upon removal so as to prevent it being reused on other glass panels.
Part 9.1 Scope and application of Section 9
- **9.1.1 Scope**
- **9.1.2 Application**

Part 9.2 Fire separation of external walls
- **9.2.1** External walls of Class 1 buildings
- **9.2.2** Measurement of distances
- **9.2.3** Construction of external walls
- **9.2.4** Class 10a buildings
- **9.2.5** Protection of Class 1 buildings — Class 10a between Class 1 and the allotment boundary
- **9.2.6** Protection of Class 1 buildings — Class 10a between Class 1 and other buildings on allotment
- **9.2.7** Protection of Class 1 buildings — separation of Class 10a buildings on an allotment
- **9.2.8** Open carports
- **9.2.9** Allowable encroachments
- **9.2.10** Roof lights

Part 9.3 Fire protection of separating walls and floors
- **9.3.1** Separating walls
- **9.3.2** Services in separating walls
- **9.3.3** Roof lights
- **9.3.4** Horizontal projections

Part 9.4 Fire protection of garage top dwellings
- **9.4.1** Walls requiring protection
- **9.4.2** Separating floors

Part 9.5 Smoke alarms and evacuation lighting
- **9.5.1** Smoke alarm requirements
- **9.5.2** Location — Class 1a buildings
- **9.5.3** Location — Class 1b buildings
- **9.5.4** Installation of smoke alarms
- **9.5.5** Lighting to assist evacuation — Class 1b buildings
9.1.1 Scope

(1) This Section of the ABCB Housing Provisions sets out the Deemed-to-Satisfy Provisions for—
 (a) fire separation of external walls (see Part 9.2); and
 (b) fire protection of separating walls (see Part 9.3); and
 (c) fire separation of garage top dwellings (see Part 9.4); and
 (d) smoke alarms and evacuation lighting (see Part 9.5).

(2) For other fire safety provisions not included in this Section of the ABCB Housing Provisions, refer to the following Deemed-to-Satisfy Provisions in NCC Volume Two: fire hazard properties (see H3D2(1) and (2)).

9.1.2 Application

The application of Section 9 of the ABCB Housing Provisions is subject to the following:

(a) The Governing Requirements of NCC 2022 Volume Two.

(b) The State and Territory variations, additions and deletions contained in the Schedules to the ABCB Housing Provisions and NCC Volume Two.

Explanatory Information:

In NCC 2019, the content of Section 9 of the ABCB Housing Provisions (other than content added in NCC 2022 or later) was contained in the acceptable construction practice for Parts 3.7.2 to 3.7.5 of NCC 2019 Volume Two.

The content of Part 3.7.1 has been retained within Part H3 NCC Volume Two as it contains requirements which affect how other provisions referenced in Part H3 are applied.
SA 9.2.1

9.2.1 External walls of Class 1 buildings

[2019: 3.7.2.2]

An external wall of a Class 1 building, and any openings in that wall, must comply with 9.2.3 if the wall is less than—

(a) 900 mm from an allotment boundary other than the boundary adjoining a road alignment or other public space; or

(b) 1.8 m from another building on the same allotment other than a Class 10 building associated with the Class 1 building or a detached part of the same Class 1 building.

9.2.2 Measurement of distances

[2019: 3.7.2.3]

(1) The distance from any point on an external wall of a building to an allotment boundary or another building is the distance to that point measured along a line at right angles from the allotment boundary or external wall of the other building which intersects that point without being obstructed by a wall complying with 9.2.3.

(2) Where a wall within a specified distance is required to comply with 9.2.3, only that part of the wall (including any openings) within the specified distance need be constructed in that manner (see Figure 9.2.2a, Figure 9.2.2b and Figure 9.2.2c).

(3) Where the distance measured is between attached or detached buildings of different heights, the distance must be taken from the external wall with the highest elevation measured at right angles to a point that intersects the nearest part of a vertical projection above the adjacent building, excluding any eave overhang (see Figure 9.2.2d and Figure 9.2.2e).

SA 9.2.2(4)
Figure 9.2.2a: Walls at right angles to the boundary

No protection required for this wall or any opening in this wall.

Figure Notes:
1. No protection required for the wall at right angles or more to the boundary.
2. For protection of encroachments refer to 9.2.9.

Figure 9.2.2b: Measurement of distances — Full wall protection (Plan view)

Wall within 900 mm of boundary must have an FRL of 60/60/60

Only the wall facing or parallel to the boundary must have an FRL.

Figure Notes:
Setback distance is measured at right angles to the boundary.
Figure 9.2.2c: Measurement of distances — Part walls protection (Plan view)

Setback distance is measured at right angles to the boundary.

Wall within 900 mm of boundary must have an FRL of 60/60/60

Figure Notes:
Setback distance is measured at right angles to the boundary.

Figure 9.2.2d: Measurement of distance — Buildings of different heights — Class 1 buildings on same allotment

Distance between buildings

Vertical projection of wall

External wall within 1.8 m from another building
9.2.3 Construction of external walls

Figure 9.2.2e: Measurement of distance — Buildings of different heights — Attached Class 1 buildings on same allotment

- External wall within 1.8 m from an attached building
- Vertical projection of the attached building wall

9.2.3 Construction of external walls

* [2019: 3.7.2.4]

1. **External walls** (including gables) *required* to be *(referred to in 9.2.1 or 9.2.4)* must—
 - *(a)* commence at the footings or ground slab, except where the *external wall* commences above a *separating wall* complying with 9.3.1 *(see Figure 9.2.2d)*; and
 - *(b)* extend to—
 - *(i)* the underside of a *non-combustible* roof covering, except that a wall may terminate not more than 200 mm from the underside of a *non-combustible* roof covering, where the area between the *external wall* and underside of the roof covering is sealed with a *non-combustible* fascia, gutter or flashing; or
 - *(ii)* the underside of a *non-combustible* eaves lining *(See Figures 9.2.3a and b)*; and
 - *(c)* be constructed in accordance with *(2).*

2. A wall *required* by *(1)* must—
 - *(a)* have an FRL of not less than 60/60/60 when tested from the outside; or
 - *(b)* be of masonry-veneer construction in which the external masonry veneer is not less than 90 mm thick; or
 - *(c)* be of masonry construction not less than 90 mm thick.

3. Openings in *external walls required* to be *(referred to in 9.2.1 or 9.2.4)* must be protected by—
 - *(a)* non-openable fire *windows* or other construction with an FRL of not less than –/60/–; or
 - *(b)* solid core doors not less than 35 mm thick.

4. The requirements of *(3)* do not apply to a window in a *non-habitable room* that is located adjacent to and not less than 600 mm from the boundary of an adjoining allotment or 1200 mm from another building on the same allotment provided that—
 - *(a)* in a bathroom, laundry or toilet, the opening has an area of not more than 1.2 m²; or
 - *(b)* in a room other than one referred to in *(a)*, the opening has an area of not more than 0.54 m² and—
 - *(i)* the *window* is steel-framed, there are no opening sashes and it is glazed in wired glass; or
 - *(ii)* the opening is enclosed with translucent hollow glass blocks.

5. Subfloor vents, roof vents, weepholes, control joints, construction joints and penetrations for pipes, conduits and the like need not comply with *(3).*
Figure 9.2.3a: Typical construction of external walls

Figure Notes:
1. The external wall is deemed to extend to the underside of non-combustible roof covering, or non-combustible eaves lining, when constructed as shown.
2. Where sarking is installed it must be located so that ponding of water is avoided between the fascia and the first roofing batten.
3. The location of flashing and framing is indicative only.
4. Brickwork shown in diagram (b) is to be terminated in accordance with 9.2.3(1)(b).
Figure 9.2.3b: Typical construction of external walls — attached Class 1 buildings on the same allotment

(e) Attached Class 1 buildings on the same allotment

Figure Notes:
1. The external wall is deemed to extend to the underside of non-combustible roof covering, or non-combustible eaves lining, when constructed as shown.
2. Where sarking is installed it must be located so that ponding of water is avoided between the fascia and the first roofing batten.
3. The location of flashing and framing is indicative only.
4. Brickwork shown in diagram (b) is to be terminated in accordance with 9.2.3(1)(b).

Explanatory Information:
1. A Performance Solution must be used where an external wall required to be fire-resisting does not commence in accordance with 9.2.3(1)(a).
2. The intent of the typical construction details shown in Figures 9.2.3a and b is to ensure that combustible materials (external or internal) are not directly exposed to fire at the junction of the wall and non-combustible roof, eaves lining, guttering and the like. Other forms of construction may also be acceptable provided that they achieve this intent.
3. See Figure 9.2.2a and clause 10.7.3 for internal separating wall construction under one common roof.

9.2.4 Class 10a buildings

(1) A Class 1 building must be protected by a method in—
9.2.4 Protection of Class 1 buildings — Class 10a between Class 1 and the allotment boundary

The following methods are acceptable for the protection of a Class 1 building where a Class 10a building is located between or adjacent to a Class 1 building and a boundary alignment that is not a boundary with a road alignment or other public space:

(a) The Class 10a building is not less than 900 mm from the allotment boundary, other than the boundary adjoining a road alignment or other public space, as shown in Figure 9.2.5a.

(b) An external wall of the Class 10a building which is less than 900 mm from an allotment boundary, other than the boundary adjoining a road alignment or other public space, complies with 9.2.3 as shown in Figure 9.2.5b.

(c) An external wall of the Class 10a building, which is less than 900 mm from the Class 1 building, complies with 9.2.3 as shown in Figure 9.2.5c.

(d) The Class 1 building is not less than 900 mm from the Class 10a building, as shown in Figure 9.2.5d.

(e) An external wall of the Class 1 building, which is less than 900 mm from the Class 10a building, complies with 9.2.3, as shown in Figure 9.2.5e.

(f) An external wall of the Class 10a building which is less than 900 mm from an allotment boundary other than the boundary adjoining a road alignment or other public space, complies with 9.2.3, as shown in Figure 9.2.5f.

(g) An external wall of the Class 10a building, which is less than 900 mm from the external wall of the Class 1 building, complies with 9.2.3, as shown in Figure 9.2.5g.

(h) An external wall of the Class 1 building, which is less than 900 mm from a Class 10a building that is situated less than 900 mm from an allotment boundary, complies with 9.2.3, as shown in Figure 9.2.5h.

(i) The external wall of the Class 1 and Class 10a building which are less than 900 mm from an allotment boundary, other than the boundary adjoining a road alignment or other public space, complies with 9.2.3 as shown in Figure 9.2.5i.
Figure 9.2.5a: Class 10a building 900 mm from allotment boundary

Not less than 900 mm

Allotment boundary
Figure 9.2.5b: External wall to Class 10a building with FRL (method 1)

(e) Attached Class 1 buildings on the same allotment
Figure 9.2.5c: External wall to Class 10a building with FRL (method 2)

Wall with a FRL of 60/60/60

Figure 9.2.5d: 900 mm separation between buildings

Less than 900 mm

Not less than 900 mm

Allotment boundary
Figure 9.2.5e: Class 1 building with FRL to external wall

Wall with a FRL of 60/60/60

Less than 900 mm

Allotment boundary
Figure 9.2.5f: External wall of adjacent Class 10a building with FRL (method 1)

- Not less than 900 mm
- Wall with a FRL of 60/60/60
- Less than 900 mm
- Allotment boundary

Class 10a building with FRL
Figure 9.2.5g: External wall of adjacent Class 10a building with FRL (method 2)

Less than 900 mm

Wall with a FRL of 60/60/60

Allotment boundary

Not less than 900 mm
Figure 9.2.5h: Class 1 building with FRL to external wall

- Wall with a FRL of 60/60/60
- Not less than 900 mm
- Less than 900 mm
- Allotment boundary
9.2.6 Protection of Class 1 buildings—Class 10a between Class 1 and other buildings on allotment

[2019: Figure 3.7.2.5]

The following methods are acceptable for the protection of a Class 1 building where a Class 10a building is located between or adjacent to a Class 1 building it is associated with and another building on the same allotment:

(a) The Class 10a building is not less than 1.8 m from the other building, as shown in Figure 9.2.6a.

(b) An external wall of the Class 10a building, which is less than 1.8 m from the other building, complies with 9.2.3, as shown in Figure 9.2.6b.

(c) An external wall of the Class 10a building, which is less than 1.8 m from the Class 1 building, complies with 9.2.3, as shown in Figure 9.2.6c.

(d) The Class 1 building is not less than 1.8 m from the Class 10a building, as shown in Figure 9.2.6d.

(e) An external wall of the Class 1 building, which is less than 1.8 m from the Class 10a building, complies with 9.2.3, as shown in Figure 9.2.6e.

(f) An external wall of the Class 10a building, which is less than 1.8 m from the external wall of the other building, complies with 9.2.3, as shown in Figure 9.2.6f.

(g) An external wall of the Class 10a building, which is less than 1.8 m from the external wall of the Class 1 building, complies with 9.2.3, as shown in Figure 9.2.6g.
(h) An *external wall* of the Class 1 and 10a building, which is less than 1.8 m from the *external wall* of the other building, complies with 9.2.3, as shown in Figure 9.2.6h.

Figure 9.2.6a: **Class 10a building 1.8 m from other building on allotment**

Figure 9.2.6b: **External wall to Class 10a building with FRL (method 1)**
Figure 9.2.6c: External wall to Class 10a building with FRL (method 2)

Wall with a FRL of 60/60/60

Figure 9.2.6d: 1.8 m separation between Class 1 and 10a

Not less than 1.8 m
Figure 9.2.6e: Class 1 building with FRL to external wall

Wall with a FRL of 60/60/60

Less than 1.8 m

Other class of building on allotment

Figure 9.2.6f: External wall of adjacent Class 10a building with FRL (method 1)

Wall with a FRL of 60/60/60

Less than 1.8 m

Not Less than 1.8 m

Other class of building on allotment
The following methods are acceptable for the protection of a Class 1 building where two or more Class 10a buildings on the same allotment are located between and are associated with different Class 1 buildings:
(a) Each Class 10a building must be separated from each other by a distance of not less than 1.8 m, as shown in Figure 9.2.7a.

(b) Each Class 10a building must be separated from each other by external walls complying with 9.2.3, as shown in Figure 9.2.7b.

(c) Each Class 10a building must be separated from each Class 1 building by a distance of not less than 900 mm, as shown in Figure 9.2.7c.

(d) Each Class 10a building must be separated from each Class 1 building by external walls complying with 9.2.3, as shown in Figure 9.2.7d.

(e) Each Class 10a building must be separated by a wall complying with 9.3.1, as shown in Figure 9.2.7e.

(f) Each Class 10a building must be separated from each other by external walls complying with 9.2.3, as shown in Figure 9.2.7f.

(g) Each Class 10a building must be separated from each Class 1 building by external walls complying with 9.2.3, as shown in Figure 9.2.7g.

(h) Each Class 10a building must be separated by a wall complying with 9.3.1.

Figure 9.2.7a: 1.8m separation between Class 10a buildings

Figure 9.2.7b: External wall to Class 10a building with FRL (method 1)
Figure 9.2.7c: 900 mm separation between Class 10a and Class 1 buildings

Figure 9.2.7d: External wall to a Class 10a buildings with FRL (method 2)

Figure 9.2.7e: Class 10a buildings with FRL to separating wall (method 1)
Figure 9.2.7f: External wall to adjacent Class 10a buildings with FRL (method 1)

Less than 1.8 m

Wall with a FRL of 60/60/60

Not less than 1.8 m

Wall with a FRL of 60/60/60

Figure 9.2.7g: External wall to adjacent Class 10a buildings with FRL (method 2)

Not less than 1.8 m

Less than 900 mm

Wall with a FRL of 60/60/60

Less than 1.8 m
Figure 9.2.7h: Class 10a buildings with FRL to separating wall (method 2)

Wall with a FRL of 60/60/60

Not less than 1.8 m

SA 9.2.8

9.2.8 Open carports

[2019: 3.7.2.6]

A Class 10a carport is exempt from complying with 9.2.4(1) if—

(a) it has two or more sides open and not less than one third of its perimeter open; and
(b) for the purposes of (a), a side is considered to be open if the roof covering adjacent to that side is not less than 500 mm from another building or allotment boundary; and
(c) it has a polycarbonate or non-combustible roof covering; and
(d) any ceiling lining and wall cladding, including gables, is non-combustible (see Figure 9.2.8a); and
(e) it does not provide direct vertical support to any part of the Class 1 building; and
(f) in the case where it has a common roof structure with the Class 1 building and the carport does not have a ceiling (See Figure 9.2.8b), the opening between the top of the wall of the Class 1 building and the underside of the roof covering is infilled with—

(i) a non-combustible material; or
(ii) construction clad with non-combustible material on the carport side.
Figure 9.2.8a: Identifying an open carport

- Roof covering must be polycarbonate or non-combustible and any ceiling lining must be non-combustible.
- Timber posts and beams are permitted adjacent to a boundary. However, wall cladding must be non-combustible.
- Side of carport is considered open if no roof covering is over shaded area i.e. at least 500 mm from adjoining building or allotment.

(a) Example A

Side of carport less than 500 mm from allotment boundary, therefore side is considered closed.

Carport calculation:

\[
\frac{\text{Open side}}{\text{Perimeter}} = \frac{3+3}{3+6+6+3} = \frac{6}{18} = \frac{1}{3}
\]

This carport satisfies the exemption criteria.

(b) Example B
Figure 9.2.8b: Requirements for non-combustible infill panels to carport

Explanatory Information:
A side of a carport enclosed by a vehicle access door is not considered to be an open side.

SA 9.2.9

9.2.9 Allowable encroachments

[2019: 3.7.2.7]

(1) An encroachment is any construction between
 (a) between the external wall of the building and the allotment boundary other than a boundary adjoining a road or other public space; or
 (b) between the external walls of two buildings on the same allotment; or
 (c) between the external wall of the building and the vertical projection of the external wall of another adjoining building on the same allotment; or
 (d) that extends beyond the vertical projection of another building on the same allotment other than a building it is associated with.

(2) For the purposes of (1), an encroachment relates to any external wall of—
 (a) a Class 10a building required to comply with 9.2.4; or
 (b) a Class 1 building.

(3) Encroachments allowed within 900 mm of an allotment boundary or within 1.8 m of another building, or its vertical
projection, on the same allotment are—
(a) non-combustible fascias, gutters and downpipes; and
(b) light fittings, electricity or gas meters, aerials or antennas; and
(c) pergolas, sun blinds or water tanks (see Figure 9.2.9a); and
(d) unroofed terraces, landings, steps and ramps, not more than 1 m in height.

(4) Encroachments allowed up to but not closer than 450 mm from an allotment boundary or up to but not closer than 900 mm from another building, or its vertical projection, on the same allotment or associated encroachments of another building on the same allotment are—
(a) combustible fascias, gutters and downpipes (see Figure 9.2.9a, Figure 9.2.9b and Figure 9.2.9c); and
(b) eaves with non-combustible roof cladding and non-combustible lining; and
(c) flues, chimneys, pipes, domestic fuel tanks, cooling or heating appliances or other services.

(5) Encroachments allowed to project beyond between an external wall of a building and another building or an adjoining building on the same allotment are non-combustible fascias, gutters and downpipes (see Figure 9.2.9a).

Figure 9.2.9a: Allowable encroachments for non-combustible construction — Combustible fascia up to but not closer than 450 mm to an allotment boundary
Figure 9.2.9b: Allowable encroachments for non-combustible construction — Non-combustible fascia and gutter within 900 mm of an allotment boundary

Figure 9.2.9c: Allowable encroachments for non-combustible construction — Unroofed pergola within 900 mm of an allotment boundary

Explanatory Information:
A deck is not considered an unroofed terrace and is therefore not permitted as an allowable encroachment under 9.2.9 whether combustible or not.

The term ‘pergola’ is a reference to an unroofed structure.
9.2.10 Roof lights

[2019: 3.7.2.8]

Combustible roof lights, skylights or the like installed in a roof or part of a roof required to have a *non-combustible* covering must—

(a) have an aggregate area not more than 20% of the roof or part of the roof; and

(b) not less than—

(i) 900 mm from the allotment boundary other than the boundary adjoining a road alignment or other public space; and

(ii) 1.8 m from any roof light or the like in another building on the allotment other than an associated building or a detached part of the same building. (See Figure 9.2.10).

Figure 9.2.10: Location of combustible roof lights

Figure Notes:

Roof lights depicted in Figure 9.2.10 are *combustible.*
Part 9.3 Fire protection of separating walls and floors

9.3.1 Separating walls

[2019: 3.7.3.2]

(1) A separating wall between Class 1 buildings, or a wall that separates a Class 1 building from a Class 10a building which is not associated with the Class 1 building must—
 (a) be constructed—
 (i) having an FRL of not less than 60/60/60; or
 (ii) of masonry not less than 90 mm thick; and
 (b) commence at the footings or ground slab (see Figure 9.3.1a), except for horizontal projections to which 9.3.4 applies (see Figure 9.3.4); and
 (c) extend—
 (i) if the building has a non-combustible roof covering, to the underside of the roof covering (see Figure 9.3.1a (i) and Figure 9.3.1b); or
 (ii) if the building has a combustible roof covering, to not less than 450 mm above the roof covering (see Figure 9.3.1a); and
 (d) comply with (2) to (5) and 9.3.2 as applicable.

(2) A separating wall of lightweight construction must be tested in accordance with Specification 6.

(3) A separating wall complying with (1)(c)(i)—
 (a) must not be crossed by timber or other combustible building elements except for roof battens with dimensions of 75 x 50 mm or less, or roof sarking; and
 (b) must have any gap between the top of the wall and the underside of the roof covering packed with mineral fibre or other suitable material.

(4) Where a building has a masonry veneer external wall, any gap between the separating wall and the external masonry veneer must be—
 (a) not more than 50 mm; and
 (b) packed with a mineral fibre or other suitable fire resistant material with the packing arranged to maintain any weatherproofing requirements of H2D4.

(5) Eaves, verandahs and similar spaces that are open to the roof space and are common to more than one Class 1 dwelling must be separated by a non-combustible vertical lining (see Figure 9.3.1c).
Figure 9.3.1a: Separating wall construction

Separating wall to extend 450 mm above combustible roof covering

Combustible roof covering

Non-combustible roof coverings

Separating wall to underside of non-combustible roof covering

Separating wall commencing at footings

Figure 9.3.1b: Separating wall construction — Underside of non-combustible roof cladding (diagram 1)

Roof battens may pass over separating wall

Mineral fibre or other suitable fire-resisting material

Non-combustible roof cladding

60/60/60 wall to underside of box gutter

Box gutter

Roof frame (rafter / truss not to pass through separating wall)

60/60/60 wall

Ceiling

Dwelling 1 Dwelling 2

(a) Wall parallel to roof frame

(b) Wall at right-angles to roof frame
9.3.1 Public Comment Draft

Figure 9.3.1c: Separating wall construction — Underside of non-combustible roof cladding (diagram 2)

OPTION 1 Non-combustible vertical lining installed between roof space of one Class 1 and the common eaves or verandah space

OPTION 2 Non-combustible vertical lining installed in common eaves or verandah space

Note: The non-combustible vertical lining need only be installed on one side of a rafter, truss or supporting framework, provided that it forms a continuous barrier with the separating wall.

Figure Notes:
Elements crossing the non-combustible vertical lining must comply with 9.3.1(3).

9.3.2 Services in separating walls

[2019: 3.7.3.3]

(1) Any service opening, other than those listed in (2), (3) and (4), in a separating wall must have construction with an FRL of not less than -/60/60.

(2) If an electrical wire or cable penetrates a separating wall—
 (a) the service and building element at the penetration must—
 (i) be identical with a prototype assembly that has been tested in accordance with AS 4072.1 and AS 1530.4 and achieve an FRL of not less than -/60/60; or
 (ii) differ from a prototype assembly of the service and building element in accordance with AS 4072.1; or
 (b) the service must be installed so that—
 (i) the opening is neatly formed, cut or drilled and no closer than 50 mm to any other service; and
 (ii) the opening is no larger in cross-section than—
 (A) 2000 mm² if only a single cable is accommodated and the gap between the cable and the wall is no wider than 15 mm; or
 (B) 500 mm² in any other case; and
 (iii) any gap between the service and the wall is packed with mineral fibre or other suitable fire resistant material.

(3) If an electrical switch, outlet, socket or the like is accommodated in a separating wall—
 (a) the service and building element at the penetration must—
 (i) be identical with a prototype assembly which has been tested in accordance with AS 4072.1 and AS 1530.4 and achieve an FRL of not less than -/60/60; or
 (ii) differ from a prototype assembly of the service and building element in accordance with AS 4072.1; or
(b) the service must be installed so that—
 (i) the opening or recess—
 (A) is not located opposite any point within 300 mm horizontally or 600 mm vertically of any opening or recess on the opposite side of the wall; or
 (B) does not extend beyond half the thickness of the wall; and
 (ii) any gap between the service and the wall is packed with mineral fibre or other suitable fire resistant material.

(4) Other than where a tested system is used in accordance with (3)(a), if an electrical switch, socket, outlet or the like is accommodated in a hollow separating wall, the cavity immediately behind the service must be framed and packed with mineral fibre or other suitable fire resistant material (see Figure 9.3.2).

Figure 9.3.2: Separating wall construction — Services in cavity construction

Explanatory Information:

For the purposes of 9.3.2 and 10.7.2, a reference to a separating wall includes a wall that separates a Class 1 building from a Class 10a building that is not associated with the Class 1 building.

It is important that any opening in a separating wall between Class 1 buildings does not allow the free passage of fire between buildings. Many designs would require the installation of openings for electrical cables and outlets in these walls. 9.3.2 therefore allows such openings provided they comply with the requirements of that provision.

A reference to a hollow separating wall in 9.3.2(4) may include a stud wall, masonry cavity wall or a wall of hollow blockwork.

Part 10.7 (sound insulation) also contains requirements relevant to separating walls, in addition to the provisions of this Part. This includes installation requirements for walls and services to achieve appropriate levels of sound insulation.
9.3.3 Roof lights

Combustible roof lights, skylights or the like installed in a roof or part of a roof *required* to have a *non-combustible* covering must—

(a) have an aggregate area not more than 20% of the roof or part of the roof; and

(b) be not less than 900 mm from the vertical projection of a *separating wall* extending to the underside of the roof covering.

9.3.4 Horizontal projections

(1) Where a horizontal projection forms part of a *separating wall* complying with 9.3.1, any horizontal projection within 1.8 m on each side of the *separating wall* (see Figure 9.3.4) must—

(a) be a floor/ceiling or floor/soffit system incorporating a ceiling or soffit which has a *resistance to the incipient spread of fire* to the space above itself of not less than 60 minutes; or

(b) have an FRL not less than 30/30/30 when tested from the underside; or

(c) have a fire-protective covering on the underside of the floor, including beams incorporated in it, if the floor is *combustible* or of metal.

(2) The part of the *separating wall* that projects outwards horizontally must—

(a) extend to the underside of the floor/ceiling or floor/soffit system complying with (1); and

(b) not be crossed by timber or other *combustible* building elements except for framing members with dimensions of 75 x 50 mm or less, or sarking; and

(c) have any gap between the bottom of the wall and the underside of the floor/ceiling or floor/soffit system packed with mineral fibre or other suitable material.

(3) Where a floor subject to (1)(b) depends on direct vertical or lateral support from another part to maintain its FRL, that supporting part must have an FRL of not less than 30/-/-.

(4) Where a service passes through a floor referred to in (1), the penetration must not reduce the fire performance of the floor or covering.
Figure 9.3.4: Horizontal projection forming part of a separating wall

Class 1 buildings on same allotment

Figure Notes:
Horizontal projections within 1.8 m of another building must be protected in accordance with 9.3.4(1).
Part 9.4 Fire protection of garage top dwellings

NSW Part 9.4

9.4.1 Walls requiring protection

[2019: 3.7.4.2]

(1) Where parts of a Class 1a dwelling are located above a Class 10a private garage that is not associated with the Class 1a dwelling—
 (a) any wall separating parts of the Class 1a dwelling from the private garage not associated with the dwelling must comply with (2); and
 (b) any private garage associated with and located below the Class 1a dwelling must be separated from the private garage not associated with the dwelling by a wall complying with (2).

(2) A wall required by (1) must—
 (a) have either—
 (i) an FRL of not less than 60/60/60 when tested from the private garage associated with another dwelling side; or
 (ii) be of masonry construction not less than 90 mm thick; and
 (b) commence at the footings or ground slab; and
 (c) extend to the underside of a separating floor complying with 9.4.2; and
 (d) comply with 9.3.1(2) to (5) and 9.3.2 as applicable.

9.4.2 Separating floors

[2019: 3.7.4.3]

(1) Where parts of a Class 1a dwelling are located above or below a Class 10a private garage that is not associated with the Class 1a dwelling, any floor separating the Class 1a dwelling from the Class 10a private garage not associated with the dwelling must—
 (a) be a floor/ceiling or floor/soffit system incorporating a ceiling or soffit which has a resistance to the incipient spread of fire to the space above itself of not less than 60 minutes; or
 (b) have an FRL not less than 30/30/30 when tested from the underside; or
 (c) have a fire-protective covering on the underside of the floor, including beams incorporated in it, if the floor is combustible or of metal.

(2) Where a floor subject to (1)(b) depends on direct vertical or lateral support from another part to maintain its FRL, that supporting part must have an FRL of not less than 30/-/-.

(3) Where a service passes through a floor referred to in (1), the penetration must not reduce the fire performance of the floor or covering.

(4) See Figure 9.4.2.
Figure 9.4.2: Separating wall and floor construction

Floor / ceiling protection

Direct supporting part to maintain FRL not less than 30/-/-

Wall separating parts of the Class 1a dwelling from the private garage not associated with the dwelling FRL 60/60/60

Figure Notes:
1. For floor/ceiling protection, see 9.4.1(2)(c) and 9.4.2.
2. For FRL for direct supporting part, 9.4.2(2).
3. For FRL for wall separating parts of the Class 1a dwelling from the non-associated private garage, see 9.4.1(1).
Part 9.5 Smoke alarms and evacuation lighting

9.5.1 Smoke alarm requirements

Smoke alarms must—

(a) be located in—

(i) Class 1a buildings in accordance with 9.5.2 and 9.5.4; and

(ii) Class 1b buildings in accordance with 9.5.3 and 9.5.4; and

(b) comply with AS 3786, except that in a Class 10a private garage where the use of the area is likely to result in smoke alarms causing spurious signals, any other alarm deemed suitable in accordance with AS 1670.1 may be installed provided that smoke alarms complying with AS 3786 are installed elsewhere in the Class 1 building; and

(c) be powered from the consumer mains source where a consumer mains source is supplied to the building; and

(d) be interconnected where there is more than one alarm.

Explanatory Information:

A smoke alarm can give spurious alarms if the atmosphere contains particles which obscure vision, such as could occur in a Class 10a private garage part of a building. 9.5.1(b) therefore allows the use of a more suitable alarm, such as a heat alarm, in these locations.

9.5.1(d) requires alarms to be interconnected where there is more than one alarm. This only applies within a single dwelling. Therefore, alarms in a Class 1a dwelling need not be interconnected with alarms in another dwelling or a private garage which does not belong to the Class 1a dwelling.

9.5.2 Location – Class 1a buildings

(1) In a Class 1a building, smoke alarms must be located in—

(a) any storey containing bedrooms, every corridor or hallway associated with a bedroom, or if there is no corridor or hallway, in an area between the bedrooms and the remainder of the building; and

(b) each other storey not containing bedrooms.

(2) See Figure 9.5.2a and Figure 9.5.2b.
Figure 9.5.2a: Class 1a building where all bedrooms are grouped together and served by a hallway

![Figure 9.5.2a Diagram](image)

Figure Notes:
In this diagram, the location of the smoke alarm is indicated by a black dot.

Figure 9.5.2b: Class 1a building where bedrooms are located in separate areas

![Figure 9.5.2b Diagram](image)

Smoke alarms *required* to be interconnected
Figure Notes:
1. In this diagram, the location of each smoke alarm is indicated by a black dot.
2. Smoke alarms are required to be interconnected by 9.5.1(d).

9.5.3 Location – Class 1b buildings

(1) In a Class 1b building, smoke alarms must be located in—
 (a) every bedroom; and
 (b) every corridor or hallway associated with a bedroom, or if there is no corridor or hallway, in an area between the bedrooms and the remainder of the building; and
 (c) each other storey.

(2) See Figure 9.5.3.

Figure 9.5.3: Class 1b building where multiple bedrooms are served by a hallway

Figure Notes:
1. In this diagram—
 a. the location of each smoke alarm is indicated by a black dot; and
 b. the location of a smoke alarm with evacuation lighting is indicated by a block within a square; and
 c. the area served by evacuation lighting is indicated by grey shading.
2. Smoke alarms are required to be interconnected by 9.4.1(d).
3. Lighting in the grey shaded area is to be activated by smoke alarm if using 9.5.5(b)(ii).

9.5.4 Installation of smoke alarms

Smoke alarms required by 9.5.2 and 9.5.3 must be installed on or near the ceiling, in accordance with the following:

 (a) Where a smoke alarm is located on the ceiling it must be—
 (i) a minimum of 300 mm away from the corner junction of the wall and ceiling; and
 (ii) between 500 mm and 1500 mm away from the high point and apexes of the ceiling, if the room has a sloping ceiling.

 (b) Where (a) is not possible, the smoke alarm may be installed on the wall, and located a minimum of 300 mm and a maximum of 500 mm off the ceiling at the junction with the wall.
Explanatory Information:
Smoke alarms need to be located on (or near) the ceiling for optimum detection of smoke in a fire situation with special care taken to avoid dead air spaces. A dead air space is an area in which trapped hot air will prevent smoke from reaching the alarm. This space generally occurs at the apex of cathedral ceilings, the corner junction of walls and ceilings and between exposed joists etc. (see explanatory Figure 9.5.4).
Smoke alarms may be located on the wall in accordance with 9.5.4(b). Explanatory Figure 9.5.4 provides location criteria and the dimensional relationship to building elements and the associated dead air spaces.

Figure 9.5.4 (explanatory): Installation of smoke alarms to avoid dead air space

9.5.5 Lighting to assist evacuation – Class 1b buildings

[2019: 3.7.5.6]
In a Class 1b building, a system of lighting must be installed to assist evacuation of occupants in the event of a fire, and—

(a) be activated by the smoke alarm required by 9.5.3(1)(b); and
(b) consist of—
 (i) a light incorporated within the smoke alarm; or
 (ii) the lighting located in the corridor, hallway or area served by the smoke alarm.

Explanatory Information:
The lighting required by 9.5.5 may consist of artificial lighting which may already be installed in a corridor, hallway or area, provided that the lighting is activated by the smoke alarm. However consideration should be given to ensure that the lighting is not controlled by a dimmer or timer controlled switch which may dim the level of light to an ineffective level, or switch the light off before occupants have time to evacuate.
10 Health and amenity

Part 10.1 Scope and application of Section 10
10.1.1 Scope
10.1.2 Application

Part 10.2 Wet areas and external waterproofing
10.2.1 Wet areas
10.2.2 Shower area (enclosed and unenclosed)
10.2.3 Area outside shower area
10.2.4 Areas adjacent to baths and spas (other than inserted baths and spas)
10.2.5 Areas adjacent to inserted baths and spas
10.2.6 Other areas
10.2.7 External above ground membranes
10.2.7.1 Waterproofing systems
10.2.8 Materials
10.2.9 Materials — waterproof
10.2.10 Materials — water resistant substrates
10.2.11 Materials — water resistant surface materials
10.2.12 Construction of wet areas — wall and floor substrate materials
10.2.13 Construction of wet areas — wall and floor surface materials
10.2.14 Construction of wet area floors — falls
10.2.15 Acceptable shower area
10.2.16 Stepdown showers
10.2.17 Hob construction
10.2.18 Enclosed showers with level threshold (without hob or set down)
10.2.19 Unenclosed showers
10.2.20 Preformed shower bases
10.2.21 Baths and spas
10.2.22 Membrane installation for screed
10.2.23 Substrate surface preparation for application of membrane
10.2.24 Penetrations
10.2.25 Flashings/junctions
10.2.26 Shower area floor membrane application
10.2.27 Membrane requirements for wall sheeting or render substrates
10.2.28 Bond breaker installation for bonded membranes
10.2.29 Installation of internal membranes
10.2.30 Membrane to drainage connection
10.2.31 Drainage riser connection
10.2.32 Door jambs and architraves on tiled floors
10.2.33 Shower screens
10.2.34 Bath end walls abutting a shower

Part 10.3 Room heights
10.3.1 Height of rooms and other spaces

Part 10.4 Facilities
10.4.1 Required facilities
10.4.2 Construction of sanitary compartments

Part 10.5 Light
10.5.1 Natural light
10.5.2 Artificial lighting

Part 10.6 Ventilation
10.6.1 Application of Part 10.6
10.6.2 Ventilation requirements
10.6.3 Location of sanitary compartments

Part 10.7 Sound insulation
10.7.1 Sound insulation requirements
10.7.2 Determination of airborne sound insulation ratings
10.7.3 Construction of sound insulated walls
10.7.4 Services
10.7.5 Acceptable forms of construction for masonry walls
10.7.6 Acceptable forms of construction for concrete walls
10.7.7 Acceptable forms of construction for autoclaved aerated concrete walls
10.7.8 Acceptable forms of construction for timber and steel framed walls

Part 10.8 Condensation management
10.8.1 Pliable building membrane
10.8.2 Flow rate and discharge of exhaust systems
10.8.3 Ventilation of roof spaces
Part 10.1 Scope and application of Section 10

10.1.1 Scope

This Section of the ABCB Housing Provisions sets out the Deemed-to-Satisfy Provisions for—

(a) wet areas and external waterproofing (see Part 10.2); and
(b) room heights (see Part 10.3); and
(c) facilities (see Part 10.4); and
(d) light (see Part 10.5); and
(e) ventilation (see Part 10.6); and
(f) sound insulation (see Part 10.7); and
(g) condensation management (see Part 10.8).

10.1.2 Application

The application of Section 10 of the ABCB Housing Provisions is subject to the following:

(a) The Governing Requirements of NCC 2022 Volume Two.
(b) The State and Territory variations, additions and deletions contained in the Schedules to the ABCB Housing Provisions and NCC Volume Two.

Explanatory Information:

In NCC 2019, the content of Section 10 of the ABCB Housing Provisions (other than content added in NCC 2022 or later) was contained in the acceptable construction practices for Parts 3.8.1 to 3.8.7 of NCC 2019 Volume Two.
Part 10.2 Wet areas and external waterproofing

SA 10.2.1

10.2.1 Wet areas

[2019: 3.8.1.2]

(1) Building elements in wet areas within a building must be protected with a waterproofing system. —
 (a) be waterproof or water resistant in accordance with 10.2.2 to 10.2.7; and
 (b) comply with AS 3740.

(2) The waterproofing system in (1) must be either waterproof or water resistant in accordance with 10.2.2 to 10.2.6.

10.2.2 Shower area (enclosed and unenclosed)

[2019: Table 3.8.1.1]

(1) For a shower area with a hob, step-down or without a hob or step-down, the following applies:
 (a) The floor of the shower area must be waterproof, including any hob or step-down (see Figure 10.2.2); and
 (b) The walls of the shower area must be (see Figure 10.2.2) —
 (i) waterproof for all walls in shower area to a height the greater of—
 (A) not less than 150 mm above floor substrate; or
 (B) not less than 25 mm above maximum retained water level; and
 (ii) water resistant for walls to not less than 1800 mm above finished floor level of the shower.
 (c) Wall junctions and joints within the shower area must be waterproof not less than 40 mm either side of the junction (see Figure 10.2.2).
 (d) Wall/floor junctions within the shower area must be waterproof (see Figure 10.2.2).
 (e) Penetrations within the shower area must be waterproof.

(2) A shower with a preformed shower base must also comply with the requirements of (1), except for (a) and (b)(i) which are not applicable.
Figure 10.2.2: Extent of treatment for shower areas — concrete and compressed fibre-cement sheet floors

Figure Notes:

Wall/floor junction heights are to be as per 10.2.2 to 10.2.6 (as applicable).
Notes:
Where a shower is above a bath or spa, use requirements for shower.

10.2.3 Area outside shower area

[2019: Table 3.8.1.1]

(1) For concrete, and compressed fibre-cement and fibre-cement sheet flooring, the floor of the room must be water resistant.
(2) For timber floors including particleboard, plywood and other timber based flooring materials, the floor of the room must be waterproof.
(3) Wall/floor junctions must be waterproof.
 (a) waterproof; and
 (b) where a flashing is used, the horizontal leg must be not less than 40 mm.

10.2.4 Areas adjacent to baths and spas (other than inserted baths and spas)

[2019: Table 3.8.1.1]

(1) Freestanding baths and spas — For concrete, and compressed fibre-cement and fibre-cement sheet flooring, the floor of the room must be water resistant.
(2) Freestanding baths and spas — For timber floors including particleboard, plywood and other timber based flooring materials, the floor of the room must be waterproof.
(3) Walls must be water resistant (see Figure 10.2.4a and Figure 10.2.4b) —
 (a) to a height of not less than 150 mm above the vessel, for the extent of the vessel, where the vessel is within 75 mm of a wall; and
 (b) for all exposed surfaces below vessel lip.
(4) Wall junctions and joints must be water resistant junctions within 150 mm above a vessel for the extent of the vessel (see Figure 10.2.4a and 10.2.4b).
(5) Wall/floor junctions must be water resistant for the extent of the vessel (see Figure 10.2.4a and Figure 10.2.4b).
(6) Tap and spout penetrations must be waterproof where they occur in horizontal surfaces.
Figure 10.2.4a: Unenclosed showers above baths — area protected for concrete, compressed fibre-cement and fibre-cement sheet flooring

(a) Plan view

Waterproof to 1800 mm from finished floor level

Width of 40 mm either side of the junction

If confined by shower screen

Optional shower panel

Waterproof to 1500 mm from shower connection at wall

Waterproof to 1500 mm from finished floor level

Width of 40 mm either side of the junction

(b) Isometric view

Seal tap, shower rose and bath spout penetrations

Waterproof junction width of 40 mm either side of the junction

Waterproof to 1500 mm from the shower connection at wall 25 mm above finished floor level

Floor waste

Waterproof junction to 1500 mm from the shower connection at wall 25 mm above finished floor level

Waterproof bath lip/tile joint

Waterproof bath/wall junction to make junction waterproof

Water resistant walls to 1800 mm from finished floor level

Waterproof to 1500 mm from finished floor level and grade to a floor waste

Waterproof to 1500 mm from finished floor level

Width of 40 mm either side of the junction

WR 150 mm

WR

WP

WR

WR

WR
Figure 10.2.4b: Unenclosed showers above baths—areas protected for timber floors including particleboard, plywood and other floor materials

(a) Plan view

Waterproof to 1800 mm from finished floor level, width of 40 mm either side of the junction

If confined by shower screen

Optional shower panel

Waterproof entire floor

(b) Isometric view

Waterproof to 1800 mm from finished floor level, width of 40 mm either side of the junction

Shower panel sealed at all junctions

Seal tap, shower rose and bath spout penetrations

Waterproof junction width of 40 mm either side of the junction

Waterproof junction to 1500 mm from the shower connection at the wall 25 mm above finished floor level

Floor waste

Waterproof entire floor

Waterproof bath lip/tile joint

Shower screen

Water resistant walls to 1800 mm from finished floor level

Waterproof bath/wall junction to make junction waterproof

WR 150 mm

Waterproof junctions
10.2.5 Areas adjacent to inserted baths and spas

(1) Floors and horizontal surfaces:
 (a) *Waterproof* shelf area, incorporating waterstop under bath lip.
 (b) No requirement under bath.

(2) Walls:
 (a) *Waterproof* to not less than 150 mm above lip of bath or spa.
 (b) No requirement under bath.

(3) Wall junctions and joints:
 (a) *Waterproof* junctions within 150 mm above bath or spa.
 (b) No requirement under bath.

(4) Tap and spout penetrations must be *waterproof* where they occur in horizontal surfaces.

10.2.6 Other areas

(1) For walls adjoining other types of *vessel* (e.g. sink, basin or laundry tub), the following applies:
 (a) Walls must be *water resistant* to a height of not less than 150 mm above the *vessel*, for the extent of the *vessel*, where the *vessel* is within 75 mm of a wall (see Figure 10.2.6).
 (b) *Waterproof* wall junctions where a *vessel* is fixed to a wall.
 (c) *Waterproof* tap and spout penetrations where they occur in surfaces required to be *waterproof* or *water resistant*.

(2) For laundries and WCs, the following applies:
 (a) The floor of the room must be *water resistant*.
 (b) Wall/floor junctions must be *water resistant*, and where a *flashing* is used, the horizontal leg must not be less than 40 mm.

(3) For WCs with handheld bidet spray installations, the following applies:
 (a) The floor of the room must be *waterproof*.
 (b) Walls must be—
 (i) *waterproof* in WC area within a 1500 mm radius from the wall connection of the handheld bidet spray device to a height of not less than 150 mm above substrate; and
 (ii) *water resistant* in WC area within a 1500 mm radius from the wall connection of the handheld bidet device to not less than 1800 mm above the finished floor level of the WC.
 (c) Wall junctions within WC area within 150 mm radius from the wall connection of the handheld bidet spray device must be *waterproof*.
 (d) Wall/floor junctions within WC area within 150 mm radius from the wall connection of the handheld bidet spray device must be *waterproof*.
 (e) Penetrations in WC area must be *waterproof*.
10.2.6 Bath and vessel abutting wall — areas to be protected

(a) Vessel abutting wall

(b) Wall/bath junction

10.2.7 External above ground membranes

Waterproofing membranes for external above ground use must comply with AS 4654.1 and AS 4654.2.

10.2.7 Waterproofing systems

(1) For 10.2 of the ABCB Housing Provisions, a waterproofing system is deemed—
 (a) waterproof, if it complies with (2); or
 (b) water resistant, if it complies with (3).

(2) For a waterproofing system required to be waterproof in accordance with 10.2.2 to 10.2.6, the materials nominated in 10.2.9 must be used in conjunction with the—
 (a) water resistant substrate materials in 10.2.10; and
 (b) water resistant surface materials in 10.2.11.

(3) For a waterproofing system required to be water resistant in accordance with 10.2.2 to 10.2.6, the materials nominated in 10.2.10 must be used in conjunction with the materials in 10.2.11.
10.2.8 Materials

Materials used in wet areas forming waterproofing system must be either waterproof or water resistant in accordance with 10.2.2 to 10.2.6.

10.2.9 Materials — waterproof

The following materials used in waterproofing systems are deemed to be waterproof—

(a) Stainless steel.
(b) Flexible waterproof sheet flooring material with sealed joints.
(c) Membranes complying with AS 3740.

10.2.10 Materials — water resistant substrates

The following materials are deemed to be water resistant:

(a) For walls:
 (i) Concrete complying with AS 3600, treated to resist moisture.
 (ii) Cement render, treated to resist moisture movement.
 (iii) Compressed fibre-cement sheeting manufactured in accordance with AS/NZS 2908.2.
 (iv) Water resistant plasterboard sheathing.
 (v) Masonry in accordance with AS 3700, treated to resist moisture movement.

(b) For floors:
 (i) Concrete complying with AS 3600.
 (ii) Concrete slabs complying with AS 2870.
 (iii) Compressed fibre-cement sheeting manufactured in accordance with AS/NZS 2908.2 and supported on a structural floor.

10.2.11 Materials — water resistant surface materials

The following surface materials are deemed to be water resistant:

(a) For walls:
 (i) Thermosetting laminate.
 (ii) Pre-decorated compressed fibre-cement sheeting manufactured in accordance with AS 2908.2.
 (iii) Tiles when used in conjunction with a substrate listed in 10.2.10.
 (iv) Water resistant flexible sheet wall material with sealed joints when used in conjunction with a substrate listed in 10.2.10.
 (v) Sanitary grade acrylic linings.

(b) For floors, when used in conjunction with a substrate listed in 10.2.10:
 (i) Tiles.
 (ii) Water resistant flexible sheet flooring material with welded joints.
Explanatory Information:
Sheet vinyl or linoleum would satisfy the requirement of 10.2.11.

10.2.12 Construction of wet areas — wall and floor substrate materials

For compliance with 10.2 of the ABCB Housing Provisions, floor wall and floor lining materials used in substrates must comply with 10.2.10.

10.2.13 Construction of wet areas — wall and floor surface materials

For compliance with 10.2 of the ABCB Housing Provisions, floor wall and floor lining materials used in surface must comply with 10.2.11.

10.2.14 Construction of wet area floors — falls

Where a floor waste is installed—
(a) the minimum continuous fall to the waste must be 1:80; and
(b) the maximum continuous fall to the waste must be 1:50.

10.2.15 Acceptable shower area

Shower areas must be designed—
(a) as either enclosed or unenclosed; and
(b) to include a floor waste with falls complying with 10.2.14; and
(c) with a—
 (i) stepdown complying with 10.2.16; or
 (ii) hob complying with 10.2.17; or
 (iii) level threshold complying with 10.2.18.

10.2.16 Stepdown showers

The highest finished floor level of the shower area must be stepped down a minimum of 25 mm lower than the finished floor level outside the shower (see Figures 10.2.16a and 10.2.16b).
Figure 10.2.16a: Typical stepped down shower construction (diagrams (a) and (b))

Height to be 25 mm above the maximum retained water level or 150 mm above the finished tile level of the floor in the shower area whichever is the highest.

(a) Enclosed shower-Membrane below tile bed

(b) Enclosed shower-Membrane above tile bed
Figure 10.2.16b: Typical stepped-down shower construction (diagrams (c) and (d))

Height to be 25 mm above the maximum retained water level or 150 mm above the finished tile level of the floor in the shower area whichever is the highest

(c) Unenclosed shower-Membrane below tile bed

(d) Unenclosed shower-Membrane above tile bed
10.2.17 Hob construction

(1) **Hobs** must be constructed of—
 (a) masonry; or
 (b) concrete; or
 (c) primed autoclaved aerated concrete; or
 (d) extruded polyurethane foam,
 in accordance with Figure 10.2.17.

(2) All gaps, joints and intersections of the **hob** substrate must be made flush before application of the **membrane**.

(3) **Hobs** must be adequately secured to the floor and sealed against the wall prior to applying an internal **membrane**.

(4) Timber must not be used for **hob** construction.

Figure 10.2.17: Typical hob construction — internal membrane

10.2.18 Enclosed showers with level threshold (without hob or set down)

New for 2022

At the extremity of the **shower area**, a **waterstop** must be positioned so that its vertical leg finishes where—

(1) **a shower screen** is to be installed, not less than 5 mm above the finished floor level (see Figure 10.2.18); and

(2) the **waterstop** intersects with a wall or is joined, the junction must be waterproof.
10.2.19 Unenclosed showers

(1) Unenclosed showers must be constructed as follows:
 (a) Waterstop must be installed a minimum horizontal distance of 1500 mm from the shower rose; and
 (b) The vertical leg of the waterstop must finish—
 (i) flush with the top surface of the floor (see Figure 10.2.19); and
 (ii) where the waterstop intersects with a wall or is joined—
 (A) the junction must be waterproof; or
 (B) the whole wet area floor must be waterproofed and drained to a floor waste as for the shower area.

(2) In the case of (1)(b)(iii), at doorways, where the height of the tiling angle needs to be adjusted for tiling purposes, the angle must be fixed with a sealant compatible with the waterproofing membrane without damaging the waterproofing system.

Figure Notes:
Fall is to be provided in accordance with 10.2.14.
10.2.20 Preformed shower bases

[New for 2022]

Shower bases must—

(a) have an upturn lip (see Figure 10.2.20a and Figure 10.2.20b); and
(b) be recessed into the wall to allow the water resistant surface materials to pass down inside the perimeter upturn lip of the shower base (see Figure 10.2.20a and Figure 10.2.20b); and
(c) be supported to prevent distortion or cracking.

Figure 10.2.20a: Typical preformed shower base wall/floor junction
10.2.20 Public Comment Draft

Health and amenity

Figure 10.2.20b: Typical preformed shower base/floor junction on timber floors, including particleboard, plywood and other timber materials

10.2.21 Baths and spas

Baths and spas must—

(a) have an upturn lip; and
(b) be recessed into the wall (see Figure 10.2.21); and
(c) have the water resistant surface materials of the wall pass down inside the upturn lip (see Figure 10.2.21); and
(d) be supported to prevent distortion and cracking.
Figure 10.2.21: Typical bath junctions

(a) Bath/wall junction - recessed

(b) Bath/wall junction - battened

(c) Bath/shelf junction
10.2.22 Membrane installation for screed

Where a screed is used in conjunction with a waterproof membrane, the waterproof membrane must be installed above the tile bed or screed.

10.2.23 Substrate surface preparation for application of membrane

The substrate surface area where a membrane is to be applied must—

(a) be clean and dust free; and
(b) free of indentations and imperfections.

10.2.24 Penetrations

Penetrations within shower areas must comply with the following:

(a) Penetrations for taps, shower nozzles and the like must be waterproofed by sealing with—
 (i) sealants; or
 (ii) proprietary flange systems.
(b) The spindle housing of the tap body must be able to be removed to enable replacement of the washer without damaging the seal.
(c) The following must be waterproofed:
 (i) All penetrations due to mechanical fixings or fastenings of substrate materials.
 (ii) Any penetration of the surface materials due to mechanical fixings or fastenings.
 (iii) Recessed soap holders (niches) and the like.
(d) Tap and spout penetrations on horizontal surfaces surrounding baths and spas must be waterproofed by—
 (i) sealing the tap body to the substrate with sealants; or
 (ii) proprietary flange systems.

10.2.25 Flashings/junctions

Flashings must be installed in accordance with 10.2.2 to 10.2.6 and the following:

(a) Perimeter flashing to wall/floor junctions must have a vertical leg of not less than 25 mm above the finished floor level, except across doorways, and the horizontal leg must have a width of not less than 50 mm.
(b) Where a water resistant substrate is used in conjunction with a water resistant surface material, a waterproof sealant must be installed after the finishes have been applied at the wall/floor junction.
(c) Perimeter flashings at floor level opening must comply with the following:
 (i) Where the whole wet area floor is waterproof, at floor level openings, a waterstop must be installed that has a vertical leg finishing flush with the top of the finished floor level with the floor membrane being terminated to create a waterproof seal to the waterstop and to the perimeter flashing (see Figure 10.2.25).
 (ii) In any other case, at floor level openings a waterstop must be installed that has a vertical leg finishing flush with the top of the finished floor level and waterproofed to the perimeter flashing.
(d) Vertical flashing, either external to the wet area or internal, must terminate not less than 1800 mm above the finished floor level.
Figure 10.2.25: Typical bathroom door details for whole bathroom waterproofing

Explanatory Information:

Vertical flashing may be used as follows:

(a) After installation of architrave

(b) Prior to installation of architrave
External vertical flashing may be used with external membrane systems and installed behind the wall sheeting or render. They must have legs of sufficient width to allow the wall sheeting or render to overlap by not less than 32 mm.

Internal vertical flashing may be used with both external and internal membrane systems provided each leg has a minimum overlap of 40 mm to the wall sheeting or render and where used with—

(i) internal membranes, must extend vertically from the shower tray; and
(ii) external membranes, must overlap the top edge of the floor waterproofing system by not less than 20 mm; and
(iii) preformed shower bases or baths, must extend to the bottom edge of the wall sheeting or render.

10.2.26 Shower area floor membrane application

The membrane must be applied over the floor and up the vertical face of the wall substrate material as follows:

(a) For showers with hobs or stepdowns, to a height the greater of—

(i) not less than a height of 150 mm above the finished tile level of the floor; or
(ii) 25 mm above the maximum retained water level.

(b) For hobless showers, not less than a height of 150 mm above the finished tile level of the floor.

10.2.27 Membrane requirements for wall sheeting or render substrates

(1) Where wall sheeting or render is used with an external membrane system in a shower area it must be waterproof to prevent moisture movement by capillary action.

(2) Where water resistant plasterboard is used all cut edges that have the potential to be affected by moisture must be waterproofed, including the bottom edge over a preformed shower base.

10.2.28 Bond breaker installation for bonded membranes

(1) Bond breakers must be installed at all wall/floor, hob/wall junctions and at movement joints where the membrane is bonded to the substrate.

(2) Bond breakers must be of the type compatible with the flexibility class of the membrane to be used.

Explanatory Information:
Typical details for bond breaker types are given in Figure 10.2.28.
Figure Notes:
1. *Bond breakers for Class I membranes (low extensibility)* allow the *membrane* to flex rather than stretch.
2. *Bond breakers for Class II membranes (medium extensibility)* allow the *membrane* to stretch. If a tape is used as a bond breaker, either the *membrane* must not bond to the tape or the tape must have elastic properties similar to...
3. *Bond breakers* for Class III membranes (high extensibility) allow the *membrane* to have an even thickness.

10.2.29 Installation of internal membranes

New for 2022

(1) **Where a shower has a hob**—

 (a) *the membrane* must be brought over the top of the *hob*, down the outside face and terminate not less than 50 mm onto the floor (see Figure 10.2.17); and

 (b) *the membrane* must comply with Figure 10.2.29 for an internal shower tray.

(2) **Where the shower has a waterstop, the membrane** must be brought to the top of the finished floor, except where it is under a *shower screen* where it must terminate not less than 5 mm above the finished tile surface (see Figure 10.2.18 and Figure 10.2.19).
Figure 10.2.29: Typical shower construction

(a) External system-Shower membrane installed before wall sheeting

(b) Internal system-Shower membrane installed after wall sheeting
10.2.30 Membrane to drainage connection

(1) Membrane drainage connections in concrete floors must comply with one of the following:
 (a) The drainage riser must be trimmed to the floor level of the concrete substrate or screed with all internal burrs removed and the waterproofing membrane terminated not less than 20 mm into the riser.
 (b) A drainage flange must be installed with the waterproofing membrane terminated at or in the drainage flange to provide a waterproof connection (see Figure 10.2.30).
 (c) Where a prefabricated shower tray is used, provision must be made to drain the tile bed and provide a waterproof connection to the drain.

(2) Membrane drainage connections in other floors must comply with one of the following:
 (a) The drainage riser must be fixed to the floor substrate and the waterproofing membrane terminated not less than 20 mm into the riser.
 (b) A drainage flange must be installed with the waterproofing membrane terminated at or in the drainage flange to provide a waterproof connection (see Figure 10.2.30).

(3) Where a prefabricated shower tray is used, provision must be made to drain the tile bed and provide a waterproof connection to the drain.

(4) Floor wastes must be of sufficient height to suit the thickness of the tile and tile bed at the outlet position.

Figure 10.2.30: Typical membrane termination at drainage outlet

Explanatory Information: Drainage flanges

1. For membrane drainage connections in concrete floors: drainage flanges may be either cast into the concrete slab or fixed to the top surface of the concrete slab or the tile bed.
2. For membrane drainage connections in other floors: drainage flanges may be either set into the floor or fixed to the top surface of the floor substrate or the tile bed.

10.2.31 Drainage riser connection

(1) Where a prefabricated shower tray is used, the drainage riser must be connected to the tray with a waterproof joint.

(2) Where an in situ shower tray is used, the membrane must—
 (a) extend not less than 20 mm into the drainage riser or drainage flange; and
 (b) be able to form a permanent waterproof seal to the drainage riser or drainage flange (see Figure 10.2.30).
10.2.32 Door jambs and architraves on tiled floors
[New for 2022]

Where the bottom of door jambs do not finish above the floor tiling, the portion of the door frame and architrave below the floor tiling must be waterproofed to provide a continuous seal between the perimeter flashing and the waterstop.

10.2.33 Shower screens
[New for 2022]

(1) **For an enclosed shower**, the *shower screen* must be designed and installed to prevent water escaping from the shower enclosure.

(2) **For a shower with a hob**, the *shower screen* must be installed flush with the *shower area* side of the hob or overhang into the shower area.

(3) **For a shower with a stepdown**, the *shower screen* must be installed flush with the finished vertical surface of the stepdown of the shower area.

(4) **For a shower without a hob or stepdown**, the *shower screen* must incorporate or be mounted on an inverted channel, positioned over the top of the *waterstop*, that defines the shower area.

(5) **For bath end walls and dividing walls abutting a shower**, the *shower screen* must be positioned so that the bottom edge within the *shower area* is either flush with the outside edge of the bath or overhanging into the *shower area*.

Explanatory Information:
A self-draining sub-sill is considered to be part of the *shower screen*.

10.2.34 Bath end walls abutting a shower
[New for 2022]

Where a bath end wall is within a *shower area*, it must be treated as a *shower area* wall.
10.3.1 Height of rooms and other spaces

(1) Heights of rooms and other spaces (see Figure 10.3.1) must be not less than—

(a) in a habitable room excluding a kitchen — 2.4 m; and

(b) in a kitchen — 2.1 m; and

(c) in a corridor, passageway or the like — 2.1 m; and

(d) in a bathroom, shower room, laundry, sanitary compartment, airlock, pantry, storeroom, garage, car parking area or the like — 2.1 m; and

(e) in a room or space with a sloping ceiling or projections below the ceiling line within—

(i) a habitable room—

(A) in an attic — a height of not less than 2.2 m for at least two-thirds of the floor area of the room or space; and

(B) in other rooms — a height of not less than 2.4 m over two-thirds of the floor area of the room or space; and

(ii) a non-habitable room — a height of not less than 2.1 m for at least two-thirds of the floor area of the room or space; and

(f) in a stairway, ramp, landing, or the like — 2.0 m measured vertically above the nosing line of stairway treads or the floor surface of a ramp, landing or the like.

(2) For the purposes of (1)(e), when calculating the floor area of a room or space, any part that has a ceiling height of less than 1.5 m is not included.

Figure 10.3.1: Measurement of heights of rooms and other spaces

Figure Notes:
The letters in the diagram represent the following minimum dimensions:
A = 2.4 m in a habitable room (excluding a kitchen).
B	2.4 m In a **habitable room** with a sloping ceiling for at least two-thirds of the *floor area* of the room or space.
C	2.1 m In a **non-habitable room** with a sloping ceiling for at least two-thirds of the *floor area* of the room or space.
D	2.2 m In an attic with a sloping ceiling for at least two-thirds of the *floor area* of the room or space.
E	1.5 m For the purpose of calculating the *floor area* of a room or space, any ceiling height of less than 1.5 m is excluded.
F	2.0 m In a stairway (measured vertically above the nosing line).
Explanatory Information:	
1.	Where a room or space has no ceiling lining, the measurement is taken from the floor to the underside of the floor or roof above.
2.	In areas unlikely to be occupied for long periods, such as non-**habitable rooms**, a reduced height of 2.1 m is permitted.
3.	10.3.1(1)(f) permits a reduced height of 2.0 m above stairways, ramps and landings, as these are used for transient purposes and therefore a reduction from the **required** height in corridors and rooms (2.1 and 2.4 m generally) will not adversely affect occupant safety, health or amenity.
10.4.1 Required facilities

(1) A Class 1 building must be provided with—
 (a) a kitchen sink and facilities for the preparation and cooking of food; and
 (b) a bath or shower; and
 (c) clothes washing facilities, comprising at least one washtub and space in the same room for a washing machine; and
 (d) a closet pan; and
 (e) a washbasin.

(2) If any of the facilities in (1) are detached from the main building, they must be set aside for the exclusive use of the occupants of the building.

Explanatory Information:
1. A kitchen sink or washbasin must not be counted as a laundry washtub. A laundry washtub is considered to provide the necessary means to dispose of waste water as required by H4P3(2).
2. Installation requirements for certain electrical or gas cooking appliances may influence the selection of surrounding materials or the clearance to those materials.

10.4.2 Construction of sanitary compartments

The door to a fully enclosed sanitary compartment must—
 (a) open outwards; or
 (b) slide; or
 (c) be readily removable from the outside of the compartment,

unless there is a clear space of at least 1.2 m, measured in accordance with Figure 10.4.2, between the closet pan within the sanitary compartment and the doorway.
Figure 10.4.2: Construction of sanitary compartments

Explanatory Information:
10.4.2 requires means of removing an unconscious occupant from a fully enclosed sanitary compartment. If the enclosure has gaps that are large enough to allow access for a person into the sanitary compartment, the compartment is not considered enclosed for the purpose of this clause.

TAS 10.4.3
10.5.1 Natural light

(1) Natural light must be provided to all habitable rooms, in accordance with the requirements of (2) to (4).

(2) Natural light must be provided by—
 (a) windows, excluding roof lights that—
 (i) have an aggregate light transmitting area measured exclusive of framing members, glazing bars or other obstructions of not less than 10% of the floor area of the room; and
 (ii) are open to the sky or face a court or other space open to the sky or an open verandah, carport or the like; or
 (b) roof lights that—
 (i) have an aggregate light transmitting area measured exclusive of framing members, glazing bars or other obstructions of not less than 3% of the floor area of the room; and
 (ii) are open to the sky; or
 (c) a proportional combination of windows and roof lights required by (a) and (b).

(3) A window required to provide natural light that faces a boundary of an adjoining allotment must not be less than a horizontal distance of 900 mm from that boundary.

(4) Natural light to a room may come through one or more glazed panels or openings from an adjoining room (including an enclosed verandah) if—
 (a) the glazed panels or openings have an aggregate light transmitting area of not less than 10% of the floor area of the room to which it provides light; and
 (b) the adjoining room has—
 (i) windows, excluding roof lights that—
 (A) have an aggregate light transmitting area of not less than 10% of the combined floor area of both rooms; and
 (B) are open to the sky or face a court or other space open to the sky or an open verandah, carport or the like; or
 (ii) roof lights that—
 (A) have an aggregate light transmitting area of not less than 3% of the combined floor area of both rooms; and
 (B) are open to the sky; or
 (iii) a proportional combination of windows and roof lights required by (i) and (ii).

(5) The areas specified in (4)(a) and (b) may be reduced as appropriate if direct natural light is provided from another source.

(6) See Figure 10.5.1.
Figure 10.5.1: Method of determining areas of openings for borrowed light

A roof light generally receives greater exposure to sunlight than a window because of its orientation to the sky and

Explanatory Information: Explanatory Figure 10.5.1
A roof light generally receives greater exposure to sunlight than a window because of its orientation to the sky and
consequently, the size of a roof light as a percentage of the floor area served is permitted to be smaller than for a window serving the same floor area. This is explained in Explanatory Figure 10.5.1, below.

Figure 10.5.1 (explanatory): Method for determining proportional combination of windows and roof lights

Figure Notes:
1. Area of the room which requires natural light is 100 m2.
2. No natural light is borrowed from adjoining rooms.

Explanatory Information: General requirements for Explanatory Figure 10.5.1

Required window(s) to provide natural light must have a light transmitting area of at least 10% of the floor area.

10% of 100 m$^2 = 10$ m2

Or, roof light(s) to provide natural light must have a light transmitting area of at least 3% of the floor area.

3% of 100 m$^2 = 3$ m2

In the formula shown in the next Explanatory Information box, 3% of the floor area is expressed as the fraction 0.03 and 10% of the floor area is expressed as the fraction 0.1.

Explanatory Information: Calculations for Explanatory Figure 10.5.1

Formula — for the area of window(s) required to compensate for roof light(s) short fall:

- Area of room covered by the roof light(s) = (Area of roof light(s)) / 0.03
- Required window(s) area = [(floor area) – (Area covered by the roof light(s))] / 10

Area of window(s) required to compensate for roof light(s) short fall:

If the roof light(s) = 1 m2

- Area of room covered by the roof light(s) = (1 m2 / 0.03) = 33.33 m2.
- Required window(s) area = (100 m2 – 33.33 m2) / 10 = 6.67 m2.

Formula — for the area of roof light(s) required to compensate for window(s) short fall:

- Area of room covered by the window(s) = (Area of window(s)) / 0.1.
- Required roof light(s) area = [(floor area) – (Area covered by the window(s))] / 33.33.
Area of roof light(s) required to compensate for window(s) short fall:

If the window(s) = 5 m².

- Area of room covered by the window(s) = (5 m² / 0.1) = 50 m².
- Required roof light(s) area = (100 m² – 50 m²) / 33.33 m² = 1.5 m².

Notes:

1. For the purposes of this example a window excludes a roof light.
2. The same proportional calculation principle applies if—
 a. two or more windows are used; or
 b. two or more roof lights are used.

Explanatory Information: Natural light borrowed from another source

1. Direct natural light provided from another source is intended to mean light from a window or roof light in the subject room. As the provision relates to natural light obtained from an adjoining room, “another source” refers to direct natural light provided to the subject room which does not meet the required allowance of either 10% or 3% of the floor area of that room. By not meeting the required amount of natural light, the “direct natural light from another source” can be used as a supplement to the natural light required from an adjoining room.

2. To borrow natural light from another room, 10.5.1(4)(a) allows light to pass through a glazed panel(s) or opening(s) from an adjoining room, which under 10.5.1(4)(b), must have windows, roof lights or a combination of windows and roof lights of a minimum size in proportion to the combined floor areas of both rooms. The minimum size of the glazed panel(s) or opening(s), and the minimum size of the window to the adjoining room are illustrated in Figure 10.5.1.

3. If a doorway is used as an opening to obtain natural light, it must do so when in the closed position (see Figure 10.5.1).

10.5.2 Artificial lighting

[2019: 3.8.4.3]

Sanitary compartments, bathrooms, shower rooms, airlocks and laundries must be provided with artificial lighting if natural light in accordance with the relevant provisions of 10.5.1 is not available—

(a) at a rate of not less than one light fitting per 16 m² of floor area; or
(b) in accordance with AS/NZS 1680.0.
10.6.1 Application of Part 10.6

(1) Part 10.6 applies subject to the limitations set out at H4D6.

(2) Part 10.6 need not be complied with if H4D6(1) is complied with.

Explanatory Information:
The requirements of this Part are to be read in conjunction with the condensation management requirements in Part 10.8 and the air movement requirements in Part 13.5. However, it should be noted that Part 13.5 does not apply in all States and Territories.

10.6.2 Ventilation requirements

Ventilation must be provided to a habitable room, sanitary compartment, bathroom, shower room, laundry and any other room occupied by a person for any purpose by any of the following means:

(a) Openings, windows, doors or other devices which can be opened—
 (i) with a ventilating area not less than 5% of the floor area of the room required to be ventilated; and
 (ii) open to—
 (A) a suitably sized court, or space open to the sky; or
 (B) an open verandah, carport, or the like; or
 (C) an adjoining room in accordance with (b).

(b) Natural ventilation to a room may come through a window, opening, door or other device from an adjoining room (including an enclosed verandah) if—
 (i) the room to be ventilated or the adjoining room is not a sanitary compartment; and
 (ii) the window, opening, door or other device has a ventilating area of not less than 5% of the floor area of the room to be ventilated; and
 (iii) the adjoining room has a window, opening, door or other device with a ventilating area of not less than 5% of the combined floor areas of both rooms; and
 (iv) the ventilating areas specified may be reduced as appropriate if direct natural ventilation is provided from another source (See Figure 10.6.2).

(c) An exhaust fan or other means of mechanical ventilation may be used to ventilate a sanitary compartment, laundry, kitchen or bathroom, or where mechanical ventilation is provided in accordance with 10.6.3(b), provided contaminated air exhausts comply with 10.8.2.
10.6.2 Method of determining areas of openings for borrowed ventilation

Explanatory Information:

The ventilating area of a *window* is measured as the size of the openable sash of the *window*. This is the case regardless of the type of *window*, i.e. whether it is an awning, casement or sliding *window* and irrespective of the restrictions on the openable sash.

10.6.2(b) permits a room’s *required* ventilation to be “borrowed” from an adjoining room, i.e. an adjoining room's ventilation can be used to help make up the total amount of ventilation *required*.

The use of borrowed ventilation is acceptable if the provisions of 10.6.2(b) are applied to the subject room and to the total area of each relevant room.

10.6.3 Location of sanitary compartments

Sanitary compartments must not open directly into a kitchen or pantry unless—

(a) access is by an airlock, hallway or other room, (see Figure 10.6.3); or

(b) the *sanitary compartment* is provided with an exhaust fan or other means of mechanical exhaust ventilation.
Figure 10.6.3: Acceptable location of non mechanically ventilated sanitary compartment

Compartment may open directly into kitchen provided mechanical ventilation is provided in accordance with Part 10.6
Sound insulation requirements

(1) A separating wall between Class 1 buildings, or a wall that separates a Class 1 building from a Class 10a building which is not associated with the Class 1 building must—
 (a) have an $R_w + C_{tr}$ (airborne) not less than 50; and
 (b) be of discontinuous construction if it separates a bathroom, sanitary compartment, laundry or kitchen in one Class 1 building from a habitable room (other than a kitchen) in an adjoining Class 1 building (see Figure 10.7.1).

(2) For the purposes of (1)(b), discontinuous construction means a wall system that has two separate leaves and that is not a staggered stud wall, that complies with the following:
 (a) The wall has a minimum 20 mm cavity between leaves.
 (b) For masonry walls, where wall ties are required to connect leaves, the ties are of the resilient type.
 (c) For walls other than masonry, there is no mechanical linkage between leaves except at the periphery.

(3) A wall required to have sound insulation must continue to—
 (a) the underside of the roof above; or
 (b) a ceiling that provides the sound insulation required for the wall.

Figure 10.7.1: Required airborne and impact sound insulation — Plan view

Wall separating two Class 1 buildings
Explanatory Information:
Insulation to reduce both airborne and impact noise transmission is required for parts of a wall that are common to adjoining Class 1 buildings but not parts of a wall located in the subfloor.

10.7.2 Determination of airborne sound insulation ratings

[2019: 3.8.6.3]

The Rw + Ctr sound insulation rating required by 10.7.1(1)(a) must—

(a) be determined in accordance with AS/NZS ISO 717.1, using results from laboratory measurements; or

(b) comply with 10.7.5 to 10.7.8 and the relevant provisions of 10.7.3.

Explanatory Information:
Rw is a measure of airborne sound insulation. Ctr is a spectrum adjustment factor that adjusts for low frequency sound levels. Ctr has been chosen in recognition of the problems caused by the high bass frequency outputs of modern home theatre systems and music reproduction equipment used by occupants of Class 1 buildings.

The wall configurations described in 10.7.5 to 10.7.8 are typical examples. Other proprietary methods are available via testing to AS/NZS ISO 717.1 for meeting the Rw + Ctr requirements of 10.7.1.

10.7.3 Construction of sound insulated walls

[2019: 3.8.6.4]

To achieve the appropriate level of sound insulation, walls must be constructed as follows:

(a) Stud wall junction — junctions of sound insulated walls with any perimeter walls and roof cladding must be sealed in accordance with Figure 10.7.3a.

(b) Masonry — units must be laid with all joints filled solid, except for articulation joints complying with 5.6.8 or 5.2.13, including those between the masonry and any adjoining construction.

(c) Concrete panels — must have joints between panels and any adjoining construction filled solid.

(d) Plasterboard sheeting —
 (i) If two layers are required, the second layer joints must not coincide with those of the first layer (see Figure 10.7.3b).
 (ii) Joints between sheets including the outer layer or between sheets and any adjoining construction must be taped and filled solid.

(e) Steel framed construction — steel framing and perimeter members must be installed as follows:
 (i) Steel framing members must be not less than 0.6 mm thick.
 (ii) Studs must be not less than 63 mm in depth unless another depth is specified in 10.7.5 to 10.7.8.
 (iii) All steel members at the perimeter of the wall must be securely fixed to the adjoining structure and the joints must be caulked so that there are no voids between the steel members and the wall.

(f) Timber-framed construction — timber studs and perimeter members must be installed as follows:
 (i) Noggings and like members must not bridge between studs supporting different wall leaves.
 (ii) All timber members at the perimeter of the wall must be securely fixed to the adjoining structure and the joints must be caulked so that there are no voids between the timber members and the wall.
Figure 10.7.3a: Sound insulation between buildings — Stud wall junctions

Mineral fibre or other suitable fire resistant material

(a) Section

Mineral fibre or other suitable fire resistant material

(b) Plan
Figure 10.7.3b: Typical installation of plaster sheets for sound insulation

(a) Second layer positioned vertically

(b) Second layer positioned horizontally
10.7.4 Services

(1) Services must not be chased into concrete or masonry *separating walls*.

(2) If a duct, soil, waste, water supply or storm water pipe is located in a *separating wall*—

(a) a door or panel providing access to a duct or pipe *required* to be separated must—

(i) not open into any *habitable room*, other than a kitchen; and

(ii) in any other part must be firmly fixed so as to overlap the frame or rebate of the frame by not less than 10 mm and be constructed of—

(A) wood, plasterboard or blockboard not less than 33 mm thick; or

(B) compressed fibre reinforced cement sheeting not less than 9 mm thick; or

(C) other suitable material with a mass per unit area not less than 24.4 kg/m2; and

(b) in the case of a water supply pipe, it must—

(i) only be installed in *discontinuous construction*; and

(ii) in the case of a water supply pipe that serves one dwelling, not be fixed to the wall leaf on the side of any other dwelling and have a clearance not less than 10 mm to the other wall leaf.

(3) Electrical outlets must be offset from each other—

(a) in masonry walling, not less than 100 mm; and

(b) in timber or steel-framed walling, not less than 300 mm.

10.7.5 Acceptable forms of construction for masonry walls

(1) Acceptable forms of construction for masonry walls are set out in (2) to (6).

(2) Two leaves of 110 mm clay brick masonry with—

(a) *cavity* not less than 50 mm between leaves; and

(b) 50 mm thick glass wool insulation with a density of 11 kg/m3 or 50 mm thick polyester insulation with a density of 20 kg/m3 in the *cavity*,

with an $R_w + C_{tr}$ of not less than 50, constructed in accordance with Figure 10.7.5a.

(3) Two leaves of 110 mm clay brick masonry with—

(a) *cavity* not less than 50 mm between leaves; and

(b) 13 mm cement render on each outside face,

with an $R_w + C_{tr}$ of not less than 50, constructed in accordance with Figure 10.7.5b.

(4) Single leaf of 110 mm clay brick masonry with—

(a) a row of 70 mm x 35 mm timber studs or 64 mm steel studs at 600 mm centres, spaced 20 mm from the masonry wall; and

(b) 50 mm thick mineral insulation or glass wool insulation with a density of 11 kg/m3 positioned between studs; and

(c) one layer of 13 mm plasterboard fixed to outside face of studs and outside face of masonry,

with an $R_w + C_{tr}$ of not less than 50, constructed in accordance with Figure 10.7.5c.

(5) Single leaf of 90 mm clay brick masonry with—

(a) a row of 70 mm x 35 mm timber studs or 64 mm steels studs at 600 mm centres, spaced 20 mm from each face of the masonry wall; and

(b) 50 mm thick mineral insulation or glass wool insulation with a density of 11 kg/m3 positioned between studs in each row; and

(c) one layer of 13 mm plasterboard fixed to studs on each outside face,
with an $R_w + C_y$ of not less than 50, constructed in accordance with Figure 10.7.5d.

(6) Single leaf of 220 mm brick masonry with 13 mm cement render on each face with an $R_w + C_y$ of not less than 50, constructed in accordance with Figure 10.7.5e.

Figure 10.7.5a: Two leaves of 110 mm clay brick masonry (method 1)

Figure 10.7.5b: Two leaves of 110 mm clay brick masonry (method 2)

Figure 10.7.5c: Single leaf of 110 mm clay brick masonry
10.7.6 Acceptable forms of construction for concrete walls

[2019: Table 3.8.6.1b]

(1) Acceptable forms of construction for concrete walls are set out in (2) to (5).

(2) 150 mm thick plain off form concrete, with an R_w + C_t of not less than 50, constructed in accordance with Figure 10.7.6a.

(3) 200 mm thick concrete panel with one layer of 13 mm plasterboard or 13 mm cement render on each face, with an R_w + C_t of not less than 50, constructed in accordance with Figure 10.7.6b.

(4) 100 mm thick concrete panel with—
 (a) a row of 64 mm steel studs at 600 mm centres, spaced 25 mm from the concrete panel; and
 (b) 80 mm thick polyester insulation or 50 mm thick glass wool insulation with a density of 11 kg/m³, positioned between studs; and
 (c) two layers of 13 mm plasterboard fixed to outside face of studs and one layer of 13 mm plasterboard fixed to outside face of concrete panel,

 with an R_w + C_t of not less than 50, constructed in accordance with Figure 10.7.6c.

(5) 125 mm thick concrete panel with—
 (a) a row of 64 mm steel studs at 600 mm centres, spaced 20 mm from the concrete panel; and
 (b) 70 mm polyester insulation with a density of 9 kg/m³, positioned between studs; and
 (c) one layer of 13 mm plasterboard fixed to the outside face of the studs,

 with an R_w + C_t of not less than 50, constructed in accordance with Figure 10.7.6d.
Acceptable forms of construction for autoclaved aerated concrete walls

(1) Acceptable forms of construction for autoclaved aerated concrete walls are set out in (2) to (4).

(2) 75 mm thick autoclaved aerated concrete wall panel with—
Health and amenity

(a) a row of 64 mm steel studs at 600 mm centres, spaced 20 mm from the autoclaved aerated concrete wall panel; and

(b) 75 mm thick glass wool insulation with a density of 11 kg/m3 positioned between studs; and

(c) one layer of 10 mm moisture resistant plasterboard or 13 mm fire protective grade plasterboard fixed to outside face of studs and outside face of autoclaved aerated concrete wall panel,

with an $R_w + C_{tr}$ of not less than 50, constructed in accordance with Figure 10.7.7a.

(3) 75 mm thick autoclaved aerated concrete wall panel with—

(a) a row of 64 mm steel studs at 600 mm centres, spaced 35 mm from the autoclaved aerated concrete panel wall; and

(b) 28 mm metal furring channels fixed to the outside face of the autoclaved aerated concrete wall panel, with 50 mm thick polyester insulation with a density of 9 kg/m3 positioned between furring channels and one layer of 13 mm fire protective grade plasterboard fixed to furring channels; and

(c) 105 mm thick glass wool insulation with a density of 7 kg/m3 positioned between studs; and

(d) one layer of 13 mm fire protective grade plasterboard fixed to the outside face of the studs,

with an $R_w + C_{tr}$ of not less than 50, constructed in accordance with Figure 10.7.7b.

(4) Two leaves of 75 mm autoclaved aerated concrete wall panel with—

(a) a cavity not less than 30 mm between panels containing 50 mm glass wool insulation with a density of 11 kg/m3; and

(b) one layer of 10 mm plasterboard fixed to outside face of each panel,

with an $R_w + C_{tr}$ of not less than 50, constructed in accordance with Figure 10.7.7c.

Figure 10.7.7a: 75 mm thick autoclaved aerated concrete wall panel (method 1)
10.7.8 Acceptable forms of construction for timber and steel framed walls

[2019: Table 3.8.6.1d]

(1) Acceptable forms of construction for timber and steel framed walls are set out in (2) and (3).

(2) Two rows of 90 x 35 mm timber studs or two rows of 64 mm steel studs at 600 mm centres with—
 (a) an air gap not less than 20 mm between the rows of studs; and
 (b) 50 mm thick glass wool insulation or 60 mm thick polyester insulation with a density of 11 kg/m³; positioned between one row of studs, and
 (c) two layers of 13 mm fire protective grade plasterboard or one layer of 6 mm fibre cement sheet and one layer of 13 mm fire protective grade plasterboard, fixed to outside face of studs,
 with an $R_w + C_p$ of not less than 50, constructed in accordance with Figure 10.7.8a.

(3) Two rows of 64 mm steel studs at 600 mm centres with—
 (a) an air gap not less than 80 mm between the rows of studs; and
 (b) 200 mm thick polyester insulation with a density of 14 kg/m³ positioned between studs; and

Figure 10.7.7b: 75 mm thick autoclaved aerated concrete wall panel (method 2)

Figure 10.7.7c: Two leaves of 75 mm autoclaved aerated concrete wall panel
(c) one layer of 13 mm fire-protective grade plasterboard and one layer 13 mm plasterboard on one outside face and one layer of 13 mm fire-protective grade plasterboard on the other outside face, with an $R_w + C_p$ of not less than 50, constructed in accordance with Figure 10.7.8b.

Figure 10.7.8a: Two rows of 90 mm x 35 mm timber studs or two rows of 64 mm steel studs at 600 mm centres

Figure 10.7.8b: Two rows of 64 mm steel studs at 600 mm centres
Part 10.8 Condensation management

10.8.1 Pliable building membrane

(1) Where a pliable building membrane is installed in an external wall, it must—
 (a) comply with AS/NZS 4200.1; and
 (b) be installed in accordance with AS 4200.2; and
 (c) be a vapour permeable membrane for climate zones 6, 7 and 8; and
 (d) be located on the exterior side of the primary insulation layer of wall assemblies that form the external envelope of a building.

(2) Except for single skin masonry or single skin concrete, where a pliable building membrane is not installed in an external wall, the primary water control layer must be separated from water sensitive materials by a drained cavity.

10.8.2 Flow rate and discharge of exhaust systems

(1) An exhaust system installed in a kitchen, bathroom, sanitary compartment or laundry must have a minimum flow rate of—
 (a) 25 L/s for a bathroom or sanitary compartment; and
 (b) 40 L/s for a kitchen or laundry.

(2) Exhaust from a bathroom, sanitary compartment, or laundry must be discharged—
 (a) directly or via a shaft or duct to outdoor air; or
 (b) to a roof space that is ventilated in accordance with 10.8.3.

10.8.3 Ventilation of roof spaces

(1) Where an exhaust system covered by 10.8.2 discharges into a roof space, the roof space must be ventilated to outdoor air through evenly distributed openings.

(2) Openings required by (1) must have a total unobstructed area of 1/300 of the respective ceiling area if the roof pitch is more than 22°, or 1/150 of the respective ceiling area if the roof pitch is not more than 22°.

(3) 30% of the total unobstructed area required by (2) must be located not more than 900 mm below the ridge or highest point of the roof space, measured vertically, with the remaining required area provided by eave vents.
11 Safe movement and access

Part 11.1 Scope and application of Section 11
- **11.1.1 Scope**
- **11.1.2 Application**

Part 11.2 Stairway and ramp construction
- **11.2.1 Explanation of terms**
- **11.2.2 Stairway construction**
- **11.2.3 Ramps**
- **11.2.4 Slip resistance**
- **11.2.5 Landings**
- **11.2.6 Thresholds**

Part 11.3 Barriers and handrails
- **11.3.1 Application of Part 11.3**
- **11.3.2 Explanation of terms**
- **11.3.3 Barriers to prevent falls**
- **11.3.4 Construction of barriers to prevent falls**
- **11.3.5 Handrails**
- **11.3.6 Construction of wire barriers**
- **11.3.7 Protection of openable windows – bedrooms**
- **11.3.8 Protection of openable windows – rooms other than bedrooms**
11.1.1 Scope

This Section of the ABCB Housing Provisions sets out the *Deemed-to-Satisfy Provisions* for—

(a) stairway and ramp construction (see Part 11.2); and

(b) barriers and handrails (see Part 11.3).

11.1.2 Application

The application of Section 11 of the ABCB Housing Provisions is subject to the following:

(a) The Governing Requirements of NCC 2022 Volume Two.

(b) The State and Territory variations, additions and deletions contained in the Schedules to the ABCB Housing Provisions and NCC Volume Two.

Explanatory Information:

In NCC 2019, the content of Section 11 of the ABCB Housing Provisions (other than content added in NCC 2022 or later) was contained in the acceptable construction practices for Parts 3.9.1 and 3.9.2 of NCC 2019 Volume Two.

Part 11.2
Stairway and ramp construction

11.2.1
Explanation of terms

(1) Figure 11.2.1 depicts stairway members and associated terminology used to describe them in the ABCB Housing Provisions.

(2) Some items such as barriers and handrails have been omitted for clarity.

Figure 11.2.1:
Stairway terms

Explanatory Information: Alpine areas
The requirements of this Part are to be read in conjunction with Part 12.2 where a building is located in an alpine area and contains an external stairway or ramp.

Explanatory Information: Room heights
Part 10.3 contains the required height for a ceiling above a stairway, ramp or landing, measured vertically above the nosing line of stairway treads or the floor surface of a ramp or landing.

11.2.2
Stairway construction

(1) A stairway must be designed to take loading forces in accordance with AS/NZS 1170.1 and must have—

(a) not more than 18 and not less than 2 risers in each flight; and

(b) Goings (G), risers (R) and a slope relationship quantity (2R + G) in accordance with Table 11.2.2a, except as permitted by (2) and (3); and

(c) constant goings and risers throughout each flight, except as permitted by (3) and (4), and the dimensions of
(1) Riser and going dimensions must be measured in accordance with Figure 11.2.2f.

Table 11.2.2a: Riser and going dimensions (mm)

<table>
<thead>
<tr>
<th>Stair type</th>
<th>Riser (R) (see Figure 11.2.2f)</th>
<th>Going (G) (see Figure 11.2.2f)</th>
<th>Slope relationship (2R+G)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Stairs (other than spiral)</td>
<td>190</td>
<td>115</td>
<td>355</td>
</tr>
<tr>
<td>Spiral</td>
<td>220</td>
<td>140</td>
<td>370</td>
</tr>
</tbody>
</table>

Table Notes:

- Riser and going dimensions must be measured in accordance with Figure 11.2.2f

Table 11.2.2b: Riser and going dimensions (mm) — stairways serving non-habitable rooms used infrequently

<table>
<thead>
<tr>
<th>Riser (R)</th>
<th>Going (G)</th>
<th>Slope relationship (2R+G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>225</td>
<td>130</td>
<td>355</td>
</tr>
</tbody>
</table>

Table Notes:

- The going (G) must be not more than the tread depth plus a maximum gap of 30 mm between the rear edge of one tread and the nosing of the tread above.
Figure 11.2.2a: Measurement of slope relationship — Plan view — Stair with 2 flights

Slope relationship quantity not required for landing

Unobstructed width of the stair flight – measured from innermost projection of handrail, newel post etc.

Figure 11.2.2b: Measurement of slope relationship — Plan view — Tapered treads not more than 1 m wide

Constant rise, going and slope relationship quantity for each stair flight

Going for slope relationship measured at this point

Equal

Equal
Figure 11.2.2c: Measurement of slope relationship — Plan view — Tapered treads more than 1 m wide

More than 1 m in width

Going for slope relationship measured at these points

400 mm

Figure 11.2.2d: Spiral stairs — Measurement for slope relationship

Central support pole

Point for the measurement of slope relationship – 7/10 of the unobstructed stair tread width, i.e. from the inner edge of the handrail

Stair tread

Measurement line for the slope relationship dimension

Handrail
Figure 11.2.2e: Spiral stairs — Measurement of openings in stairs

Central support pole

Treads

125 mm sphere must not pass through balustrade

125 mm sphere must not pass through threads

Floor level

Figure 11.2.2f: Riser and going dimensions — Measurement

125 mm sphere must not pass through treads

R

G

Explanatory Information: Not more than 18 and not less than 2 risers

11.2.2(1)(a) states that a stairway must have not more than 18 and not less than 2 risers in each flight. Where there are less than 2 risers in a flight, it does not comprise a stairway for the purpose of the NCC. 18 risers is considered to be the maximum reasonable number that an average person can negotiate before requiring a rest. Winders are counted as part of the maximum number of 18 risers. More than 1 riser is considered necessary for a person to observe and adjust to a change in level.

Explanatory Information: Going and riser dimensions

The purpose of 11.2.2 is to achieve constant going and riser dimensions deemed safe for people to walk up and down. This minimises the risk of people overstepping during descent on uneven stairs (due to short goings) and tripping on ascent (due to high risers). Table 11.2.2a and Table 11.2.2b express ratios between going and riser dimensions which are considered safe for use. 11.2.2(1)(c) accounts for conditions such as movement of materials due to atmospheric moisture changes or minor deviations related to variations in materials which affect finished stair dimensions.

Explanatory Figure 11.2.2a illustrates adjacent risers within a flight with minor deviations in the materials affecting the finished stair dimensions. The nominated riser height is exceeded by riser A. As a consequence riser height B is less than the nominated riser height. The difference between riser A and riser B cannot exceed 5 mm.

Explanatory Figure 11.2.2b illustrates an entire flight with minor deviations in the materials affecting the finished riser dimensions. In addition to the 5 mm difference permitted between adjacent goings or risers, the maximum difference...
between the smallest and largest *going* or *riser* within a *flight* must not exceed 10 mm. Despite the deviations shown in both diagrams, the stairs in the *flight* are deemed constant. Irrespective of any minor deviations permitted by 11.2.2(1)(c), finished *going* and *riser* dimensions must not exceed the limitations stipulated in Table 11.2.2a.

Figure 11.2.2a (explanatory): Minor deviations in a stairway — deviation in adjacent risers

![Diagram of minor deviations in adjacent risers]

Figure Notes:
1. A = larger *riser* of two adjacent *risers*.
2. B = smaller *riser* of two adjacent *risers*.
3. This diagram only shows deviations in *risers*, however the same principle can apply for *goings*.

Figure 11.2.2b (explanatory): Minor deviations in a stairway – deviations over a flight

![Diagram of minor deviations over a flight]

Figure Notes:
1. C = largest *riser* of the *flight*.
2. D = smallest *riser* of the *flight*.
3. This diagram only shows deviations in *risers*, however the same principle can apply for *goings*.

Explanatory Information: Openings in stair risers

11.2.2(1)(d) allows the use of open *riser* stairs. However, it limits the openings to 125 mm to minimise the risk of a person (especially a young child) falling through the opening created by the open *riser*.
Explanatory Information: Solid treads
11.2.2(1)(e) specifies a height where solid treads must be used so that people cannot see through them. This minimises the risk of people being affected by vertigo.

Explanatory Information: Stairways with winders
1. 11.2.2(3) allows the use of winders in stairways. However, 11.2.2(3) places a restriction on the number of allowable winders in a stairway flight, this restriction would apply equally to not permit a stairway incorporating a consecutive series of winders in a flight.
2. This also means the maximum number of consecutive winders in any stairway flight is 6.

11.2.3 Ramps

An external ramp serving an external doorway or a ramp within a building must—

(a) be designed to take loading forces in accordance with AS/NZS 1170.1; and
(b) have a gradient not steeper than 1:8; and
(c) be provided with landings complying with 11.2.5 at the top and bottom of the ramp and at intervals not greater than 15 m.

Notes: Livable housing design
Where an external ramp is provided for the purposes of compliance with the ABCB Standard for Livable Housing Design, the requirements of that Standard override the requirements of 11.2.3.

Explanatory Information:
In relation to external ramps, 11.2.3 applies to a ramp serving an external door. For the purpose of 11.2.3 a driveway is not considered to be a ramp.

11.2.4 Slip resistance

(1) The requirements for slip-resistance treatment to stair treads, ramps and landings are as set out in (2), (3) and (4).

(2) Treads must have—
(a) a surface with a slip-resistance classification not less than that listed in Table 11.2.4 when tested in accordance with AS 4586; or
(b) a nosing strip with a slip-resistance classification not less than that listed in Table 11.2.4 when tested in accordance with AS 4586.

(3) The floor surface of a ramp must have a slip-resistance classification not less than that listed in Table 11.2.4 when tested in accordance with AS 4586.

(4) Landings, where the edge leads to the flight below, must have—
(a) a surface with a slip-resistance classification not less than that listed in Table 11.2.4 when tested in accordance with AS 4586, for not less than 190 mm from the stair nosing; or
(b) a nosing strip with a slip-resistance classification not less than that listed in Table 11.2.4 when tested in accordance with AS 4586.

Explanatory Information:
1. To determine the appropriate surface of a tread or the floor surface of a ramp, it is necessary to determine the likely conditions the tread or ramp will be subject to over the life of the building. This can be either dry, wet or both. A dry surface is one that is not normally wet or likely to be made wet other than by an accidental spill. A wet surface is
one that is normally wet or likely to be made wet, including areas exposed to the weather.

2. Under 11.2.4(2) stair treads must have a surface or nosing strip which minimises the risk of people slipping and injuring themselves. In each case the surface or nosing must have a slip-resistance classification when tested in accordance with AS 4586. There are two tests (the Wet Pendulum Test or the Oil-Wet Inclining Platform Test) and two conditions (dry or wet) to be considered.

3. Under 11.2.4(3) the floor surface of a ramp must be slip-resistant to minimise the risk of people slipping and injuring themselves. The surface must have a slip-resistance classification when tested in accordance with AS 4586.

Table 11.2.4: Slip-resistance classification

<table>
<thead>
<tr>
<th>Application</th>
<th>Dry surface conditions</th>
<th>Wet surface conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp not steeper than 1:8</td>
<td>P4 or R10</td>
<td>P5 or R12</td>
</tr>
<tr>
<td>Tread surface</td>
<td>P3 or R10</td>
<td>P4 or R11</td>
</tr>
<tr>
<td>Nosing or landing edge strip</td>
<td>P3</td>
<td>P4</td>
</tr>
</tbody>
</table>

11.2.5 Landings

[2019: 3.9.1.5]

1. **Landings** must—

 (a) be not less than 750 mm long and where this involves a change in direction, the length is measured 500 mm from the inside edge of the landing (see Figure 11.2.5a); and

 (b) have a gradient not steeper than 1:50; and

 (c) be provided where the sill of a threshold of a doorway opens onto a stairway or ramp that provides a change in floor level or floor to ground level greater than 3 risers or 570 mm (see Figure 11.2.5b); and

 (d) extend across the full width of a doorway.

2. In the case of a stairway serving only non-habitable rooms, such as attics, storerooms and the like that are not used on a regular or daily basis, the requirements of (1)(a) may be substituted with a minimum length of landing being not less than 600 mm long.

Figure 11.2.5a: Landings

Example A

Example B
Figure 11.2.5b: Threshold landing

Explanatory Information: Purpose of a landing
The purpose of a landing is to provide a rest area for people using the stairway or ramp, and to allow the stairway or ramp to change direction if needed.

Explanatory Information: Minimum landing length
The minimum length of a landing allows people using a stairway or ramp to rest, and reduces the risk of people falling more than one flight of stairs.

Explanatory Information: Maximum grade of 1:50
The maximum grade of 1 in 50 required under 11.2.5(1)(b) makes sure that the landing is as level as possible, but still allows a slight slope for drainage if necessary.

11.2.6 Thresholds

Where the threshold of a doorway is more than 230 mm above the adjoining surface it must incorporate steps having riser (R) and going (G) dimensions in accordance with 11.2.2.
Part 11.3 Barriers and handrails

11.3.1 Application of Part 11.3

Compliance with Part 11.3 is achieved by complying with—

(a) 11.3.2, 11.3.3 and 11.3.5 for barriers to prevent falls; and

(b) 11.3.4 for handrails; and

(c) 11.3.6 and 11.3.7 for protection of openable windows.

Explanatory Information: External trafficable structures

For a required barrier to an external trafficable structure in an alpine area, the requirements of this Part need to be read in conjunction with the requirements of Part 12.2.

Explanatory Information: Swimming pools

Safety barrier requirements for swimming pools are contained in H7D2.

Explanatory Information: Additional requirements

In addition to the requirements of this Part, a barrier and handrail must comply with the structural requirements of Part 2.2. The structural requirements refer to the barrier and/or handrail being designed and constructed to withstand any combinations of loads and other actions to which it may reasonably be subjected and the structural resistance of the materials and forms of construction used for the barrier or handrail.

A window forming a part of a barrier must comply with the glazing assembly provisions of Section 8, and therefore is not required to comply with AS/NZS 1170.1 (structural design actions - referenced in Part 2.2) as it is exempted by Section 8. The Section 8 provisions consider the wind loading on the glazing and human impact requirements.

11.3.2 Explanation of terms

(1) Figure 11.3.2 depicts typical stairway and barrier members and associated terminology.

(2) Some items have been omitted for clarity.
Figure 11.3.2: Typical stairway and barrier members

Figure Notes:
Legend:
1. Stringer
2. Baluster
3. Barrier
4. Tread
5. Riser
6. Landing
7. Handrail
8. Newel post
9. Winders (tapered treads)
10. Handrail
11. Landing barrier
12. Barrier

11.3.3 Barriers to prevent falls

[2019: 3.9.2.2]

(1) A continuous barrier must be provided along the side of a trafficable surface, such as—
 (a) a stairway, ramp or the like; and
 (b) a floor, corridor, hallway, balcony, deck, verandah, mezzanine, access bridge or the like; and
 (c) a roof top space or the like to which general access is provided; and
 (d) any delineated path of access to a building,

where it is possible to fall 1 m or more measured from the level of the trafficable surface to the surface beneath (see Figure 11.3.3a).

(2) The requirements of (1) do not apply to—
 (a) a retaining wall unless the retaining wall forms part of, or is directly associated with, a delineated path of access to a building from the road, or a delineated path of access between buildings (see Figure 11.3.3b); or
 (b) a barrier provided to an openable window covered by 11.3.7 and 11.3.8.

Figure 11.3.3a: Barriers — when required

(a) Barrier not required
(b) Barrier required
Figure 11.3.3b: Barriers — when required for retaining walls

Explanatory Information: Intent
The intent of the barrier requirements is to prescribe provisions to minimise the risk of a person falling from a stairway, raised floor level (such as a balcony) or the like. 11.3.3 sets out when barriers are required to be provided and 11.3.4 contains the requirements for the construction of barriers.

Explanatory Information: Barriers and children
Children are at particular risk of falling off, over or through ineffectively designed or constructed barriers. Accordingly the requirements of this Part aim to ensure that a barrier reduces the likelihood of children being able to climb over a barrier or fall through a barrier.

11.3.4 Construction of barriers to prevent falls

(1) A barrier required by 11.3.3 must comply with (2) to (10a).

(2) The height of a barrier must be in accordance with the following:

(a) The height must not be less than 865 mm above the nosings of the stair treads, the floor of a ramp or the like (see Figure 11.3.4a).

(b) The height must not be less than—

(i) 1 m above the floor of any landing, corridor, hallway, balcony, deck, verandah, access path, mezzanine, access bridge, roof top space or the like to which general access is provided (see Figure 11.3.3b and Figure 11.3.4a); or

(ii) 865 mm above the floor of a landing to a stairway or ramp where the barrier is provided along the inside
edge of the *landing* and does not exceed a length of 500 mm.

(3) A transition zone may be incorporated where the barrier height changes from 865 mm on the stairway *flight* or ramp to 1 m at the *landing* (see Figure 11.3.4b).

(4) Openings in barriers (including decorative balustrades) must be constructed so that they do not permit a 125 mm sphere to pass through it and for stairways, the opening is measured above the nosing line of the stair treads (see Figure 11.3.4b).

(5) Where a barrier is fixed to the face of a *landing*, balcony, deck or the like, the opening between the barrier and the face must not permit a 40 mm sphere to pass through.

(6) A barrier to a stairway serving a non-*habitable room*, such as an attic, storeroom or the like that is not used on a regular or daily basis, need not comply with (4) if—

(a) openings are constructed so that they do not permit a 300 mm sphere to pass through; or

(b) where rails are used, the barrier consists of a top rail and an intermediate rail, with the openings between rails not more than 460 mm.

(7) Restriction on horizontal elements:

(a) Where it is possible to fall more than 4 m, any horizontal elements within the barrier between 150 mm and 760 mm above the floor must not facilitate climbing.

(b) For the purpose of (a), the 4 m is measured from the floor level of the trafficable surface to the surface beneath.

(8) A barrier constructed of wire is deemed to meet the requirements of (4) if it is constructed in accordance with 11.3.6.

(9) A glass barrier or *window* serving as a barrier must comply with H1D8 and the relevant provisions of this Part.

(10) A barrier, except a *window* serving as a barrier, must be designed to take loading forces in accordance with AS/NZS 1170.1.
11.3.5 Handrails

(1) Handrails to a stairway or ramp must—
 (a) be located along at least one side of the stairway flight or ramp; and
 (b) be located along the full length of the stairway flight or ramp, except in the case where a handrail is associated with a barrier the handrail may terminate where the barrier terminates; and
 (c) have the top surface of the handrail not less than 865 mm vertically above the nosings of the stair treads or the floor surface of the ramp (see Figure 11.3.4b); and
 (d) be continuous and have no obstruction on or above them that will tend to break a handhold, except for newel posts, ball type stanchions, or the like.

(2) The requirements of (1) do not apply to—
 (a) a stairway or ramp providing a change in elevation of less than 1 m; or
 (b) a landing; or
 (c) a winder where a newel post is installed to provide a handhold.

Explanatory Information:
11.3.5 addresses requirements regarding location, height and extent of handrails. Where a barrier and handrail are installed together, 11.3.5 is to be read in conjunction with 11.3.3, 11.3.4 and 11.3.6.

A handrail is required on at least one side of the stairway flight or ramp. The top rail of a barrier may be suitable as a handrail if it meets 11.3.5 and is able to be grasped by hand to provide support to the person using the stairway.
3. 11.3.5(1)(b) requires a continuous handrail which must extend the full length of the stairway flight or ramp except where the handrail is associated with the barrier, in which case the handrail can terminate where the barrier is allowed to terminate. This allows for the barriers to geometric stairways such as elliptical, spiral, circular or curved stairways to finish a few treads from the bottom of the stairway.

4. 11.3.5(1)(c) requires a minimum handrail height of 865 mm. This height provides comfort, stability, support and assistance for most users.

5. 11.3.5(2) outlines where a handrail need not be provided, this includes—
 a. where a stairway or ramp is providing a change in elevation less than 1 m; or
 b. a landing for a stairway or ramp; or
 c. winder in a stairway if a newel post is installed to provide a handhold.

11.3.6 Construction of wire barriers

[2019: 3.9.2.5]

1. A wire barrier is deemed to meet the requirements of 11.3.4(4) if it is constructed in accordance with (2) to (4).

2. For a horizontal or near horizontal wire system—
 a. when measured with a strain indicator, it must be in accordance with the tension values in Table 11.3.6a; or
 b. when measured for a maximum permissible deflection, it must not exceed the maximum deflections in Table 11.3.6b.

3. For a non-continuous vertical wire system—
 a. when measured with a strain indicator, it must be in accordance with the tension values in Table 11.3.6a (see Note 4); or
 b. when measured for maximum permissible deflection, it must not exceed the maximum deflections in Table 11.3.6b.

4. For a continuous vertical or continuous near vertical sloped wire system—
 a. it must have wires of no more than 2.5 mm diameter with a lay of 7 x 7 or 7 x 19 construction; and
 b. changes in direction at support rails must pass around a pulley block without causing permanent deformation to the wire; and
 c. supporting rails must be spaced of not more than 900 mm apart and be of a material that does not allow deflection that would decrease the tension of the wire under load; and
 d. when the wire tension is measured with a strain indicator, it must be in accordance with the tension values in Table 11.3.6c when measured in the furthermost span from the tensioning device.

Table 11.3.6a: Wire barrier construction – Minimum required tension (N) for stainless steel horizontal wire

<table>
<thead>
<tr>
<th>Wire dia. (mm)</th>
<th>Lay</th>
<th>Wire spacing (mm)</th>
<th>Clear distance between posts (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>2.5</td>
<td>7x7</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>382</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>869</td>
</tr>
<tr>
<td>2.5</td>
<td>1x19</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>1140</td>
</tr>
<tr>
<td>3.0</td>
<td>7x7</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>250</td>
</tr>
</tbody>
</table>
11.3.6

Safe movement and access

Table Notes:
1. Lay = number of strands by the individual wires in each strand. For example a lay of 7 x 19 consists of 7 strands with 19 individual wires in each strand.
2. Where a change of direction is made in a run of wire, the tensioning device is to be placed at the end of the longest span.
3. If a 3.2 mm diameter wire is used, the tension figures for 3.0 mm wire are applied.
4. This table may also be used for a set of non-continuous (single) vertical wires forming a barrier using the appropriate clear distance between posts as the vertical clear distance between the rails.
5. X = not allowed because the required tension would exceed the safe load of the wire.
6. Tension measured with a strain indicator.

Table 11.3.6b: Continuous wire barrier construction – Maximum permissible deflection of each wire in mm when a 2 kg mass is suspended at mid-span for stainless steel wires

<table>
<thead>
<tr>
<th>Wire dia. (mm)</th>
<th>Wire spacing (mm)</th>
<th>Clear distance between posts (mm)</th>
<th>600</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2000</th>
<th>2500</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>60</td>
<td>17</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3.0</td>
<td>60</td>
<td>19</td>
<td>13</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4.0</td>
<td>60</td>
<td>18</td>
<td>12</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Table Notes:
1. Where a change of direction is made in a run of wire, the 2 kg mass must be placed at the middle of the longest span.
2. If a 3.2 mm diameter wire is used, the deflection figures for a 3.0 mm wire are applied.
3. This table may also be used for a set of non-continuous (single) vertical wires forming a barrier using the appropriate clear distance between posts as the vertical clear distance between the rails.
4. The deflection (offset) is measured by hooking a standard spring scale to the mid span of each wire and pulling it horizontally until a force of 19.6 N is applied.
5. X = not allowed because the required tension would exceed the safe load of the wire.
6. This table has been limited to 60 mm and 80 mm spaces for 2.5 mm, 3 mm and 4 mm diameter wires because the required wire tensions at greater spacings would require the tension to be beyond the wire safe load limit, or the allowed deflection would be impractical to measure.

Table 11.3.6c: Continuous wire barrier construction—Minimum required tension (N) for vertical or near-vertical stainless steel wires where the maximum clear spacing between the rails is 900mm

<table>
<thead>
<tr>
<th>Wire dia. (mm)</th>
<th>Lay</th>
<th>Wire spacing (mm)</th>
<th>Required tension in Newtons (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>7 x 19</td>
<td>80</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
<td>610</td>
</tr>
<tr>
<td>2.5</td>
<td>7 x 7</td>
<td>80</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
<td>500</td>
</tr>
</tbody>
</table>

Table Notes:
1. Lay = number of strands by the number of individual wires in each strand. For example a lay of 7 x 19 consists of 7 strands with 19 individual wires in each strand.
2. Vertical wires must have two pulley blocks to each 180 degree change of direction in the wire.
3. Near vertical wires may only require one pulley block for each change of direction.
4. Wire tension measured with a strain indicator.
5. The table only includes 7 x 7 and 7 x 19 wires due to other wires not having sufficient flexibility to make the necessary turns.

Explanatory Information:
1. For the purpose of 11.3.6, a wire barrier consists of a series of tensioned wire rope connected to either vertical or horizontal supports serving as a guard to reduce the risk of a person falling from a roof, stairway, raised floor level or the like.
2. To assist in the application of 11.3.6, the following terms are explained:
 a. Continuous - where the wire spans three or more supports.
 b. Non-continuous - where the wire only spans between two supports.
 c. Pulley block - a device consisting of a wheel in which a wire runs around to change its direction.
 d. Permissible deflection - is the allowable bending of the wire.
 e. Support rails - are horizontal components of the barrier system that span across the top and bottom to provide structural support.
3. Tables 11.3.6a and 11.3.6c contain tension requirements for wires in vertical and horizontal wire barrier systems with varying post spacings, wire spacings and wire types, whereas Table 11.3.6b contains deflection requirements for use in horizontal and vertical barrier systems. The figures contained in the tables were derived from testing the spacing combinations in order to prevent the passage of a 125 mm diameter solid cone penetrating between the wires at a predetermined force.
4. It is important to read the notes to the Tables as they provide additional information on their application to horizontal, vertical and near vertical wire barriers.
5. Wire barriers deflect under loading conditions, even when tightly tensioned. This is particularly relevant over the service life of the barrier as the wire tends to lose its tension. Therefore, care needs to be taken to ensure that wire tension will be maintained during the life of the barrier. In some situations, it may be necessary to incorporate "lock-off" devices to prevent loosening of the wire. Likewise, if a threaded anchor bears against a soft wood post or rail, the anchor may indent the post or rail, thus loosening the wire.
6. Temperature effects on the tension of the wire may be significant but there is little that can be done to allow for temperature variation in service. The shorter the wire span, the lesser the effect will be.
7. Stainless steel wire with a lay of 1 x 19 has the greatest elastic modulus and will take up the same load with less extension than equivalent wires with other lays.

8. A wire barrier excludes wire mesh fences and the like.

9. Sharp ends of wires at terminations and swages need to be removed for the safety of children and other people. No wire end should protrude more than half the diameter of the wire from the swage or termination fitting.

10. It should be noted that 11.3.6 is only one form of compliance solution which can be used to demonstrate compliance with H5P2(2)(c) and (d). The following means of verification are available:
 a. H5V1.
 b. The Deemed-to-Satisfy Provisions in 11.3.6.
 c. A Performance Solution that uses one of the other NCC Assessment Methods which verifies that H4P2(2)(c) and (d) will be achieved.

11.3.7 Protection of openable windows – bedrooms

[2019: 3.9.2.6]

(1) A window opening in a bedroom must be provided with protection, where the floor below the window is 2 m or more above the surface beneath.

(2) Where the lowest level of the window opening covered by (1) is less than 1.7 m above the floor, the window opening must comply with the following:
 a. The openable portion of the window must be protected with—
 i. a device capable of restricting the window opening; or
 ii. a screen with secure fittings.
 b. A device or screen required by (a) must—
 i. not permit a 125 mm sphere to pass through the window opening or screen; and
 ii. resist an outward horizontal action of 250 N against the—
 (A) window restrained by a device; or
 (B) screen protecting the opening; and
 iii. have a child resistant release mechanism if the screen or device is able to be removed, unlocked or overridden.

(3) Where a device or screen provided in accordance with (2)(a) is able to be removed, unlocked or overridden, a barrier with a height not less than 865 mm above the floor is required to an openable window in addition to window protection.

(4) A barrier covered by (3) must not—
 a. permit a 125 mm sphere to pass through it; and
 b. have any horizontal or near horizontal elements between 150 mm and 760 mm above the floor that facilitate climbing (see Figure 11.3.7).
Figure 11.3.7: Protection of openable windows — bedrooms

- Openable window to be fitted with a device to limit opening or a suitable screen so a 125 mm sphere cannot pass through.
- Protection of an opening is not required where the lowest level of the window opening is 1.7 m or more above the floor.

Explanatory Information: Intent

The intent of 11.3.7 is to reduce the risk of a person (especially a young child) falling through an openable window.

Explanatory Information: Protection of openable windows – bedrooms

Where the floor level below an openable window in a bedroom is less than 2 m there are no specific requirements. For an openable window 2 m or more above the surface beneath, openable windows are required to restrict passage of a 125 mm sphere using any one of the following design solutions:

(a) The window be designed such that any opening does not allow a 125 mm sphere to pass through (e.g. louvres) and be capable of resisting a 250 N force when directed against the window.

(b) The window be fitted with a fixed or dynamic device that is capable of restricting the window opening so it does not allow a 125 mm sphere to pass through and is difficult for a young child to operate. The restricting device must be capable of resisting a 250 N force when directed against the window such as a casement window or in attempting to push a sliding window open. An internal screen with similar parameters may be installed.

(c) The window be fitted with an internal or external screen that does not allow a 125 mm sphere to pass through and which must resist a horizontal outward force of 250 N.

If the openable part of the window is at least 1.7 m above the floor, no further protection is required.

Explanatory Information: Restricting devices

Where a device or screen is securely fixed in position (e.g. a screen pop riveted to the window frame) so it cannot be unlocked, overridden, or is very difficult to remove without for example a drill, the 865 mm barrier would not be required as the securing method is considered a fixture and not a child resistant release mechanism. 11.3.7(2)(b)(iii) relates to a screen or window restricting device protecting an openable window in a bedroom. The screen or opening restricting device may be installed in a manner that allows it to be removed, unlocked or overridden in the event of a fire or other emergency to allow safe egress. In these situations the unlocking device must be child resistant.

Child resistance could be achieved by the need to use a tool, key or two hands.

There are a number of hardware options available. Short chain winders and barrier screens will allow windows to comply with this requirement. Sliding window locks may lock a sash so a 125 mm sphere cannot pass through. Where provision is made to fully open the window beyond 125 mm then the child resistant release mechanism is required in addition to the device resisting a 250 N force as required by 11.3.7(2)(b)(ii).

11.3.7 in addition prescribes that an 865 mm barrier (sill) would be required. A wall beneath an openable window or fixed glazing under the openable part of a window which meets the height requirements (e.g. transom at least 865 mm
above the floor) can be considered as the barrier if the criteria in 11.3.7 are met.

Explanatory Information: Use of the term ‘window’

The term “window” is not italicised in 11.3.7 and as such, is not restricted to the definition of “window” in the NCC. The reason for this is to also capture windows that may let in air but not light, e.g. metal louvres. A metal louvre or openable panel would not fit in the NCC definition of window but is subject to the window barrier provisions.

11.3.8 **Protection of openable windows – rooms other than bedrooms**

[2019: 3.9.2.7]

1. A window opening in a room other than a bedroom must be provided with protection where the floor below the window is 4 m or more above the surface beneath.

2. The openable part of the window covered by (1) must be protected with a barrier with a height of not less than 865 mm above the floor.

3. A barrier required by (2) must not—

 (a) permit a 125 mm sphere to pass through it; and

 (b) have any horizontal or near horizontal elements between 150 mm and 760 mm above the floor that facilitate climbing.

4. See Figure 11.3.8.

Figure 11.3.8: Protection of openable windows — rooms other than bedrooms

- Room other than a bedroom
- Surface below
- Barrier not less than 865 mm above the floor required to an openable window.
- Barrier must not permit 125 mm sphere to pass through and no horizontal elements between 150 - 760 mm
- ≥ 4 m
Explanatory Information: Intent
The intent of 11.3.8 is to reduce the risk of a person (especially a young child) falling through an openable window.

Explanatory Information: Protection of openable windows – rooms other than bedrooms
A wall beneath an openable window or fixed glazing under the openable part of a window which meets the height requirements (e.g. transom at least 865 mm above the floor) can be considered as the barrier if the criteria in 11.3.8(2) are met.

Explanatory Information: Use of the term ‘window’
The term “window” is not italicised in 11.3.8 and as such, is not restricted to the definition of “window” in the NCC. The reason for this is to also capture windows that may let in air but not light, e.g. metal louvres. A metal louvre or openable panel would not fit in the NCC definition of window but is subject to the window barrier provisions.
Ancillary provisions

Part 12.1 Scope and application of Section 12
- **12.1.1** Scope
- **12.1.2** Application

Part 12.2 Construction in alpine areas
- **12.2.1** Application of Part 12.2
- **12.2.2** External doors
- **12.2.3** External trafficable structures
- **12.2.4** Clear spaces around buildings

Part 12.3 Attachment of framed decks and balconies to external walls
- **12.3.1** Application of Part 12.3
- **12.3.2** Fixing decks and balconies to external walls
- **12.3.3** Flashings to the junction of the waling plate and external wall
- **12.3.4** Bracing

Part 12.4 Boilers, pressure vessels, heating appliances, fireplaces, chimneys and flues
- **12.4.1** Application of Part 12.4
- **12.4.2** Open fireplace construction
- **12.4.3** Chimney construction
- **12.4.4** Installation of insert fireplaces and flues
- **12.4.5** Installation of free standing heating appliances
- **12.4.6** Installation of boilers and pressure vessels
Part 12.1 Scope and application of Section 12

12.1.1 Scope

[New for 2022]

(1) This Section of the ABCB Housing Provisions sets out the Deemed-to-Satisfy Provisions for—
 (a) construction in alpine areas (see Part 12.2); and
 (b) attachment of decks and balconies to external walls (see Part 12.3); and
 (c) boilers, pressure vessels, heating appliances, fire places, chimneys and flues (see Part 12.4).

(2) For other ancillary provisions and additional construction requirements not included in this Section of the ABCB Housing Provisions, refer to the following Deemed-to-Satisfy Provisions in NCC Volume Two:
 (a) swimming pools (see H7D2).
 (b) earthquake areas (see H1D9).
 (c) flood hazard areas (see H1D10).
 (d) construction in bushfire-prone areas (see H7D4).

12.1.2 Application

[New for 2022]

The application of Section 12 of the ABCB Housing Provisions is subject to the following:

(a) The Governing Requirements of NCC 2022 Volume Two.

(b) The State and Territory variations, additions and deletions contained in the Schedules to the ABCB Housing Provisions and NCC Volume Two.

Explanatory Information:

In NCC 2019, the content of Section 12 of the ABCB Housing Provisions (other than content added in NCC 2022 or later) was contained in the acceptable construction practices for Parts 3.10.4, 3.10.6 and 3.10.7 of NCC 2019 Volume Two.

In NCC 2019 Volume Two, Parts 3.10.1, 3.10.2, 3.10.3 and 3.10.5 did not include an acceptable construction practice.
12.2.1 Application of Part 12.2

Part 12.2 applies subject to the provisions at H7D3(2) and (3).

Explanatory Information:
Buildings constructed in alpine areas need special consideration because of sub-zero temperatures which can create elements which restrict free movement to and from the building. The additional measures in this Part include—

- having external doorways open in a way that is not impeded by snow and ice outside; and
- for external trafficable structures forming part of the means of egress, being constructed so that they remain useable under snow conditions, and
- minimising the impact of snow build up between and around buildings.

Part 2.2 (structural provisions) and Section 13 (energy efficiency) also contain specific additional requirements for a building located in an alpine area.

12.2.2 External doors

External doors that may be subject to a build-up of snow must—

(a) open inwards or slide; and
(b) be constructed so that the threshold is not less than 900 mm above the adjoining surface; and
(c) in a Class 1b building, be marked “OPEN INWARDS” on the inside face of the door in letters not less than 75 mm high and in a colour contrasting with that of the background.

12.2.3 External trafficable structures

External stairways, ramps, access bridges or other trafficable structures serving the building must have—

(a) a floor surface that consists of expanded mesh if it is used as a means of egress; and
(b) any required barrier designed so that its sides are not less than 75% open; and
(c) for a stairway, goings (G), risers (R) and slope relationship quantity (2R + G) in accordance with—
 (i) Table 11.2.2a; or
 (ii) Table 12.2.3; and
(d) for a ramp serving an external doorway, a gradient not steeper than 1:12.

Table 12.2.3: Alternative stair riser and going dimensions

<table>
<thead>
<tr>
<th>Maximum risers (R) (mm)</th>
<th>Minimum risers (R) (mm)</th>
<th>Maximum going (G) (mm)</th>
<th>Minimum going (G) (mm)</th>
<th>Maximum slope relationship (2R + G) (mm)</th>
<th>Minimum slope relationship (2R + G) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>115</td>
<td>375</td>
<td>355</td>
<td>675</td>
<td>605</td>
</tr>
</tbody>
</table>
12.2.4 Clear spaces around buildings

A building must be constructed so that—

(a) for any external walls more than 3.6 m above the natural ground level, the distance of that part of the building from the allotment boundary (other than a road alignment) must be not less than 2.5 m plus an additional 100 mm for each 300 mm or part by which that part of the external wall exceeds a height of 3.6 m (see Figure 12.2.4a); and

(b) if an external doorway discharges into a court between wings of a building and that area may be used for vehicle access to the building, the clear distance between wings must be not less than 4 m (see Figure 12.2.4b); and

(c) where an external doorway discharges opposite a feature that could trap snow or an embankment that is more than 900 mm above the threshold of that doorway, a minimum clear distance of not less than 4 m must be provided between the door and the feature (see Figure 12.2.4c and Figure 12.2.4d).

Figure 12.2.4a: Clear spaces around buildings — Set-back from allotment boundary where wall exceeds 3.6 m
Figure 12.2.4b: Clear spaces around buildings — External doorway discharging into a court between wings of a building

Figure 12.2.4c: Clear spaces around buildings — Embankments adjoining buildings

Figure 12.2.4d: Clear spaces around buildings — Use of a threshold where clear space is not available

Explanatory Information: Snow build-up around buildings

The design and construction of a building in an alpine area must not aid dangerous levels of snow build-up between and around buildings. This control—

- assists with egress in an emergency; and
- helps vehicle access around the buildings, both for snow clearing and emergency situations; and
- minimises the risk of snow or ice falling from the roof onto adjoining lots or egress routes.
Explanatory Information: Set-back distances

12.2.4(a) prescribes set-back requirements for *external walls* from the boundary of adjoining allotments. The aim is to ensure that a reasonable distance is created between buildings to reduce the amount of snow build-up between properties. 12.2.4(a) applies only to the area adjacent to that part of the wall that is more than 3.6 m in height.

Explanatory Information: Distance between wings of buildings

12.2.4(b) prescribes a minimum distance between wings of a building or attached buildings where external doorways may discharge into this area. This requirement only applies where the court or wings are able to be accessed by vehicles.

Explanatory Information: Embankments adjoining buildings

12.2.4(c) applies where features adjacent to an external doorway could trap snow and complicate access and egress to and from the building.
12.3.1 Application of Part 12.3

[New for 2022]

Part 12.3 applies subject to the limitations set out at H1D11.

12.3.2 Fixing decks and balconies to external walls

[2019: 3.10.6.2]

Where a deck or balcony relies on the external wall of a building or structure for support, the method of attachment, including any fixings, to the external wall must comply with the following:

(a) The deck or balcony's joist framing members must be supported at the wall by a waling plate.

(b) The joist span nearest the external wall must not be more than 3 m (single or continuous span).

(c) The size of a waling plate required by (a) must be not less than—

(i) for a timber waling plate— 190 x 45 mm with a minimum stress grade of F5 or MGP10; or

 (A) 140 x 35 mm with a minimum stress grade of F5 or MGP10 when fixed to concrete core-filled masonry using M12 bolts chemical or expanding/mechanical anchors; or

 (B) 90 x 35 mm with a minimum stress grade of F6 or MGP10 when fixed to timber frames using No. 14 partial threaded self-drilling screws; or

(ii) for a steel waling plate — C15015 (minimum Grade G550) with the web located against the external wall.

(d) A waling plate must be attached so that—

(i) for core-filled reinforced concrete masonry external walls, fixings are staggered along the waling plate at not more than 300 mm centres measured along the waling plate; and

(ii) for timber external wall frames, two No. 14 Type screws fixings are provided— into a solid joist or bearer framing member that is not less than 190 x 100 mm with a minimum stress grade of F5 or MGP10, at not more than 300 mm centres measured along the waling plate; and

 (A) into a solid joist or bearer framing member that is not less than 90 x 45 mm with a minimum stress grade of F5 or MGP10; and

 (B) for deck construction— at not more than 450 mm centres measured along the waling plate; and

 (C) for tiled balcony construction— at not more than 400 mm centres measured along the waling plate; and

(iii) for steel framed external walls, two fixings are provided into a joist or bearer framing member not less than C20015 (Grade G550) at not more than 300 mm centres measured along the waling plate; and

(iv) fixings are— installed within 300 mm of each end of the waling plate, and in accordance with the following (as applicable):

 (A) installed within 300 mm of each end of the waling plate; and

 (B) for a timber waling plate — deck construction; two No. 14 partial threaded self-drilling screws at not more than 450 mm centres and not located within 65 mm from the ends or within 30 mm from the top and bottom edges; or not located within 120 mm from the ends or within 60 mm from the top and bottom edges; and

 (C) for a timber waling plate — deck construction; M12 bolts chemical or expanding/mechanical anchors at not more than 400 mm centres and not located within 120 mm from the ends or within 60 mm from the top and bottom edges.

 (D) for a timber waling plate — tiled balcony construction; two No. 14 partial threaded self-drilling screws at not more than 400 mm centres and not located within 65 mm from the ends or within 30 mm from the top and bottom edges.
Ancillary provisions

For a timber waling plate — tiled balcony construction: M12 bolts chemical or expanding/mechanical anchors at not more than 300 mm centres and not located within 120 mm from the ends or within 60 mm from the top and bottom edges.

For a steel waling plate — not located within 50 mm from the ends or within 30 mm from the top and bottom edges.

Fixings for attaching a waling plate to an external wall must be—

(i) for timber external wall frames with a minimum stress grade of F5 or MGP 10, No. 14 partial threaded self-drilling screws so that each screw is embedded not less than 44 mm into the joist or bearer member (see Figure 12.3.2a); and—

(A) M12 coach screws with not less than 2 mm thick 55 mm diameter washers fixed so that the coach screw is embedded not less than 96 mm into the joist or bearer framing member (see Figure 12.3.2a); or

(B) 4.6/S M12 bolts with not less than 3 mm thick 55 mm diameter washers placed on the waling plate under the bolt head; and

(ii) for steel external wall frames, 8.8/S M12 bolts with not less than 3 mm thick 55 mm diameter washers; and

(iii) for a core-filled masonry external wall, 4.6/S M12 chemical or expanding/mechanical anchors with—

(A) a minimum 2 kN working load capacity in shear and 1.5 kN in tension; and

(B) not less than 3 mm thick 55 mm diameter washers placed on the waling plate under the anchor head (see Figure 12.3.2b).

Fixings used for attaching waling plates to external walls must be—

(i) stainless steel where the building is located within 200 m of breaking surf; or

(ii) hot-dipped galvanised, stainless steel or monel metal for all other areas.

Figure 12.3.2a: Methods of attachment — M12 coach screws No. 14 partial threaded self-drilling screws into a timber framed external wall
Explanatory Information:

When using fixings 12.3.2(1)(d), care must be taken if chemical anchors are selected. The use of chemical anchors in horizontal applications is limited. Attention should be paid to selecting only chemical anchors that are specifically designed and manufactured for use in horizontal or overhead applications.

Consideration needs to be given to offsetting the waling plate fastener spacing to avoid interference with joist attachment. To ensure fasteners are positively anchored to the building or structure they need to be located so that they are not fixed into mortar beds between masonry units or fixed into blocking or the end grains of timbers.

An I-beam is not considered a solid joist or bearer framing member under 12.3.2(d)(ii) and is therefore not permitted as an appropriate method of support for attachment of a deck or balcony to an external wall.

The working load capacity of an anchor required by 12.3.2(e)(iii)(A) may be available in technical data provided by the manufacturer of the anchor.

The bolt category 4.6/S refers to a commercial bolt of a strength grade of 4.6 using a snug tight method of tensioning. AS 4100 contains information on tensioning techniques and the methods of determining the strength of an anchor.

Where the waling plate is fixed to the external wall through wall cladding, fixing length must be increased to compensate for the additional width of the cladding to ensure the connection to the external wall is structurally adequate.

All coach screwed joints should be pre-drilled with a pilot hole whose diameter is not greater than that of the threaded portion of the screw.

12.3.3 Flashings to the junction of the waling plate and external wall

Where the wall cladding is removed to attach a waling plate, openings in external wall cladding exposed to the weather...
must be flashed with materials complying with AS/NZS 2904 and in accordance with the following:

(a) **Flashings** must be provided to bottom, tops and the sides of the junction of the waling plate and the *external wall*, and must be installed so that the *flashing*—
 (i) extends not less than 150 mm beyond each side of the waling plate where practicable; and
 (ii) is attached to the waling plate and wall framing; and
 (iii) at the top and bottom of the waling plate, drains to the outside face of the wall or cladding.

(b) Joins in the *flashing* must—
 (i) overlap by not less than 75 mm in the direction of flow; and
 (ii) be securely fastened at intervals of not more than 40 mm; and
 (iii) have sealant installed between laps.

(c) The method of *flashing* must be suitable for the framing and cladding used.

(d) **Flashings** must be securely fixed at least 25 mm under the cladding at ends and edges of the framing of the opening.

Explanatory Information:

Consideration needs to be given to the method of fixing the waling plate to the *external wall* so that deterioration of the *external wall* as a result of water entry will not occur. Such cases would include where the wall cladding is removed to attach a waling plate. This may be achieved by installing flashing between the *external wall* and the waling plate.

12.3.4 Bracing

[2019: 3.10.6.4]

Where a deck or balcony is more than 1 m off the ground when measured from the upper most surface of the deck or balcony at any point to the top of any supporting footing, bracing must be installed as follows:

(a) Two diagonally opposed 30 x 0.8 mm galvanized steel straps must be installed across the top or underside of the joists and be attached using one fixing at—
 (i) each joist or equivalent framing member; and
 (ii) the waling plate.

(b) A secondary set of 30 x 0.8 mm steel straps must be installed using one fixing at each joist or equivalent framing member in accordance with Figure 12.3.4 where the deck or balcony extends more than 4 m from the *external wall*.

(c) The steel straps must—
 (i) be continuous and extend diagonally at an angle between 30° to 60°; and
 (ii) span not more than 4 m when measured along a line at a right angle from the *external wall*.

(d) Fixings for the steel straps must be—
 (i) for timber framing, 50 x 3.15 hot-dipped galvanized flat head ring shank or flat head deformed nail; or
 (ii) for steel framing, 8-18 self embedding head or wafer head screws.

(e) Where the deck or balcony is located within a severe corrosion environment the bracing and fixings must comply with Table 6.3.4, Table 6.3.9a, 6.3.9b and 6.3.9c.
Figure 12.3.4: Bracing of decks and balconies

a) Decks or balconies extending up to 4 m from the *external wall*

- Class 1
 - Steel straps to commence and terminate at midpoint
 - Max. 4 m span
 - Steel straps 30 x 0.8 mm steel straps fixed to joists

b) Decks or balconies extending more than 4 m from the *external wall*

- Class 1
 - Steel straps 30°- 60°
 - External wall
 - >4 m span
 - Steel straps to commence and terminate at midpoint
12.4.1 Application of Part 12.4

[New for 2022]]

For the installation of a domestic solid fuel burning appliance, Part 12.4 need not be complied with if H7D5(a) is complied with.

12.4.2 Open fireplace construction

[2019: 3.10.7.2]

An open fireplace, or solid-fuel burning appliance in which the fuel-burning compartment is not enclosed must have—

(a) all masonry constructed in accordance with H1D5; and

(b) a hearth constructed of stone, concrete, masonry or similar non-combustible material so that—

(i) it extends not less than 300 mm beyond the front of the fireplace opening and not less than 150 mm beyond each side of that opening; and

(ii) its upper surface does not slope away from the back hearth (see Figure 12.4.2(b)); and

(iii) combustible material, such as flooring or framing members below or around the external edge of the hearth, is situated not less than 150 mm from the upper surface of the hearth (see Figure 12.4.2); and

(c) walls forming the sides and back of the fireplace up to a height of 300 mm above the underside of the arch or lintel which—

(i) are constructed in 2 separate leaves of solid masonry with a total combined thickness not less than 180 mm thick, excluding any cavity; and

(ii) do not consist of concrete block masonry in the construction of the inner leaf; and

(iii) are constructed of masonry units with a net volume, excluding cored and similar holes, not less than 75% of their gross volume, measured on the overall rectangular shape of the units, and with an actual thickness of not less than 100 mm; and

(d) the fireplace must be constructed on footings complying with 4.2.18.
The construction of a chimney must comply with H1D5 and the following:

(a) The walls of the chimney above the level referred to in 12.4.2(c) must be lined internally to a thickness of not less than 10 mm with composition mortar parging.

(b) The composition mortar in (a) must comply with AS 3700 or AS 4773 except that the mortar must be mixed by volume in the proportions of 1 part cement : 1 part lime : 5 parts sand.

(c) The chimney or flue must terminate not less than 300 mm above the highest part of the building within a horizontal distance of 3.6 m of the chimney or flue (see Figure 12.4.3).
Explanatory Information:

1. The requirements of this Part are to be read in conjunction with the building sealing requirements in Part 13.4. However, it should be noted that Part 13.4 does not apply in all States and Territories.

2. 12.4.3(a) requires the internal faces of masonry chimneys to be parged with a mortar to protect masonry elements and mortar beds from the corrosive by-products of combustion.

12.4.4 Installation of insert fireplaces and flues

[2019: 3.10.7.4]

An insert fireplace and flue must comply with the following:

(a) The insert fireplace and flue must be tested and passed the tests required by AS/NZS 2918.
 (i) tested and passed the tests required by AS/NZS 2918; and
 (ii) fitted into a masonry fireplace (including chimney) constructed in accordance with H1D5 and Figure 12.4.4.

(b) The insert fireplace must be fitted into a masonry fireplace (including chimney) constructed in accordance with H1D5.

(c) The flue must be double skin and have been tested and pass the tests required by AS/NZS 2918.

(d) There must be a clearance of 50 mm between the outer flue and adjacent materials.

(e) The flue must terminate in accordance with Figure 12.4.3.

(f) The hearth must be constructed in accordance with 12.4.2(b) and (d).
Figure 12.4.4: **Typical installation of fireplace flue inserts**

![Diagram of fireplace flue inserts]

12.4.5 Installation of free standing heating appliances

[2019: 3.10.7.5]

The installation of a free standing heating appliance must comply with the following:

(a) The appliance must—
 (i) be installed with safety clearances determined by testing in accordance with AS/NZS 2918; or
 (ii) be located not less than 1.2 m from adjoining walls (other than a masonry wall); or
 (iii) have a heat shield between the adjoining wall (other than a masonry wall) and the heating appliance in accordance with Figure 12.4.5a and Figure 12.4.5b.

(b) Where a heat shield is used, it must be installed in accordance with Figure 12.4.5a and Figure 12.4.5b, and it must be not less than 90 mm thick masonry constructed in accordance with H1D5, and—
 (i) have an FRL of 60/60/60; or
 (ii) be not less than 90 mm thick masonry constructed in accordance with H1D5.

(c) The heating appliance must be installed on a hearth—
(i) complying with 12.4.2(b), except that the hearth must extend 400 mm from the front and sides of the appliance in accordance with Figure 12.4.5a and Figure 12.4.5b; or

(ii) where a heat shield is installed, in accordance with Figure 12.4.5a and Figure 12.4.5b.

(d) The flue must—

(i) have been tested and passed the tests required by AS/NZS 2918; and

(ii) be installed in accordance with Figure 12.4.5c; and

(iii) terminate in accordance with Figure 12.4.3; and,

(iv) be flashed in accordance with H1D7.

(e) Flue types or installation of flues in areas not specifically covered by Figure 12.4.5a and Figure 12.4.5b and Figure 12.4.5c must be installed in accordance with AS/NZS 2918.

Figure 12.4.5a: Acceptable location of free standing heating appliances — Elevation
Figure 12.4.5b: Acceptable location of free standing heating appliances — Plan view

Non masonry wall

Hearth

1.2 m min.

400 mm

Heating appliance

25 mm clearance between heat shield and wall

50 mm clearance between heat shield and appliance

90 mm min. masonry heat shield

Non masonry wall

Hearth

400 mm
Explanatory Information:

References to AS/NZS 2918 in 12.4.5(a)(i) and (d)(i) is only applicable in the context in which it is referred to in accordance with A4G1(2). 12.4.5(a) provides three options for the installation of free standing heating appliances. Where 12.4.5(a)(i) is chosen as a solution the free standing heating appliance must be installed with safety clearances determined by testing in accordance with AS/NZS 2918. 12.4.5(d)(i), in addition to (d)(ii) and (d)(iii), require the flue to be tested and have passed the tests required by AS/NZS 2918.
12.4.6 Installation of boilers and pressure vessels

The installation of a boiler or pressure vessel heating appliance within a building, must comply with the following:

(a) The distance between the vent of any explosion relief device and any adjacent wall, roof, ceiling or other solid construction must be calculated in accordance with Table 12.4.6.

(b) Floor surfaces beneath a boiler or pressure vessel must be water resistant and formed to drain away from supports and structural building elements.

(c) Where a safe tray is provided to trap liquids, it must be manufactured from a material resistant to corrosion from the contents of the boiler or pressure vessel.

(d) Building elements surrounding a boiler must be protected from any furnace heat by refractory material or effective air spaces so that:
 (i) steel elements do not exceed a temperature of more than 300°C; and
 (ii) concrete elements do not exceed a temperature of more than 200°C; and
 (iii) timber elements do not exceed a temperature of more than 150°C.

Table 12.4.6: Minimum clearances for explosion relief

<table>
<thead>
<tr>
<th>Clearance from</th>
<th>Minimum clearance (metres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjacent wall or ceiling/roof</td>
<td>0.4(V/3)^{1/3} or 0.4 m, whichever is the greater</td>
</tr>
<tr>
<td>Two walls at right angles; or one wall and a ceiling/roof</td>
<td>0.6(V/3)^{1/3} or 0.6 m, whichever is the greater</td>
</tr>
</tbody>
</table>

Table Notes:

\(V\) is the internal volume of the boiler or pressure vessel being vented, up to the connection of the flue.

Explanatory Information:

The requirements of 12.4.6 are limited to a boiler or pressure vessel heating appliance within a building. Therefore, the provision does not apply to a boiler or pressure vessel outside of those limitations, such as a portable gas appliance.

Table 12.4.6 provides the minimum clearance required which is based on the volume of the space being vented. The minimum clearance is determined by a formula which includes the volume of the space being vented.

The intention of the explosion relief provisions is that, in the event of an explosion, the extent of damage is limited.

The minimum clearance determined in the first row is 0.4 m from an adjacent wall or ceiling/roof.

The minimum clearance determined in the second row is 0.6 m from two walls at right angles, or one wall and a ceiling/roof. This scenario poses a higher risk of damage from over pressure experienced during a deflagration and therefore both the ventilation and clearances are increased.
Part 13 Energy efficiency

Part 13.1 Scope and application of Section 13

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1.1</td>
<td>Scope</td>
</tr>
<tr>
<td>13.1.2</td>
<td>Application</td>
</tr>
</tbody>
</table>

Part 13.2 Building fabric

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2.1</td>
<td>Application of Part 13.2</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Building fabric thermal insulation</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Roofs</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Roof lights</td>
</tr>
<tr>
<td>13.2.5</td>
<td>External walls</td>
</tr>
<tr>
<td>13.2.6</td>
<td>Floors</td>
</tr>
<tr>
<td>13.2.7</td>
<td>Attached Class 10a buildings</td>
</tr>
</tbody>
</table>

Part 13.3 External glazing

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3.1</td>
<td>Application of Part 13.3</td>
</tr>
<tr>
<td>13.3.2</td>
<td>External glazing</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Shading</td>
</tr>
</tbody>
</table>

Part 13.4 Building sealing

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4.1</td>
<td>Application of Part 13.4</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Chimneys and flues</td>
</tr>
<tr>
<td>13.4.3</td>
<td>Roof lights</td>
</tr>
<tr>
<td>13.4.4</td>
<td>External windows and doors</td>
</tr>
<tr>
<td>13.4.5</td>
<td>Exhaust fans</td>
</tr>
<tr>
<td>13.4.6</td>
<td>Construction of ceilings, walls and floors</td>
</tr>
<tr>
<td>13.4.7</td>
<td>Evaporative coolers</td>
</tr>
</tbody>
</table>

Part 13.5 Air movement

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5.1</td>
<td>Application of Part 13.5</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Air movement</td>
</tr>
<tr>
<td>13.5.3</td>
<td>Ventilation openings</td>
</tr>
<tr>
<td>13.5.4</td>
<td>Ceiling fans and evaporative coolers</td>
</tr>
</tbody>
</table>

Part 13.6 Services

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.6.1</td>
<td>Application of Part 13.6</td>
</tr>
<tr>
<td>13.6.2</td>
<td>Insulation of services</td>
</tr>
<tr>
<td>13.6.3</td>
<td>Central heating water piping</td>
</tr>
<tr>
<td>13.6.4</td>
<td>Heating and cooling ductwork</td>
</tr>
<tr>
<td>13.6.5</td>
<td>Electric resistance space heating</td>
</tr>
<tr>
<td>13.6.6</td>
<td>Artificial lighting</td>
</tr>
<tr>
<td>13.6.7</td>
<td>Water heater in a heated water supply system</td>
</tr>
<tr>
<td>13.6.8</td>
<td>Swimming pool heating and pumping</td>
</tr>
</tbody>
</table>
13.6.9 Spa pool heating and pumping
13.1 Scope

This Section of the ABCB Housing Provisions sets out the Deemed-to-Satisfy Provisions for energy efficiency:

(a) Building fabric (see Part 13.2).
(b) External glazing (see Part 13.3).
(c) Building sealing (see Part 13.4).
(d) Air movement (see Part 13.5).
(e) Services (see Part 13.6).

13.1.2 Application

The application of Section 13 of the ABCB Housing Provisions is subject to the following:

(a) The Governing Requirements of NCC 2022 Volume Two.
(b) The State and Territory variations, additions and deletions contained in the Schedules to the ABCB Housing Provisions and NCC Volume Two.

Explanatory Information:

In NCC 2019, the content of Section 13 of the ABCB Housing Provisions (other than content added in NCC 2022 or later) was contained in the acceptable construction practices for Part 3.12 of NCC 2019 Volume Two.
13.2.1 Application of Part 13.2

(1) The provisions of 13.2.2 to 13.2.6 apply to—
(a) a Class 1 building; and
(b) a Class 10a building with a conditioned space.

(2) The provisions of 13.2.7 apply to a Class 1 building with an attached Class 10a building.

(3) Part 13.2 must be applied as directed in H6D2(1)(a) or (b).

13.2.2 Building fabric thermal insulation

(1) Where required, insulation must comply with AS/NZS 4859.1 and be installed so that it—
(a) buts or overlaps adjoining insulation other than at supporting members such as columns, studs, nogings, joists, furring channels and the like where the insulation must butt against the member; and
(b) forms a continuous barrier with ceilings, walls, bulkheads, floors or the like that inherently contribute to the thermal barrier; and
(c) does not affect the safe or effective operation of a domestic service or fitting.

(2) Where required, reflective insulation must be installed with—
(a) the necessary airspace, to achieve the required R-Value between a reflective side of the reflective insulation and a building lining or cladding; and
(b) the reflective insulation closely fitted against any penetration, door or window opening; and
(c) the reflective insulation adequately supported by framing members; and
(d) each adjoining sheet of roll membrane being—
(i) overlapped greater than or equal to 150 mm; or
(ii) taped together.

(3) Where required, bulk insulation must be installed so that—
(a) it maintains its position and thickness, other than where it crosses roof battens, water pipes, electrical cabling or the like; and
(b) in a ceiling, where there is no bulk insulation or reflective insulation in the external wall beneath, it overlaps the external wall by greater than or equal to 50 mm.

Explanatory Information: Example

1. For example, in a two storey house with the second storey set back, the insulation in the first storey wall, the second storey wall and the roof over the set-back must be continuous. Therefore if the roof over the set-back has insulation on a horizontal ceiling, then insulation is also needed on the vertical in any ceiling space in order to connect the ceiling insulation to the second storey wall.

2. To form a continuous barrier, insulation should be placed in gaps between window and door jambs, heads and sills, and the adjoining wall framing unless a gap is otherwise required. This may need to be compressible to allow for movement between members.

Explanatory Information: Safety of domestic services

Care should be taken when installing insulation to ensure that it does not interfere with the safety or performance of...
domestic services and fittings such as heating flues, recessed light fittings, light transformers, gas appliances and general plumbing and electrical components. This includes providing appropriate clearance as detailed in relevant legislation and referenced standards such as for electrical, gas and fuel oil installations.

Explanatory Information: Airspace adjoining reflective insulation
For reflective insulation and the adjoining airspace to achieve its tested R-Value, the airspace needs to be a certain width. This width varies depending on the particular type of reflective insulation and the R-Value to be achieved.

Explanatory Information: Adjoining sheets of roll membrane
Where reflective insulation also acts as a vapour barrier or sarking, both the minimum overlap and taping may be necessary.

Explanatory Information: Compression of bulk insulation
The R-Value of bulk insulation is reduced if it is compressed. The allocated space for bulk insulation must therefore allow the insulation to be installed so that it maintains its correct thickness when using the product's stated R-Value, otherwise the R-Value needs to be reduced to account for any compression. This is particularly relevant to wall and cathedral ceiling framing whose members can only accommodate a limited thickness of insulation. In some instances, larger framing members or thinner insulation material, such as polystyrene boards, may be necessary to ensure that the insulation achieves its required R-Value.

Explanatory Information: Airspaces
The R-Value of reflective insulation and its adjoining airspace is affected by the width of the airspace between a reflective side of the reflective insulation and the building lining or cladding. For further information on reflective insulation, refer to the explanatory information accompanying 13.2.2.

Explanatory Information: Condensation
Artificial cooling of buildings in some climates can cause condensation to form inside the layers of the building envelope. Such condensation can cause significant structural or cosmetic damage to the envelope before it is detected. Associated mould growth may also create health risks to the occupants. Effective control of condensation is a complex issue. In some locations a fully sealed vapour barrier may need to be installed on the more humid, or generally warmer, side of the insulation. Note that Part 10.8 contains specific provisions for condensation.

13.2.3 Roofs

[2019: 3.12.1.2]

(1) Subject to (2) and (5), a roof must—

(a) achieve the specified in Tables 13.2.3a to 13.2.3g as appropriate, for the direction of heat flow; and

(b) where a pitched roof has a flat ceiling, have greater than or equal to 50% of the added insulation laid on the ceiling.

(2) In Climate zones 1, 2, 3, 4 and 5 the specified in Tables 13.2.3a to 13.2.3g as appropriate, is reduced by 0.5 where—

(a) the required insulation is laid on the ceiling; and

(b) the roof space is ventilated by—

(i) gable vents, ridge vents, eave vents, roof vents or the like that—

(A) are evenly distributed to allow an unobstructed flow of air; and

(B) are located to ensure, where practicable, there are no dead airspaces; and

(C) have an aggregate fixed open area of greater than or equal to 1% of the ceiling area; or

(ii) having—

(A) not less than 2 wind-driven roof ventilators having an aggregate opening area of greater than or equal to 0.14 m²; and
(B) gable vents, ridge vents, eave vents, roof vents or the like that have an aggregate fixed open area of greater than or equal to 0.2% of the ceiling area.

(3) A roof that—
(a) is required to achieve a minimum; and
(b) has metal sheet roofing directly fixed to metal purlins, metal rafters or metal battens; and
(c) does not have a ceiling lining or has a ceiling lining fixed directly to those metal purlins, metal rafters or metal battens,

must have a thermal break, consisting of a material with an R-Value of greater than or equal to 0.2, installed between the metal sheet roofing and its supporting metal purlins, metal rafters, or metal battens.

(4) A roof, or roof and associated ceiling, is deemed to have the following:
(a) For a flat roof, skillion roof and cathedral ceiling with a ceiling lining under the rafter, unventilated and constructed as shown in Figure 13.2.3a:
 (i) Downwards direction of heat flow: = 0.48
 (ii) Upwards direction of heat flow: = 0.36.
(b) For a flat roof, skillion roof and cathedral ceiling with exposed rafters, unventilated and constructed as shown in Figure 13.2.3b:
 (i) Downwards direction of heat flow: = 0.44.
 (ii) Upwards direction of heat flow: = 0.38.
(c) For a tiled pitched roof with flat ceiling constructed as shown in Figure 13.2.3c:
 (i) Ventilated roof space:
 (A) Downwards direction of heat flow: = 0.74.
 (B) Downwards direction of heat flow: = 0.23.
 (ii) Unventilated roof space:
 (A) Downwards direction of heat flow: = 0.56.
 (B) Downwards direction of heat flow: = 0.41.
(d) For a metal pitched roof with flat ceiling constructed as shown in Figure 13.2.3d:
 (i) Ventilated roof space:
 (A) Downwards direction of heat flow: = 0.72.
 (B) Downwards direction of heat flow: = 0.21.
 (ii) Unventilated roof space:
 (A) Downwards direction of heat flow: = 0.54.
 (B) Downwards direction of heat flow: = 0.39.

(5) For the purposes of (4)(a) to (d):
(a) The R-Value of the roof and ceiling construction shown in Figures 13.2.3a to 13.2.3d is based there being a roof space.
(b) If the roof space is filled, the roof space R-Value needs to be subtracted from the R-Value of the roof and ceiling materials.
(c) The R-Value of the unventilated roof and ceiling construction in Figure 13.2.3c for tiled roofs is based on there being a sarking-type material which would prevent ventilation of the roof space through gaps in the roof tiles.

(6) Where, for operational or safety reasons associated with exhaust fans, flues or recessed downlights, the area of required ceiling insulation is reduced, the loss of insulation must be compensated for by increasing the R-Value of insulation in the remainder of the ceiling in accordance with Table 13.2.3h.

(7) Where the minimum R-Value of ceiling insulation required to satisfy (1) is not stated in Table 13.2.3h, interpolation may be used to determine the adjusted minimum R-Value.
Table 13.2.3a: Roof—minimum Total R-values (climate zone 1)

<table>
<thead>
<tr>
<th>Direction of heat flow</th>
<th>Upper surface solar absorptance value</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down</td>
<td>≤ 0.4</td>
<td>3.1</td>
</tr>
<tr>
<td>Down</td>
<td>> 0.4 but ≤ 0.6</td>
<td>4.1</td>
</tr>
<tr>
<td>Down</td>
<td>> 0.6</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Table Notes:
Altitude means the height above the Australian Height Datum at the location where the building is to be constructed.

Table 13.2.3b: Roof—minimum Total R-values (climate zone 2—altitude less than 300 m)

<table>
<thead>
<tr>
<th>Direction of heat flow</th>
<th>Upper surface solar absorptance value</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down</td>
<td>≤ 0.4</td>
<td>4.1</td>
</tr>
<tr>
<td>Down</td>
<td>> 0.4 but ≤ 0.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Down</td>
<td>> 0.6</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Table Notes:
Altitude means the height above the Australian Height Datum at the location where the building is to be constructed.

Table 13.2.3c: Roof—minimum Total R-values (climate zone 2—altitude 300 m or more)

<table>
<thead>
<tr>
<th>Direction of heat flow</th>
<th>Upper surface solar absorptance value</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down</td>
<td>≤ 0.4</td>
<td>4.1</td>
</tr>
<tr>
<td>Down</td>
<td>> 0.4 but ≤ 0.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Down</td>
<td>> 0.6</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Table Notes:
Altitude means the height above the Australian Height Datum at the location where the building is to be constructed.

Table 13.2.3d: Roof—minimum Total R-values (climate zone 3)

<table>
<thead>
<tr>
<th>Direction of heat flow</th>
<th>Upper surface solar absorptance value</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down and Up</td>
<td>≤ 0.4</td>
<td>4.1</td>
</tr>
<tr>
<td>Down and Up</td>
<td>> 0.4 but ≤ 0.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Down and Up</td>
<td>> 0.6</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Table 13.2.3e: Roof—minimum Total R-values (climate zones 4 and 5)

<table>
<thead>
<tr>
<th>Direction of heat flow</th>
<th>Upper surface solar absorptance value</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>≤ 0.4</td>
<td>4.1</td>
</tr>
<tr>
<td>Up</td>
<td>> 0.4 but ≤ 0.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Up</td>
<td>> 0.6</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Table 13.2.3f: Roof—minimum Total R-values (climate zones 6 and 7)

<table>
<thead>
<tr>
<th>Direction of heat flow</th>
<th>Upper surface solar absorptance value</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>≤ 0.4</td>
<td>4.6</td>
</tr>
</tbody>
</table>
Table 13.2.3g: Roof—minimum Total R-values (climate zone 8)

<table>
<thead>
<tr>
<th>Direction of heat flow</th>
<th>Upper surface solar absorptance value</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>< 0.4</td>
<td>5.1</td>
</tr>
<tr>
<td>Up</td>
<td>> 0.6</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Table 13.2.3h: Adjusted minimum R-Value of ceiling insulation required to compensate for loss of ceiling insulation area

<table>
<thead>
<tr>
<th>Percentage of ceiling area uninsulated</th>
<th>Minimum R-Value of ceiling insulation required to satisfy 13.2.3(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>0.5 to less than 1.0%</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0% to less than 1.5%</td>
<td>1.1</td>
</tr>
<tr>
<td>1.5% to less than 2.0%</td>
<td>1.1</td>
</tr>
<tr>
<td>2.0% to less than 2.5%</td>
<td>1.1</td>
</tr>
<tr>
<td>2.5% to less than 3.0%</td>
<td>1.2</td>
</tr>
<tr>
<td>3.0% to less than 4.0%</td>
<td>1.2</td>
</tr>
<tr>
<td>4.0% to less than 5.0%</td>
<td>1.3</td>
</tr>
<tr>
<td>5.0% or more</td>
<td>x</td>
</tr>
</tbody>
</table>

Table Notes:

1. X = not permitted
2. Where the minimum R-Value of ceiling insulation required to satisfy 13.2.3(1) is greater than or equal to 6.0, adjustment to compensate for loss of ceiling insulation area is not permitted.
Figure 13.2.3a: Flat roof, skillion roof and cathedral ceiling with a ceiling lining under the rafter

Figure Notes:
1. The Total R-Value of the roof and ceiling construction in Figure 13.2.3a is based on there being a roof space.
2. If the roof space is filled, the roof space R-Value needs to be subtracted from the Total R-Value of the roof and ceiling materials.
Figure 13.2.3b: Flat roof, skillion roof and cathedral ceiling with exposed rafters

Figure Notes:
1. The Total R-Value of the roof and ceiling construction in Figure 13.2.3b is based on there being a roof space.
2. If the roof space is filled, the roof space R-Value needs to be subtracted from the Total R-Value of the roof and ceiling materials.
Figure Notes:

1. The *Total R-Value* of the roof and ceiling construction in Figure 13.2.3c is based on there being a roof space.
2. If the roof space is filled, the roof space *R-Value* needs to be subtracted from the *Total R-Value* of the roof and ceiling materials.
3. The *Total R-Value* of the unventilated roof and ceiling construction in Figure 13.2.3c for tiled roofs are based on there being *sarking-type material* which would prevent ventilation of the roof space through the gaps in the roof tiles.
Figure 13.2.3d: Metal pitched roof with flat ceiling

Figure Notes:

1. The Total R-Value of the roof and ceiling construction in Figure 13.2.3d is based on there being a roof space.
2. If the roof space is filled, the roof space R-Value needs to be subtracted from the Total R-Value of the roof and ceiling materials.

Explanatory Information: Tables 13.2.3a to 13.2.3g

1. The term ‘as appropriate’ used in reference to Tables 13.2.3a to 13.2.3g, means the table used must be appropriate to the climate zone in which the building is to be located.
2. The roof space ventilation option, in climate zones 1, 2, 3, 4 and 5, applies to a pitched roof with a flat ceiling to ensure that efficient cross ventilation is achieved in the roof space to remove hot air. Roof space ventilation is generally not suitable for most flat, skillion, cathedral ceiling and similar roof types because of the lack of space between the ceiling and roof.
3. Care should be taken to ensure that the roof ventilation openings do not allow rain penetration and that they comply with appropriate bushfire provisions.
4. Gaps between roof tiles with sarking (or reflective insulation at rafter level) and metal sheet roofing are not acceptable methods of providing roof space ventilation.
5. Compliance with the ventilation provisions in 13.2.3(2)(b) may result in the ingress of wind driven rain, fine dust, corrosive aerosols, or stimulate the growth of mould or fungus in the roof enclosure. Consideration should therefore be given to the surrounding environmental features, including exposure to marine or industrial environments, prior to adopting this as an alternative to the roof insulation provisions in 13.2.3(2)(b)(ii).
6. A low solar absorptance roof reduces the flow of heat from solar radiation better than a high solar absorptance roof. A roof with a solar absorptance value of less than 0.4 typically corresponds to a roof of light colour such as white, off-white or cream. Typical absorptance values based on ASTM E903 are shown in explanatory Table 13.2.3a below.
7. The direction of heat flow in Tables 13.2.3a to 13.2.3g, as appropriate, is considered to be the predominant direction of heat flow for the hours of occupation of the building. It takes into account the higher rate of occupancy of houses at night time rather than day time.
8. The weight of roof or ceiling insulation, particularly if additional ceiling insulation is used for compliance with the energy efficiency provisions, needs to be considered in the selection of plasterboard, plasterboard fixings and building framing.

Table 13.2.3a (explanatory): Typical absorbance values

<table>
<thead>
<tr>
<th>Colour</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slate (dark grey)</td>
<td>0.90</td>
</tr>
<tr>
<td>Red, green</td>
<td>0.75</td>
</tr>
<tr>
<td>Yellow, buff</td>
<td>0.60</td>
</tr>
<tr>
<td>Zinc aluminium — dull</td>
<td>0.55</td>
</tr>
<tr>
<td>Galvanised steel — dull</td>
<td>0.55</td>
</tr>
<tr>
<td>Light grey</td>
<td>0.45</td>
</tr>
<tr>
<td>Off white</td>
<td>0.35</td>
</tr>
<tr>
<td>Light cream</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Explanatory Information: Typical construction

1. Figures 13.2.3a to 13.2.3d provide examples of various roof and ceiling construction. The \(R\)-Value of the required insulation is calculated by subtracting the inherent Total \(R\)-Value of the roof and ceiling construction from the Total \(R\)-Value in Tables 13.2.3a to 13.2.3g. The inherent Total \(R\)-Value of the typical roof and ceiling has been determined by adding together the \(R\)-Values of the outdoor air film, roof cladding, roof airspace, ceiling sheet lining and internal film.

2. The Total \(R\)-Value of the roof and ceiling materials may need to be adjusted if other building elements such as sarking are also installed. For example, sarking or sheet insulation under tiles may change a roof space from “ventilated” to “unventilated”.

Explanatory Information: Thermal bridging

Irrespective of the framing material used, the minimum added \(R\)-Value specified in Figures 13.2.3a to 13.2.3d, Figures 13.2.5b to 13.2.5i and Table 13.2.6a is deemed to include the effect of thermal bridging created by framing members in situations other than described in the explanatory information regarding thermal breaks.

Explanatory Information: Thermal break

Because of the high thermal conductance of metal, a thermal break is to be provided where the ceiling lining of a house is fixed directly to the underside of the metal purlins or metal battens of a metal deck roof or where there is no ceiling lining. The purpose of the thermal break is to ensure that the thermal performance of this form of roof construction is comparable to that of a similar roof with timber purlins or timber battens.

A thermal break may be provided by materials such as timber, expanded polystyrene strips, plywood or compressed bulk insulation. The material used as a thermal break must separate the metal purlins or metal battens from the metal deck roofing and achieve the specified \(R\)-Value. Reflective insulation alone is not suitable for use as a thermal break because it requires an adjoining airspace to achieve the specified \(R\)-Value (see explanatory information regarding choice of insulation).

For the purposes of 13.2.3(3), expanded polystyrene strips of not less than 12 mm thickness, compressed bulk insulation, and timber of not less than 20 mm thickness are considered to achieve an \(R\)-Value of not less than 0.2.

Explanatory Information: Location of insulation

The thermal performance of the roof may vary depending on the position of the insulation, the climatic conditions, the design of the house and the way in which it is operated. For example, insulation installed under the roof, rather than on the ceiling, of a conditioned house with a large roof space is less effective because of the additional volume of roof airspace that would need to be heated or cooled. Conversely, for an unconditioned house, the use of reflective insulation is more effective when placed directly under the roof.
Explanatory Information: Choice of insulation

There are a number of different insulation products that may be used to achieve the minimum added R-Value. However, care should be taken to ensure that the choice made is appropriate for the construction and climatic conditions as the location and relationship between options in Figures 13.2.3a to 13.2.3d, Figures 13.2.5b to 13.2.5i and Table 13.2.6a may not be suitable in all circumstances for both practical and technical reasons. For instance, in some climate zones, insulation should be installed with due consideration of condensation and associated interaction with adjoining building materials. As an example, reflective insulation or sarking installed on the cold side of the building envelope should be vapour permeable. Note that Part 10.8 contains specific provisions for condensation.

Reflective insulation is considered to provide the following additional R-Values when used in conjunction with the Total R-Value of a pitched roof and flat ceiling construction described in Figures 13.2.3a to 13.2.3d. To achieve these values, the reflective insulation must be laid directly under the roof cladding and have a minimum airspace of 15 mm between a reflective side of the reflective insulation and the adjoining lining or roof cladding (see 13.2.2(2)).

The actual R-Value added by reflective insulation and its adjoining airspace should be determined for each product in accordance with relevant standards, taking into consideration factors such as the number of adjacent airspaces, dimensions of the adjacent airspace, whether the space is ventilated and the presence of an anti-glare coating. When reflective insulation has an anti-glare coating on one side, the emittance value of that side will be greater than the value of the uncoated side. See explanatory Tables 13.2.3b to 13.2.3d.

Also, where another emittance value for reflective insulation is used (other than the value used in the table below), care should be taken to ensure that the number of airspaces allowed for is consistent with the form of construction and whether the airspace is reflective, partially reflective or non-reflective. Where bulk insulation fills the airspace, the Total R-Value should be reduced to take account of the loss of airspace.

Table 13.2.3b (explanatory): R-Value added by reflective insulation — pitched roof (>10°) with horizontal ceiling

<table>
<thead>
<tr>
<th>Emittance of added reflective insulation</th>
<th>Direction of heat flow</th>
<th>R-Value added—unventilated roof space</th>
<th>R-Value added—ventilated roof space</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 outer/0.05 inner</td>
<td>Down</td>
<td>1.12</td>
<td>1.21</td>
</tr>
<tr>
<td>0.2 outer/0.05 inner</td>
<td>Up</td>
<td>0.75</td>
<td>0.59</td>
</tr>
<tr>
<td>0.9 outer/0.05 inner</td>
<td>Down</td>
<td>0.92</td>
<td>1.01</td>
</tr>
<tr>
<td>0.9 outer/0.05 inner</td>
<td>Up</td>
<td>0.55</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Table Notes:
1. The required direction of heat flow applicable in each of the climate zones specified in Tables 13.2.3a to 13.2.3g.
2. Ventilated roof space means ventilated in accordance with 13.2.3(2).

Table 13.2.3c (explanatory): R-Value added by reflective insulation — flat skillion or pitched roof (≤ 10°) with horizontal ceiling

<table>
<thead>
<tr>
<th>Emittance of added reflective insulation</th>
<th>Direction of heat flow</th>
<th>R-Value added</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 outer/0.05 inner</td>
<td>Down</td>
<td>1.28</td>
</tr>
<tr>
<td>0.2 outer/0.05 inner</td>
<td>Up</td>
<td>0.68</td>
</tr>
<tr>
<td>0.9 outer/0.05 inner</td>
<td>Down</td>
<td>1.06</td>
</tr>
<tr>
<td>0.9 outer/0.05 inner</td>
<td>Up</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Table Notes:
The required direction of heat flow applicable in each of the climate zones specified in Tables 13.2.3a to 13.2.3g.
Table 13.2.3d (explanatory): R-Value added by reflective insulation — pitched roof with cathedral ceilings

<table>
<thead>
<tr>
<th>Emittance of added reflective insulation</th>
<th>Direction of heat flow</th>
<th>R-Value added — pitch ≥ 15° to ≤ 25°</th>
<th>R-Value added — pitch > 25° to ≤ 35°</th>
<th>R-Value added — pitch > 35° to ≤ 45°</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 outer/0.05 inner</td>
<td>Down</td>
<td>0.96</td>
<td>0.86</td>
<td>0.66</td>
</tr>
<tr>
<td>0.2 outer/0.05 inner</td>
<td>Up</td>
<td>0.72</td>
<td>0.74</td>
<td>0.77</td>
</tr>
<tr>
<td>0.9 outer/0.05 inner</td>
<td>Down</td>
<td>0.74</td>
<td>0.64</td>
<td>0.44</td>
</tr>
<tr>
<td>0.9 outer/0.05 inner</td>
<td>Up</td>
<td>0.51</td>
<td>0.51</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Table Notes:
The required direction of heat flow applicable in each of the climate zones specified in Tables 13.2.3a to 13.2.3g.

Explanatory Information: Table 13.2.3h

1. When considering the reduction of insulation because of exhaust fans, flues or recessed downlights, 0.5% of the ceiling area for a 200 m² house would permit 2 bathroom heater-light assemblies, a laundry exhaust fan, a kitchen exhaust fan and either approximately 20 recessed downlights with 50 mm clearance to insulation, 10 recessed downlights with 100 mm clearance to insulation or only 3 recessed downlights with 200 mm clearance to insulation.

2. Note that Table 13.2.3h refers to the R-Value of the insulation located on the ceiling and not the total R-Value required of the roof. The roof has an inherent R-Value and there may also be insulation at the roof line.

3. Note that 13.2.3(6) does not require an increase in ceiling insulation for roof lights.

4. Placing some of the required insulation at the roof level may result in a more practical outcome. Insulation at the roof level is effective in warm climates and significantly moderates the roof space extremes and condensation risk in cold climates. Note that Part 10.8 contains specific provisions for condensation.

13.2.4 Roof lights

[2019: 3.12.1.3]

1. Roof lights (including any associated shaft and diffuser) serving a habitable room or an interconnecting space such as a corridor, hallway, stairway or the like must —
 (a) if the roof lights are not required for compliance with H4D5 or —
 (i) comply with Table 13.2.4; and
 (ii) have an aggregate area of not more than 3% of the total floor area of the storey served; or
 (b) if the roof lights are required for compliance with H4D5 or H4D6—
 (i) have an area not more than 150% of the minimum area required by H4D6; and
 (ii) have transparent and translucent elements, including any imperforate ceiling diffuser with—
 (A) a of not more than 0.29; and
 (B) a of not more than 2.9.

2. For the purposes of Table 13.2.4, the following applies:
 (a) The roof light shaft index is determined by measuring the distance from the centre of the shaft at the roof to the centre of the shaft at the ceiling level and dividing it by the average internal dimension of the shaft opening at the ceiling level (or the diameter for a circular shaft) in the same units of measurement.
 (b) The roof light area index is the total area of roof lights serving the room or space as a percentage of the floor area of the room or space.
 (c) The total area of roof lights is the combined area for all roof lights serving the room or space.
 (d) The area of a roof light is the area of the roof opening that allows light to enter the building.
 (e) The thermal performance of an imperforate ceiling diffuser may be included in the of the roof light.

3. The total area of roof lights serving the room or space as a percentage of the floor area of the room or space must not be more than 5% unless allowed by (1)(b).
Table 13.2.4: Roof lights – thermal performance of transparent and translucent elements

<table>
<thead>
<tr>
<th>Roof light shaft index</th>
<th>Roof light area index ≤ 2%</th>
<th>Roof light area index > 2% to ≤ 3%</th>
<th>Roof light area index > 3% to ≤ 4%</th>
<th>Roof light area index > 4% to ≤ 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.5</td>
<td>≤0.83</td>
<td>≤0.57</td>
<td>≤0.43</td>
<td>≤0.34</td>
</tr>
<tr>
<td></td>
<td>≤8.5</td>
<td>≤5.7</td>
<td>≤4.3</td>
<td>≤3.4</td>
</tr>
<tr>
<td>≥0.5 to <1.0</td>
<td>≤0.83</td>
<td>≤0.72</td>
<td>≤0.54</td>
<td>≤0.43</td>
</tr>
<tr>
<td></td>
<td>≤8.5</td>
<td>≤5.7</td>
<td>≤4.3</td>
<td>≤3.4</td>
</tr>
<tr>
<td>≥1.0 to <2.5</td>
<td>≤0.83</td>
<td>≤0.83</td>
<td>≤0.69</td>
<td>≤0.55</td>
</tr>
<tr>
<td></td>
<td>≤8.5</td>
<td>≤5.7</td>
<td>≤4.3</td>
<td>≤3.4</td>
</tr>
<tr>
<td>≥2.5</td>
<td>≤0.83</td>
<td>≤0.83</td>
<td>≤0.83</td>
<td>≤0.83</td>
</tr>
<tr>
<td></td>
<td>≤8.5</td>
<td>≤5.7</td>
<td>≤4.3</td>
<td>≤3.4</td>
</tr>
</tbody>
</table>

Explanatory Information:
1. The and are expressed as Australian Fenestration Rating Council (AFRC) values.
2. The and are for a roof light with or without a ceiling diffuser. A roof light may achieve the required performance on its own or in conjunction with a ceiling diffuser.
3. The and for some simple types of roof lights are shown in the tables below. Lower U-Value figures represent higher thermal resistance. Lower SHGC figures represent less solar heat transmission. The table gives worst case assessments, which can be improved by obtaining generic or custom product assessments from suppliers, manufacturers, industry associations (including their online resources) and from competent assessors.

Table 13.2.4a (explanatory): Worst case whole roof light element performance values without a ceiling diffuser or with a perforated ceiling diffuser

<table>
<thead>
<tr>
<th>Translucent or transparent element description</th>
<th>Domed panel</th>
<th>Flat, framed panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single layer clear</td>
<td>: 0.80</td>
<td>: 0.79</td>
</tr>
<tr>
<td></td>
<td>: 8.4</td>
<td>: 8.0</td>
</tr>
<tr>
<td>Single tinted</td>
<td>: 0.66</td>
<td>: 0.63</td>
</tr>
<tr>
<td></td>
<td>: 8.4</td>
<td>: 7.9</td>
</tr>
<tr>
<td>Single layer translucent (“opal”)</td>
<td>: 0.57</td>
<td>: 0.56</td>
</tr>
<tr>
<td></td>
<td>: 8.4</td>
<td>: 7.9</td>
</tr>
<tr>
<td>Double layer clear</td>
<td>: 0.71</td>
<td>: 0.70</td>
</tr>
<tr>
<td></td>
<td>: 5.4</td>
<td>: 4.9</td>
</tr>
</tbody>
</table>

Table 13.2.4b (explanatory): Worst case whole roof light element performance values with an imperforate ceiling diffuser

<table>
<thead>
<tr>
<th>Translucent or transparent element description</th>
<th>Domed panel</th>
<th>Flat, framed panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single layer clear</td>
<td>: 0.72</td>
<td>: 0.71</td>
</tr>
<tr>
<td></td>
<td>: 4.3</td>
<td>: 4.2</td>
</tr>
<tr>
<td>Single tinted</td>
<td>: 0.59</td>
<td>: 0.57</td>
</tr>
<tr>
<td></td>
<td>: 4.3</td>
<td>: 4.2</td>
</tr>
<tr>
<td>Single layer translucent (“opal”)</td>
<td>: 0.51</td>
<td>: 0.50</td>
</tr>
<tr>
<td></td>
<td>: 4.3</td>
<td>: 4.2</td>
</tr>
<tr>
<td>Double layer clear</td>
<td>: 0.64</td>
<td>: 0.63</td>
</tr>
</tbody>
</table>
13.2.5 External walls

(1) Each part of an external wall must satisfy the requirements of —
 (a) (2) for all walls; or
 (b) (3) for walls with a surface density greater than or equal to 220 kg/m2, except for—
 (i) opaque non-glazed openings such as doors (including garage doors), vents, penetrations, shutters and the like; and
 (ii) unless covered by (3).

(2) Each part of an external wall must—
 (a) in climate zones 1, 2, 3, 4 and 5—
 (i) achieve a minimum of 2.8; or
 (ii) achieve a minimum of 2.4 and shade the external wall of the storey with a verandah, balcony, eaves, carport or the like, which projects at a minimum angle of 15 degrees in accordance with Figure 13.2.5a; or
 (b) in climate zones 6 and 7, achieve a minimum of 2.8; or
 (c) in climate zone 8, achieve a minimum of 3.8.

(3) Each part of an external wall with a wall surface density of greater than or equal to 220 kg/m2 must—
 (a) in climate zones 1, 2 and 3—
 (i) for a storey, other than one with a storey above, shade the wall with a verandah, balcony, eaves, carport or the like that projects at a minimum angle of 15 degrees in accordance with Figure 13.2.5a; and
 (ii) when the external walls are not shaded in accordance with (i) and there is another storey above, external glazing complies with 13.3.2 with the applicable value for C_{SHGC} in Tables 13.3.2a to 13.3.2c reduced by 20%; and
 (iii) incorporate insulation with an R-Value of greater than or equal to 0.5; and
 (iv) on the lowest storey containing habitable rooms, have either—
 (A) a concrete slab-on-ground floor; or
 (B) masonry internal walls; or
 (b) in climate zone 5 (option a)—
 (i) for a storey, other than one with a storey above, shade the wall with a verandah, balcony, eaves, carport or the like that projects at a minimum angle of 15 degrees in accordance with Figure 13.2.5a; and
 (ii) when the external walls are not shaded in accordance with (i) and there is another storey above, external glazing complies with 13.3.2 with the applicable value for C_{SHGC} in Table 13.3.2e reduced by 15%; and
 (iii) incorporate insulation with an R-Value of greater than or equal to 0.5; and
 (iv) on the lowest storey containing habitable rooms, have either—
 (A) a concrete slab-on-ground floor; or
 (B) masonry internal walls; or
 (c) in climate zone 5 (option b)—
 (i) shade the wall with a verandah, balcony, eaves, carport or the like that projects at a minimum angle of 15 degrees in accordance with Figure 13.2.5a; and
 (ii) have external glazing that complies with 13.3.2 with the applicable value for C_{SHGC} in Table 13.3.2e reduced by 15%; and
 (iii) on the lowest storey containing habitable rooms, have either—

<table>
<thead>
<tr>
<th>Translucent or transparent element description</th>
<th>Domed panel</th>
<th>Flat, framed panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>: 3.4</td>
<td>: 3.2</td>
<td></td>
</tr>
</tbody>
</table>
(A) a concrete slab-on-ground floor; or
(B) masonry internal walls; or

d) in climate zones 4 and 6 (option a)—
 (i) have external glazing that complies with 13.3.2 with the applicable value for C_U in Tables 13.3.2d and 13.3.2f reduced by 15%; and
 (ii) incorporate insulation with an R-Value of greater than or equal to 0.5; and
 (iii) on the lowest storey containing habitable rooms, have either—
 (A) a concrete slab-on-ground floor; or
 (B) masonry internal walls; or

(e) in climate zones 4 and 6 (option b), have external glazing that complies with 13.3.2 with the applicable value for C_U in Tables 13.3.2d and 13.3.2f reduced by 20%; or

(f) in climate zones 4 and 6 (option c)—
 (i) incorporate insulation with an R-Value of greater than or equal to 1.0; and
 (ii) on the lowest storey containing habitable rooms, have either—
 (A) a concrete slab-on-ground floor; or
 (B) masonry internal walls; or

(g) in climate zone 7 (option a)—
 (i) have external glazing that complies with 13.3.2 with the applicable value for C_U in Table 13.3.2g reduced by 15%; and
 (ii) incorporate insulation with an R-Value of greater than or equal to 1.0; or

(h) in climate zone 7 (option b)—
 (i) have external glazing that complies with 13.3.2 with the applicable value for C_U in Table 13.3.2g reduced by 20%; and
 (ii) incorporate insulation with an R-Value of greater than or equal to 0.5; or

(i) in climate zone 7 (option c), incorporate insulation with an R-Value of greater than or equal to 1.5; or

(j) in climate zone 8, achieve a minimum of 3.8.

(4) A wall in (2) that—
 (a) has lightweight external cladding such as weatherboards, fibre-cement or metal sheeting fixed to the metal frame; and
 (b) does not have a wall lining or has a wall lining that is fixed directly to the metal frame (see Figure 13.2.5b and 13.2.5c),

must have a thermal break, consisting of a material with an R-Value greater than or equal to 0.2, installed between the external cladding and the metal frame.

(5) A wall constructed in accordance with Figure 13.2.5b to 13.2.5i is deemed to have the specified in that Figure.
Figure 13.2.5a: Measurement of a projection for wall shading

Figure Notes:
Guttering can be considered as providing shading if attached to a shading projection.
Figure 13.2.5b: Weatherboard external wall construction — Total R-Value of 0.48
Figure 13.2.5c: Fibre-cement sheet external wall construction — Total R-Value of 0.42
Figure 13.2.5d: Clay masonry veneer external wall construction — Total R-Value of 0.56
Figure 13.2.5e: Concrete blockwork masonry external wall construction — Total R-Value of 0.54

Figure 13.2.5f: Cavity clay masonry external wall construction — Total R-Value of 0.69
Figure 13.2.5g: Externally insulated clay masonry (reverse clay masonry veneer) external wall construction — Total R-Value of 0.53

Figure 13.2.5h: Externally insulated concrete masonry external wall construction — Total R-Value of 0.46
Figure 13.2.5i: Autoclaved aerated concrete masonry external wall construction — Total R-Value of 2.42

Explanatory Information:

1. In 13.2.5(1), surface density is the mass on one vertical square metre of wall.
2. In 13.2.5(2), guttering can be considered as providing shading if attached to a shading projection.
3. The thermal performance of metal and timber-framed walls is affected by conductive thermal bridging by the framing members and convective thermal bridging at gaps between the framing and any added bulk insulation. Metal framed walls are more prone to conductive thermal bridging than timber-framed walls.
4. Because of the high thermal conductance of metal, a thermal break is needed when a metal framing member directly connects the external cladding to the internal lining or the internal environment. The purpose of the thermal break is to ensure that the thermal performance of the metal framed wall is comparable to that of a similarly clad timber-framed wall.
5. A thermal break may be provided by materials such as timber battens, plastic strips or polystyrene insulation sheeting. The material used as a thermal break must separate the metal frame from the cladding and achieve the specified R-Value.
6. For the purposes of 13.2.5(4)(b), expanded polystyrene strips greater than or equal to 12 mm thickness and timber greater than or equal to 20 mm thickness are deemed to achieve an R-Value greater than or equal to 0.2.
7. The R-Value of the thermal break is not included when calculating the Total R-Value of the wall, if the thermal break is only applied to the metal frame, because this calculation is done for locations free of framing members.
8. Figures 13.2.5a to 13.2.5i provide examples of typical types of wall construction. The additional R-Value required can be calculated by subtracting the inherent Total R-Value of the typical wall construction in Figures 13.2.5a to 13.2.5i from the required Total R-Value. The inherent Total R-Value of the typical wall construction has been arrived at by adding together the R-Values for outdoor air film, wall cladding or veneer, wall cavity or airspace, internal lining and internal air film. Where a cavity or airspace is filled the Total R-Value should be reduced by 0.17 to take account for the loss of the cavity or airspace.
9. Reflective insulation with one reflective surface having an emittance and direction as indicated, is considered to achieve the following R-Values when used in conjunction with the Total R-Value of a wall construction, as described in Figures 13.2.5a to 13.2.5i. The actual R-Value added by reflective insulation should be determined for each product in accordance with the standard prescribed in 13.2.2(1), which takes into consideration factors such as the...
number of adjacent airspaces, dimensions of the adjacent airspace, whether the airspace is ventilated and the presence of an anti-glare coating.

10. For further information on reflective insulation, refer to the explanatory information following 13.2.2.

11. Walls with a surface density of 220 kg/m2 or more are deemed to achieve acceptable levels of thermal performance in certain climate zones due to their ability to store heat and therefore slow the heat transfer through the building fabric. These walls are defined by surface density (kg/m2), which is the mass of one vertical square metre of wall, in order to reduce the complexity when measuring the mass of walls with voids.

12. The following are examples of some typical wall constructions that achieve a surface density of 220 kg/m2:
 a. Two leaves each of 90 mm thick or greater clay or concrete masonry.
 b. 140 mm thick or greater dense-weight hollow concrete or clay blocks with—
 i. 10 mm plasterboard or render; and
 ii. at least one concrete grouted horizontal bond beam; and
 iii. vertical cores filled with concrete grout at centres not exceeding 1000 mm.
 c. 140 mm thick or greater concrete wall panels and dense-weight hollow concrete or clay blocks with all vertical cores filled with concrete grout.
 d. 190 mm thick or greater dense-weight hollow concrete or clay blocks with—
 i. at least one concrete grouted horizontal bond beam; and
 ii. vertical cores filled with concrete grout at centres not exceeding 1800 mm.
 e. Earth-wall construction with a minimum wall thickness of 200 mm.

<table>
<thead>
<tr>
<th>Wall construction</th>
<th>Reflective airspace details</th>
<th>R-Value added by reflective insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete or masonry with internal plasterboard on battens</td>
<td>One 20 mm reflective airspace located between reflective insulation (of not more than 0.05 emittance inwards) and plasterboard.</td>
<td>0.48</td>
</tr>
<tr>
<td>External wall cladding (70 mm timber frame with internal lining)</td>
<td>One 70 mm reflective airspace located between reflective insulation (of not more than 0.05 emittance inwards) and plasterboard.</td>
<td>0.43</td>
</tr>
<tr>
<td>Masonry veneer (70 mm timber frame with internal lining)</td>
<td>One 70 mm reflective airspace located between reflective insulation and plasterboard; and one 25 mm anti-glare airspace located between reflective insulation (of not more than 0.2 emittance outwards) and masonry.</td>
<td>0.95</td>
</tr>
<tr>
<td>Cavity masonry</td>
<td>No airspace between the reflective insulation and the inner leaf of masonry; and one 35 mm anti-glare airspace located between reflective insulation (of not more than 0.2 emittance outwards) and the outer leaf of masonry.</td>
<td>0.50</td>
</tr>
</tbody>
</table>

13.2.6 Floors

(1) A suspended floor, other than an intermediate floor in a building with more than one storey—
(a) must achieve the specified in Table 13.2.6a; and
(b) with an in-slab or in-screed heating or cooling system, must be insulated—
 (i) around the vertical edge of its perimeter with insulation having an R-Value greater than or equal to 1.0; and
 (ii) underneath the slab with insulation having an R-Value greater than or equal to 2.0 which may include insulation installed to meet the requirements of (a); and
(c) that is enclosed beneath, must have a barrier installed at or below floor level to prevent convection within the wall cavity, from the airspace under the floor.

(2) A floor is deemed to have the specified in Table 13.2.6b and Table 13.2.6a.

(3) A concrete slab-on-ground—
 (a) with an in-slab or in-screed heating or cooling system, must have insulation with an R-Value greater than or equal to 1.0, installed around the vertical edge of its perimeter; and
 (b) when in climate zone 8, must be insulated—
 (i) around the vertical edge of its perimeter with insulation having an R-Value greater than or equal to 1.0; and
 (ii) underneath the slab with insulation having an R-Value greater than or equal to 2.0.

(4) Insulation required by (3)(a) and (3)(b)(i) must—
 (a) be water resistant; and
 (b) be continuous from the adjacent finished ground level—
 (i) to a depth of greater than or equal to 300 mm; or
 (ii) for at least the full depth of the vertical edge of the concrete slab-on-ground (see Figure 13.2.6).

(5) The requirements of (1)(b), and (3)(a) do not apply to an in-screed heating or cooling system used solely in a bathroom, amenity area or the like.

Table 13.2.6a: Suspended floor – minimum Total R-Value

<table>
<thead>
<tr>
<th>Climate zone</th>
<th>Direction of heat flow</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Up</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>Up</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>Up</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>Down</td>
<td>2.25</td>
</tr>
<tr>
<td>5</td>
<td>Down</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>Down</td>
<td>2.25</td>
</tr>
<tr>
<td>7</td>
<td>Down</td>
<td>2.75</td>
</tr>
<tr>
<td>8</td>
<td>Down</td>
<td>3.25</td>
</tr>
</tbody>
</table>

Table Notes:
For an enclosed perimeter treatment, the underfloor airspace and its enclosure may be included in the calculation.

Table 13.2.6b: Total R-Value for typical suspended timber floor

<table>
<thead>
<tr>
<th>Enclosure and height of floor and direction of heat flow</th>
<th>: Cavity masonry</th>
<th>: 190 mm concrete masonry</th>
<th>: Single skin masonry</th>
<th>: 9 mm fibre-cement sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosed ≤0.6 m high with an upwards heat flow</td>
<td>1.00</td>
<td>0.93</td>
<td>0.88</td>
<td>0.77</td>
</tr>
<tr>
<td>Enclosed ≤0.6 m high with a downwards heat flow</td>
<td>1.11</td>
<td>1.06</td>
<td>1.01</td>
<td>0.90</td>
</tr>
<tr>
<td>Enclosed >0.6 m but</td>
<td>0.86</td>
<td>0.81</td>
<td>0.76</td>
<td>0.65</td>
</tr>
<tr>
<td>Enclosure and height of floor and direction of heat flow</td>
<td>: Cavity masonry</td>
<td>: 190 mm concrete masonry</td>
<td>: Single skin masonry</td>
<td>: 9 mm fibre-cement sheet</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Enclosed >0.6 m but to ≤1.2 m high with a downwards heat flow</td>
<td>1.00</td>
<td>0.94</td>
<td>0.89</td>
<td>0.77</td>
</tr>
<tr>
<td>Enclosed >1.2 m to ≤2.4 m high with an upwards heat flow</td>
<td>0.76</td>
<td>0.72</td>
<td>0.67</td>
<td>0.57</td>
</tr>
<tr>
<td>Enclosed >1.2 m to ≤2.4 m high with a downwards heat flow</td>
<td>0.89</td>
<td>0.84</td>
<td>0.79</td>
<td>0.69</td>
</tr>
<tr>
<td>Unenclosed with an upwards heat flow</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>Unenclosed with a downwards heat flow</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Table Notes:
1. The height of the floor is measured from ground surface to the underside of the floor or the insulation.
2. For the purposes of calculating the R-Value of a floor, the R-Value attributable to an in-slab or in-screed heating or cooling system is ignored.

<table>
<thead>
<tr>
<th>Enclosure and height of floor and direction of heat flow</th>
<th>: Cavity masonry</th>
<th>: 190 mm concrete masonry</th>
<th>: Single skin masonry</th>
<th>: 9 mm fibre-cement sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosed ≤0.6 m high with an upwards heat flow</td>
<td>0.93</td>
<td>0.88</td>
<td>0.83</td>
<td>0.72</td>
</tr>
<tr>
<td>Enclosed ≤0.6 m high with a downwards heat flow</td>
<td>1.06</td>
<td>1.01</td>
<td>0.96</td>
<td>0.85</td>
</tr>
<tr>
<td>Enclosed >0.6 m but to ≤1.2 m high with an upwards heat flow</td>
<td>0.81</td>
<td>0.76</td>
<td>0.71</td>
<td>0.60</td>
</tr>
<tr>
<td>Enclosed >0.6 m but to ≤1.2 m high with a downwards heat flow</td>
<td>0.94</td>
<td>0.89</td>
<td>0.84</td>
<td>0.72</td>
</tr>
<tr>
<td>Enclosed >1.2 m to ≤2.4 m high with an upwards heat flow</td>
<td>0.71</td>
<td>0.67</td>
<td>0.62</td>
<td>0.52</td>
</tr>
<tr>
<td>Enclosed >1.2 m to ≤2.4 m high with a downwards heat flow</td>
<td>0.84</td>
<td>0.79</td>
<td>0.74</td>
<td>0.64</td>
</tr>
<tr>
<td>Unenclosed with an upwards heat flow</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>Unenclosed with a downwards heat flow</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Table Notes:
1. The height of the floor is measured from ground surface to the underside of the floor or the insulation.
2. For the purposes of calculating the R-Value of a floor, the R-Value attributable to an in-slab or in-screed heating or cooling system is ignored.
Figure 13.2.6: Insulation of slab edge

Explanatory Information:
1. An enclosed perimeter treatment means that the airspace under the floor is enclosed between ground and floor level by walls which have only the required subfloor vents.
2. The barrier required by 13.2.6(1)(c) could be an imperforate flashing.
3. Specific solutions for concrete slab and timber floors can be found in documents and online resources prepared by industry associations and product suppliers.
4. Tables 13.2.6b and 13.2.6c provide examples of the inherent Total R-Values of enclosed and unenclosed suspended floors of two typical types of construction. Any added R-Value can be calculated by subtracting the inherent R-Value of the typical construction in Tables 13.2.6b and 13.2.6c from the required Total R-Value in Table 13.2.6a.
5. Any non-reflective building membrane fixed between or under floor joists is considered to add an R-Value of 0.2 to the Total R-Value of the base construction described in Tables 13.2.6b and 13.2.6c. Reflective insulation will achieve a higher value which will need to be determined for each product in accordance with relevant standards. Typically, a reflective building membrane attached beneath the floor joists of an unenclosed floor, with a single bright side facing upwards to a 90 mm airspace, can add an R-Value of 0.43 for heat flow upwards and 1.32 for heat flow downwards. Double sided reflective insulation with a 90 mm airspace installed under an enclosed floor can add an R-Value of 0.55 for heat flow upwards and 1.97 for heat flow downwards. Both examples allow for dust on the upper surface.
6. A reflective or non-reflective building membrane should be installed with due consideration of potentially damaging condensation in some climate zones and associated interaction with adjoining building materials.
7. For further information on reflective insulation, refer to the explanatory information accompanying Figures 13.2.3a to 13.2.3d.
8. 13.2.6(5) provides an exemption for an in-screed heating or cooling system used solely in bathrooms, amenity areas and the like, as these are typically small areas.
9. Care should be taken to ensure that the type of termite management system selected is compatible with the slab edge insulation.
13.2.7 Attached Class 10a buildings

A Class 10a building attached to a Class 1 building must—

(a) have an external fabric that achieves the *required* level of thermal performance for a Class 1 building; or

(b) be separated from the Class 1 building with construction having the *required* level of thermal performance for the Class 1 building; or

(c) in *climate zone* 5—

(i) be enclosed with masonry walls other than where there are doors and *glazing*; and

(ii) be separated from the Class 1 building with a masonry wall that extends to the ceiling or roof; and

(iii) achieve a *Total R-Value* in the roof equivalent to that *required* by Tables 13.2.3a to 13.3.2h as appropriate for the Class 1 building; and

(iv) not have a garage door facing the east or west orientation other than if the Class 1 building complies with 13.3.2 with the applicable value for C_{SHGC} in Tables 13.3.2a to 13.3.2h as appropriate reduced by 15%.

Explanatory Information:
The attachment of a Class 10a building, such as a garage, glasshouse, solarium, pool enclosure or the like should not compromise the thermal performance of the Class 1 building. In addition, the Class 10a building may be绝缘 and so assist the Class 1 building achieve the *required* thermal performance.

Explanatory Figure 13.2.7 below depicts examples of a Class 1 building with an attached Class 10a garage.
Figure 13.2.7 (explanatory): Attached Class 10a building examples

In (a), the thermal performance \textit{required} for the Class 1 building may be achieved by including the walls and floor of the Class 1 building that adjoin the Class 10a garage.

In (b), the thermal performance \textit{required} for the Class 1 building may be achieved by including the outside walls and floor of the Class 10a garage.

In (c), in climate zone 5, the thermal performance of the Class 1 building may be achieved by ensuring that the roof of the Class 10a building satisfies Tables 13.2.3a to 13.2.3h and the walls are of masonry construction.
Part 13.3 External glazing

13.3.1 Application of Part 13.3

[2019: 3.12.2]

(1) This Part applies to—

 (a) a Class 1 building; and

 (b) a Class 10a building with a conditioned space.

(2) Part 13.3 must be applied as directed in H6D2(1)(a) or (b).

13.3.2 External glazing

[2019: 3.12.2.1]

(1) The aggregate conductance of the in each storey, including any mezzanine, of a building must—

 (a) not exceed the allowances resulting from—

 (i) in climate zone 1, multiplying the area of the storey, including any mezzanine, measured within the enclosing walls, by the constant C_U obtained from Table 13.3.2a; and

 (ii) in climate zones 2 to 8, using the constant C_U obtained from Tables 13.3.2b to 13.3.2h, as appropriate; and

 (b) be calculated in accordance with the following calculation—

 (i) in climate zone 1: $(A_1 \times U_1) + (A_2 \times U_2) + (A_3 + U_3) + \ldots$, where—

 (A) A_1, A_2, \ldots = the area of each element; and

 (B) U_1, U_2, \ldots = the Total System U-Value of each element; and

 (ii) in climate zones 2 to 8: $[(A_1 + U_1) + (A_2 + U_2) + \ldots]/[(A_1 \times SHGC_1 \times EW_1) + (A_2 \times SHGC_2 \times EW_2) + \ldots]$, where—

 (A) A_1, A_2, \ldots = the area of each element; and

 (B) U_1, U_2, \ldots = the Total System U-Value of each element; and

 (C) $SHGC_1, SHGC_2, \ldots$ = the for each glazing element; and

 (D) EW_1, EW_2, \ldots = the winter exposure factor for each glazing element obtained from Tables 13.3.2i to 13.3.2o.

(2) The aggregate solar heat gain of the in each storey, including any mezzanine, of a building must—

 (a) not exceed the allowances resulting from multiplying the area of the storey, including any mezzanine, measured within the enclosing walls, by the constant C_{SHGC} obtained from Tables 13.3.2a to 13.3.2h, as appropriate; and

 (b) be calculated in accordance with the following calculation: $(A_1 \times SHGC_1 \times ES_1) + (A_2 \times SHGC_2 \times ES_2) + \ldots$, where—

 (i) A_1, A_2, \ldots = the area of each element; and

 (ii) $SHGC_1, SHGC_2, \ldots$ = the for each glazing element; and

 (iii) ES_1, ES_2, \ldots = the summer exposure factor for each glazing element obtained from Tables 13.3.2p to 13.3.2w.

(3) For the purposes of Tables 13.3.2a to 13.3.2h, the following applies:

 (a) A storey has Standard air movement if all habitable rooms comply with.
(b) A storey has High air movement if the total ventilation opening area serving the habitable room is—
 (i) in climate zones 1, 2, 3, 4 and 5, not less than that for Standard air movement without a ceiling fan or evaporative cooler, but with ceiling fans complying with 13.5.4 installed in all habitable rooms; or
 (ii) greater than or equal to twice that for Standard air movement without a ceiling fan or evaporative cooler.

(c) Where the ventilation opening area serving the habitable rooms is between Standard and High, interpolation may be used to determine the applicable CSHGC.

(d) Where the floor construction of a storey, including a mezzanine, is partly in direct contact with the ground and partly suspended, the constants for conductance and solar heat gain are to be—
 (i) interpolated between the constants for the two constructions in proportion to their respective areas; or
 (ii) those for a suspended floor.

(4) For the purposes of this clause—
 (a) summer and winter exposure for each climate zone must be determined in accordance with Tables 13.3.2i to 13.3.2w; and
 (b) orientation sectors are as shown in Figure 13.3.2a; and
 (c) p and h are to be measured using the method shown in Figure 13.3.2b.

Table 13.3.2a: Constants for conductance and solar heat gain—climate zone 1

<table>
<thead>
<tr>
<th>Floor construction</th>
<th>Air movement (refer 13.3.2(3))</th>
<th>Constant C_U</th>
<th>Constant C_{SHGC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor in direct contact with the ground</td>
<td>Standard</td>
<td>1.650</td>
<td>0.063</td>
</tr>
<tr>
<td>Floor in direct contact with the ground</td>
<td>High</td>
<td>1.650</td>
<td>0.069</td>
</tr>
<tr>
<td>Suspended floor</td>
<td>Standard</td>
<td>1.485</td>
<td>0.057</td>
</tr>
<tr>
<td>Suspended floor</td>
<td>High</td>
<td>1.485</td>
<td>0.063</td>
</tr>
</tbody>
</table>

Table 13.3.2b: Constants for conductance and solar heat gain—climate zone 2

<table>
<thead>
<tr>
<th>Floor construction</th>
<th>Air movement (refer 13.3.2(3))</th>
<th>Constant C_U</th>
<th>Constant C_{SHGC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor in direct contact with the ground</td>
<td>Standard</td>
<td>18.387</td>
<td>0.074</td>
</tr>
<tr>
<td>Floor in direct contact with the ground</td>
<td>High</td>
<td>18.387</td>
<td>0.081</td>
</tr>
<tr>
<td>Suspended floor</td>
<td>Standard</td>
<td>16.548</td>
<td>0.067</td>
</tr>
<tr>
<td>Suspended floor</td>
<td>High</td>
<td>16.548</td>
<td>0.074</td>
</tr>
</tbody>
</table>

Table 13.3.2c: Constants for conductance and solar heat gain—climate zone 3

<table>
<thead>
<tr>
<th>Floor construction</th>
<th>Air movement (refer 13.3.2(3))</th>
<th>Constant C_U</th>
<th>Constant C_{SHGC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor in direct contact with the ground</td>
<td>Standard</td>
<td>14.641</td>
<td>0.062</td>
</tr>
<tr>
<td>Floor in direct contact with the ground</td>
<td>High</td>
<td>14.641</td>
<td>0.068</td>
</tr>
<tr>
<td>Suspended floor</td>
<td>Standard</td>
<td>13.177</td>
<td>0.056</td>
</tr>
<tr>
<td>Suspended floor</td>
<td>High</td>
<td>13.177</td>
<td>0.062</td>
</tr>
</tbody>
</table>
Table 13.3.2d: Constants for conductance and solar heat gain—climate zone 4

<table>
<thead>
<tr>
<th>Floor construction</th>
<th>Air movement (refer to 13.3.2c)</th>
<th>Constant C_U</th>
<th>Constant C_{SHGC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor in direct contact with the ground</td>
<td>Standard</td>
<td>7.929</td>
<td>0.097</td>
</tr>
<tr>
<td>Floor in direct contact with the ground</td>
<td>High</td>
<td>7.929</td>
<td>0.107</td>
</tr>
<tr>
<td>Suspended floor</td>
<td>Standard</td>
<td>7.136</td>
<td>0.087</td>
</tr>
<tr>
<td>Suspended floor</td>
<td>High</td>
<td>7.136</td>
<td>0.096</td>
</tr>
</tbody>
</table>

Table 13.3.2e: Constants for conductance and solar heat gain—climate zone 5

<table>
<thead>
<tr>
<th>Floor construction</th>
<th>Air movement (refer to 13.3.2d)</th>
<th>Constant C_U</th>
<th>Constant C_{SHGC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor in direct contact with the ground</td>
<td>Standard</td>
<td>13.464</td>
<td>0.122</td>
</tr>
<tr>
<td>Floor in direct contact with the ground</td>
<td>High</td>
<td>13.464</td>
<td>0.134</td>
</tr>
<tr>
<td>Suspended floor</td>
<td>Standard</td>
<td>12.118</td>
<td>0.110</td>
</tr>
<tr>
<td>Suspended floor</td>
<td>High</td>
<td>12.118</td>
<td>0.121</td>
</tr>
</tbody>
</table>

Table 13.3.2f: Constants for conductance and solar heat gain—climate zone 6

<table>
<thead>
<tr>
<th>Floor construction</th>
<th>Air movement (refer to 13.3.2e)</th>
<th>Constant C_U</th>
<th>Constant C_{SHGC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor in direct contact with the ground</td>
<td>Standard</td>
<td>6.418</td>
<td>0.153</td>
</tr>
<tr>
<td>Floor in direct contact with the ground</td>
<td>High</td>
<td>6.418</td>
<td>0.168</td>
</tr>
<tr>
<td>Suspended floor</td>
<td>Standard</td>
<td>5.776</td>
<td>0.138</td>
</tr>
<tr>
<td>Suspended floor</td>
<td>High</td>
<td>5.776</td>
<td>0.152</td>
</tr>
</tbody>
</table>

Table 13.3.2g: Constants for conductance and solar heat gain—climate zone 7

<table>
<thead>
<tr>
<th>Floor construction</th>
<th>Air movement (refer to 13.3.2f)</th>
<th>Constant C_U</th>
<th>Constant C_{SHGC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor in direct contact with the ground</td>
<td>Standard</td>
<td>5.486</td>
<td>0.189</td>
</tr>
<tr>
<td>Floor in direct contact with the ground</td>
<td>High</td>
<td>5.486</td>
<td>0.208</td>
</tr>
<tr>
<td>Suspended floor</td>
<td>Standard</td>
<td>4.937</td>
<td>0.170</td>
</tr>
<tr>
<td>Suspended floor</td>
<td>High</td>
<td>4.937</td>
<td>0.187</td>
</tr>
</tbody>
</table>

Table 13.3.2h: Constants for conductance and solar heat gain—climate zone 8

<table>
<thead>
<tr>
<th>Floor construction</th>
<th>Air movement (refer to 13.3.2g)</th>
<th>Constant C_U</th>
<th>Constant C_{SHGC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor in direct contact with the ground</td>
<td>Standard</td>
<td>3.987</td>
<td>0.234</td>
</tr>
<tr>
<td>Floor in direct contact with the ground</td>
<td>High</td>
<td>3.987</td>
<td>0.257</td>
</tr>
</tbody>
</table>
Energy efficiency

Table 13.3.2i: Orientation Sector winter exposure factor (E_w) for climate zone 2

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.86</td>
<td>1.44</td>
<td>0.86</td>
<td>0.40</td>
<td>0.37</td>
<td>0.41</td>
<td>0.91</td>
<td>1.48</td>
</tr>
<tr>
<td>0.05</td>
<td>1.80</td>
<td>1.37</td>
<td>0.80</td>
<td>0.34</td>
<td>0.31</td>
<td>0.36</td>
<td>0.84</td>
<td>1.42</td>
</tr>
<tr>
<td>0.10</td>
<td>1.73</td>
<td>1.33</td>
<td>0.76</td>
<td>0.32</td>
<td>0.29</td>
<td>0.34</td>
<td>0.81</td>
<td>1.34</td>
</tr>
<tr>
<td>0.20</td>
<td>1.51</td>
<td>1.18</td>
<td>0.68</td>
<td>0.29</td>
<td>0.27</td>
<td>0.30</td>
<td>0.73</td>
<td>1.20</td>
</tr>
<tr>
<td>0.40</td>
<td>1.25</td>
<td>0.95</td>
<td>0.54</td>
<td>0.24</td>
<td>0.23</td>
<td>0.25</td>
<td>0.61</td>
<td>0.99</td>
</tr>
<tr>
<td>0.60</td>
<td>1.04</td>
<td>0.78</td>
<td>0.48</td>
<td>0.21</td>
<td>0.20</td>
<td>0.22</td>
<td>0.51</td>
<td>0.83</td>
</tr>
<tr>
<td>0.80</td>
<td>0.78</td>
<td>0.62</td>
<td>0.39</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.44</td>
<td>0.68</td>
</tr>
<tr>
<td>1.00</td>
<td>0.54</td>
<td>0.53</td>
<td>0.32</td>
<td>0.17</td>
<td>0.18</td>
<td>0.17</td>
<td>0.37</td>
<td>0.56</td>
</tr>
<tr>
<td>1.20</td>
<td>0.33</td>
<td>0.42</td>
<td>0.28</td>
<td>0.15</td>
<td>0.17</td>
<td>0.16</td>
<td>0.35</td>
<td>0.46</td>
</tr>
<tr>
<td>1.40</td>
<td>0.28</td>
<td>0.36</td>
<td>0.23</td>
<td>0.14</td>
<td>0.16</td>
<td>0.15</td>
<td>0.31</td>
<td>0.38</td>
</tr>
<tr>
<td>1.60</td>
<td>0.22</td>
<td>0.29</td>
<td>0.22</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.26</td>
<td>0.34</td>
</tr>
<tr>
<td>1.80</td>
<td>0.19</td>
<td>0.25</td>
<td>0.19</td>
<td>0.13</td>
<td>0.14</td>
<td>0.13</td>
<td>0.23</td>
<td>0.28</td>
</tr>
<tr>
<td>2.00</td>
<td>0.15</td>
<td>0.19</td>
<td>0.17</td>
<td>0.12</td>
<td>0.14</td>
<td>0.13</td>
<td>0.22</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Table 13.3.2j: Orientation Sector winter exposure factor (E_w) for climate zone 3

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.92</td>
<td>1.49</td>
<td>0.88</td>
<td>0.32</td>
<td>0.25</td>
<td>0.33</td>
<td>0.95</td>
<td>1.56</td>
</tr>
<tr>
<td>0.05</td>
<td>1.90</td>
<td>1.44</td>
<td>0.82</td>
<td>0.28</td>
<td>0.22</td>
<td>0.29</td>
<td>0.91</td>
<td>1.52</td>
</tr>
<tr>
<td>0.10</td>
<td>1.76</td>
<td>1.37</td>
<td>0.87</td>
<td>0.27</td>
<td>0.21</td>
<td>0.28</td>
<td>0.87</td>
<td>1.44</td>
</tr>
<tr>
<td>0.20</td>
<td>1.57</td>
<td>1.22</td>
<td>0.70</td>
<td>0.24</td>
<td>0.20</td>
<td>0.25</td>
<td>0.78</td>
<td>1.30</td>
</tr>
<tr>
<td>0.40</td>
<td>1.25</td>
<td>1.00</td>
<td>0.60</td>
<td>0.20</td>
<td>0.18</td>
<td>0.21</td>
<td>0.67</td>
<td>1.08</td>
</tr>
<tr>
<td>0.60</td>
<td>0.94</td>
<td>0.77</td>
<td>0.48</td>
<td>0.18</td>
<td>0.17</td>
<td>0.18</td>
<td>0.54</td>
<td>0.87</td>
</tr>
<tr>
<td>0.80</td>
<td>0.63</td>
<td>0.61</td>
<td>0.43</td>
<td>0.16</td>
<td>0.15</td>
<td>0.17</td>
<td>0.46</td>
<td>0.70</td>
</tr>
<tr>
<td>1.00</td>
<td>0.42</td>
<td>0.52</td>
<td>0.35</td>
<td>0.14</td>
<td>0.14</td>
<td>0.16</td>
<td>0.41</td>
<td>0.56</td>
</tr>
<tr>
<td>1.20</td>
<td>0.29</td>
<td>0.40</td>
<td>0.31</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.34</td>
<td>0.48</td>
</tr>
<tr>
<td>1.40</td>
<td>0.23</td>
<td>0.36</td>
<td>0.25</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
<td>0.30</td>
<td>0.41</td>
</tr>
<tr>
<td>1.60</td>
<td>0.17</td>
<td>0.31</td>
<td>0.24</td>
<td>0.11</td>
<td>0.12</td>
<td>0.12</td>
<td>0.29</td>
<td>0.34</td>
</tr>
<tr>
<td>1.80</td>
<td>0.15</td>
<td>0.22</td>
<td>0.19</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
<td>0.24</td>
<td>0.31</td>
</tr>
<tr>
<td>2.00</td>
<td>0.13</td>
<td>0.22</td>
<td>0.18</td>
<td>0.10</td>
<td>0.12</td>
<td>0.11</td>
<td>0.22</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Table 13.3.2k:
Orientation Sector winter exposure factor (E_W) for climate zone 4

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.97</td>
<td>1.51</td>
<td>0.83</td>
<td>0.39</td>
<td>0.35</td>
<td>0.39</td>
<td>0.85</td>
<td>1.53</td>
</tr>
<tr>
<td>0.05</td>
<td>1.93</td>
<td>1.45</td>
<td>0.76</td>
<td>0.33</td>
<td>0.29</td>
<td>0.33</td>
<td>0.79</td>
<td>1.47</td>
</tr>
<tr>
<td>0.10</td>
<td>1.91</td>
<td>1.40</td>
<td>0.74</td>
<td>0.31</td>
<td>0.28</td>
<td>0.31</td>
<td>0.75</td>
<td>1.42</td>
</tr>
<tr>
<td>0.20</td>
<td>1.62</td>
<td>1.28</td>
<td>0.67</td>
<td>0.28</td>
<td>0.25</td>
<td>0.28</td>
<td>0.68</td>
<td>1.28</td>
</tr>
<tr>
<td>0.40</td>
<td>1.48</td>
<td>1.09</td>
<td>0.56</td>
<td>0.24</td>
<td>0.22</td>
<td>0.24</td>
<td>0.58</td>
<td>1.10</td>
</tr>
<tr>
<td>0.60</td>
<td>1.22</td>
<td>0.90</td>
<td>0.49</td>
<td>0.21</td>
<td>0.19</td>
<td>0.21</td>
<td>0.49</td>
<td>0.90</td>
</tr>
<tr>
<td>0.80</td>
<td>1.06</td>
<td>0.74</td>
<td>0.43</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.44</td>
<td>0.75</td>
</tr>
<tr>
<td>1.00</td>
<td>0.85</td>
<td>0.66</td>
<td>0.37</td>
<td>0.17</td>
<td>0.16</td>
<td>0.17</td>
<td>0.37</td>
<td>0.64</td>
</tr>
<tr>
<td>1.20</td>
<td>0.61</td>
<td>0.51</td>
<td>0.33</td>
<td>0.15</td>
<td>0.16</td>
<td>0.16</td>
<td>0.34</td>
<td>0.56</td>
</tr>
<tr>
<td>1.40</td>
<td>0.47</td>
<td>0.47</td>
<td>0.30</td>
<td>0.14</td>
<td>0.15</td>
<td>0.15</td>
<td>0.30</td>
<td>0.47</td>
</tr>
<tr>
<td>1.60</td>
<td>0.34</td>
<td>0.41</td>
<td>0.28</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.26</td>
<td>0.41</td>
</tr>
<tr>
<td>1.80</td>
<td>0.26</td>
<td>0.35</td>
<td>0.25</td>
<td>0.13</td>
<td>0.14</td>
<td>0.13</td>
<td>0.24</td>
<td>0.35</td>
</tr>
<tr>
<td>2.00</td>
<td>0.24</td>
<td>0.32</td>
<td>0.22</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td>0.22</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Table 13.3.2l:
Orientation Sector winter exposure factor (E_W) for climate zone 5

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>2.01</td>
<td>1.48</td>
<td>0.77</td>
<td>0.39</td>
<td>0.37</td>
<td>0.39</td>
<td>0.85</td>
<td>1.58</td>
</tr>
<tr>
<td>0.05</td>
<td>1.95</td>
<td>1.42</td>
<td>0.70</td>
<td>0.33</td>
<td>0.31</td>
<td>0.33</td>
<td>0.78</td>
<td>1.51</td>
</tr>
<tr>
<td>0.10</td>
<td>1.95</td>
<td>1.36</td>
<td>0.66</td>
<td>0.31</td>
<td>0.30</td>
<td>0.32</td>
<td>0.75</td>
<td>1.47</td>
</tr>
<tr>
<td>0.20</td>
<td>1.63</td>
<td>1.21</td>
<td>0.59</td>
<td>0.28</td>
<td>0.27</td>
<td>0.28</td>
<td>0.67</td>
<td>1.32</td>
</tr>
<tr>
<td>0.40</td>
<td>1.49</td>
<td>1.00</td>
<td>0.49</td>
<td>0.24</td>
<td>0.23</td>
<td>0.24</td>
<td>0.55</td>
<td>1.10</td>
</tr>
<tr>
<td>0.60</td>
<td>1.21</td>
<td>0.83</td>
<td>0.40</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.47</td>
<td>0.90</td>
</tr>
<tr>
<td>0.80</td>
<td>0.98</td>
<td>0.68</td>
<td>0.35</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.42</td>
<td>0.73</td>
</tr>
<tr>
<td>1.00</td>
<td>0.80</td>
<td>0.52</td>
<td>0.28</td>
<td>0.17</td>
<td>0.18</td>
<td>0.17</td>
<td>0.36</td>
<td>0.63</td>
</tr>
<tr>
<td>1.20</td>
<td>0.54</td>
<td>0.46</td>
<td>0.25</td>
<td>0.16</td>
<td>0.17</td>
<td>0.16</td>
<td>0.29</td>
<td>0.50</td>
</tr>
<tr>
<td>1.40</td>
<td>0.40</td>
<td>0.34</td>
<td>0.21</td>
<td>0.15</td>
<td>0.16</td>
<td>0.15</td>
<td>0.28</td>
<td>0.43</td>
</tr>
<tr>
<td>1.60</td>
<td>0.28</td>
<td>0.30</td>
<td>0.19</td>
<td>0.14</td>
<td>0.14</td>
<td>0.13</td>
<td>0.23</td>
<td>0.36</td>
</tr>
<tr>
<td>1.80</td>
<td>0.22</td>
<td>0.25</td>
<td>0.16</td>
<td>0.13</td>
<td>0.14</td>
<td>0.13</td>
<td>0.20</td>
<td>0.32</td>
</tr>
<tr>
<td>2.00</td>
<td>0.18</td>
<td>0.19</td>
<td>0.15</td>
<td>0.12</td>
<td>0.14</td>
<td>0.12</td>
<td>0.19</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Table 13.3.2m:
Orientation Sector winter exposure factor (E_W) for climate zone 6

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.90</td>
<td>1.43</td>
<td>0.80</td>
<td>0.45</td>
<td>0.43</td>
<td>0.45</td>
<td>0.88</td>
<td>1.53</td>
</tr>
<tr>
<td>0.05</td>
<td>1.84</td>
<td>1.35</td>
<td>0.73</td>
<td>0.38</td>
<td>0.36</td>
<td>0.38</td>
<td>0.81</td>
<td>1.45</td>
</tr>
<tr>
<td>0.10</td>
<td>1.82</td>
<td>1.30</td>
<td>0.70</td>
<td>0.36</td>
<td>0.34</td>
<td>0.36</td>
<td>0.76</td>
<td>1.42</td>
</tr>
<tr>
<td>0.20</td>
<td>1.56</td>
<td>1.17</td>
<td>0.62</td>
<td>0.32</td>
<td>0.30</td>
<td>0.32</td>
<td>0.70</td>
<td>1.30</td>
</tr>
</tbody>
</table>
Table 13.3.2n: Orientation Sector winter exposure factor (\(E_W\)) for climate zone 7

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40</td>
<td>1.43</td>
<td>1.03</td>
<td>0.53</td>
<td>0.27</td>
<td>0.26</td>
<td>0.27</td>
<td>0.60</td>
<td>1.10</td>
</tr>
<tr>
<td>0.60</td>
<td>1.22</td>
<td>0.86</td>
<td>0.45</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.52</td>
<td>0.95</td>
</tr>
<tr>
<td>0.80</td>
<td>1.08</td>
<td>0.73</td>
<td>0.38</td>
<td>0.21</td>
<td>0.21</td>
<td>0.22</td>
<td>0.46</td>
<td>0.79</td>
</tr>
<tr>
<td>1.00</td>
<td>0.86</td>
<td>0.58</td>
<td>0.34</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.39</td>
<td>0.69</td>
</tr>
<tr>
<td>1.20</td>
<td>0.70</td>
<td>0.54</td>
<td>0.29</td>
<td>0.18</td>
<td>0.17</td>
<td>0.18</td>
<td>0.36</td>
<td>0.58</td>
</tr>
<tr>
<td>1.40</td>
<td>0.53</td>
<td>0.41</td>
<td>0.26</td>
<td>0.16</td>
<td>0.17</td>
<td>0.17</td>
<td>0.32</td>
<td>0.52</td>
</tr>
<tr>
<td>1.60</td>
<td>0.44</td>
<td>0.37</td>
<td>0.22</td>
<td>0.15</td>
<td>0.16</td>
<td>0.15</td>
<td>0.28</td>
<td>0.44</td>
</tr>
<tr>
<td>1.80</td>
<td>0.32</td>
<td>0.30</td>
<td>0.21</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.27</td>
<td>0.40</td>
</tr>
<tr>
<td>2.00</td>
<td>0.25</td>
<td>0.27</td>
<td>0.20</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.24</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Table 13.3.2o: Orientation Sector winter exposure factor (\(E_W\)) for climate zone 8

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>2.08</td>
<td>1.63</td>
<td>0.83</td>
<td>0.38</td>
<td>0.35</td>
<td>0.38</td>
<td>0.75</td>
<td>1.50</td>
</tr>
<tr>
<td>0.05</td>
<td>2.01</td>
<td>1.56</td>
<td>0.77</td>
<td>0.32</td>
<td>0.29</td>
<td>0.32</td>
<td>0.69</td>
<td>1.44</td>
</tr>
<tr>
<td>0.10</td>
<td>2.01</td>
<td>1.53</td>
<td>0.73</td>
<td>0.30</td>
<td>0.28</td>
<td>0.30</td>
<td>0.66</td>
<td>1.41</td>
</tr>
<tr>
<td>0.20</td>
<td>1.89</td>
<td>1.43</td>
<td>0.68</td>
<td>0.27</td>
<td>0.25</td>
<td>0.27</td>
<td>0.60</td>
<td>1.28</td>
</tr>
<tr>
<td>0.40</td>
<td>1.62</td>
<td>1.24</td>
<td>0.58</td>
<td>0.23</td>
<td>0.21</td>
<td>0.23</td>
<td>0.50</td>
<td>1.13</td>
</tr>
<tr>
<td>0.60</td>
<td>1.49</td>
<td>1.09</td>
<td>0.50</td>
<td>0.20</td>
<td>0.19</td>
<td>0.20</td>
<td>0.44</td>
<td>0.96</td>
</tr>
<tr>
<td>0.80</td>
<td>1.27</td>
<td>0.94</td>
<td>0.44</td>
<td>0.18</td>
<td>0.17</td>
<td>0.18</td>
<td>0.39</td>
<td>0.83</td>
</tr>
<tr>
<td>1.00</td>
<td>1.16</td>
<td>0.83</td>
<td>0.41</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.34</td>
<td>0.71</td>
</tr>
<tr>
<td>1.20</td>
<td>0.91</td>
<td>0.70</td>
<td>0.34</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.30</td>
<td>0.63</td>
</tr>
<tr>
<td>1.40</td>
<td>0.83</td>
<td>0.68</td>
<td>0.33</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.27</td>
<td>0.48</td>
</tr>
<tr>
<td>1.60</td>
<td>0.64</td>
<td>0.49</td>
<td>0.30</td>
<td>0.13</td>
<td>0.13</td>
<td>0.12</td>
<td>0.25</td>
<td>0.45</td>
</tr>
<tr>
<td>1.80</td>
<td>0.52</td>
<td>0.47</td>
<td>0.24</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td>0.23</td>
<td>0.39</td>
</tr>
<tr>
<td>2.00</td>
<td>0.39</td>
<td>0.39</td>
<td>0.24</td>
<td>0.11</td>
<td>0.12</td>
<td>0.12</td>
<td>0.20</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table 13.3.2o: Orientation Sector winter exposure factor (\(E_W\)) for climate zone 8

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.93</td>
<td>1.48</td>
<td>0.81</td>
<td>0.47</td>
<td>0.45</td>
<td>0.47</td>
<td>0.81</td>
<td>1.46</td>
</tr>
<tr>
<td>0.05</td>
<td>1.87</td>
<td>1.41</td>
<td>0.73</td>
<td>0.39</td>
<td>0.38</td>
<td>0.39</td>
<td>0.73</td>
<td>1.39</td>
</tr>
<tr>
<td>0.10</td>
<td>1.85</td>
<td>1.36</td>
<td>0.70</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.70</td>
<td>1.34</td>
</tr>
<tr>
<td>0.20</td>
<td>1.56</td>
<td>1.22</td>
<td>0.63</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.63</td>
<td>1.20</td>
</tr>
<tr>
<td>0.40</td>
<td>1.41</td>
<td>1.02</td>
<td>0.51</td>
<td>0.28</td>
<td>0.27</td>
<td>0.28</td>
<td>0.51</td>
<td>0.99</td>
</tr>
<tr>
<td>0.60</td>
<td>1.18</td>
<td>0.83</td>
<td>0.44</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.44</td>
<td>0.82</td>
</tr>
<tr>
<td>0.80</td>
<td>1.00</td>
<td>0.68</td>
<td>0.37</td>
<td>0.21</td>
<td>0.22</td>
<td>0.21</td>
<td>0.36</td>
<td>0.67</td>
</tr>
<tr>
<td>1.00</td>
<td>0.79</td>
<td>0.59</td>
<td>0.32</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.30</td>
<td>0.58</td>
</tr>
<tr>
<td>1.20</td>
<td>0.54</td>
<td>0.46</td>
<td>0.28</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.27</td>
<td>0.47</td>
</tr>
<tr>
<td>1.40</td>
<td>0.44</td>
<td>0.42</td>
<td>0.25</td>
<td>0.17</td>
<td>0.18</td>
<td>0.17</td>
<td>0.24</td>
<td>0.38</td>
</tr>
</tbody>
</table>
Table 13.3.2p: Orientation Sector summer exposure factor \((E_S)\) for climate zone 1

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.60</td>
<td>0.31</td>
<td>0.31</td>
<td>0.21</td>
<td>0.16</td>
<td>0.17</td>
<td>0.15</td>
<td>0.22</td>
<td>0.32</td>
</tr>
<tr>
<td>1.80</td>
<td>0.23</td>
<td>0.28</td>
<td>0.19</td>
<td>0.14</td>
<td>0.16</td>
<td>0.14</td>
<td>0.19</td>
<td>0.29</td>
</tr>
<tr>
<td>2.00</td>
<td>0.19</td>
<td>0.25</td>
<td>0.16</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.17</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Table 13.3.2q: Orientation Sector summer exposure factor \((E_S)\) for climate zone 2

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.52</td>
<td>0.84</td>
<td>1.29</td>
<td>1.24</td>
<td>0.87</td>
<td>1.27</td>
<td>1.32</td>
<td>0.85</td>
</tr>
<tr>
<td>0.05</td>
<td>0.44</td>
<td>0.74</td>
<td>1.19</td>
<td>1.13</td>
<td>0.75</td>
<td>1.17</td>
<td>1.23</td>
<td>0.75</td>
</tr>
<tr>
<td>0.10</td>
<td>0.41</td>
<td>0.68</td>
<td>1.11</td>
<td>1.07</td>
<td>0.68</td>
<td>1.09</td>
<td>1.15</td>
<td>0.69</td>
</tr>
<tr>
<td>0.20</td>
<td>0.37</td>
<td>0.59</td>
<td>1.01</td>
<td>0.94</td>
<td>0.55</td>
<td>0.94</td>
<td>1.00</td>
<td>0.60</td>
</tr>
<tr>
<td>0.40</td>
<td>0.30</td>
<td>0.45</td>
<td>0.79</td>
<td>0.69</td>
<td>0.42</td>
<td>0.75</td>
<td>0.83</td>
<td>0.47</td>
</tr>
<tr>
<td>0.60</td>
<td>0.25</td>
<td>0.37</td>
<td>0.66</td>
<td>0.59</td>
<td>0.34</td>
<td>0.60</td>
<td>0.66</td>
<td>0.38</td>
</tr>
<tr>
<td>0.80</td>
<td>0.22</td>
<td>0.31</td>
<td>0.53</td>
<td>0.47</td>
<td>0.30</td>
<td>0.52</td>
<td>0.58</td>
<td>0.32</td>
</tr>
<tr>
<td>1.00</td>
<td>0.19</td>
<td>0.26</td>
<td>0.45</td>
<td>0.41</td>
<td>0.25</td>
<td>0.43</td>
<td>0.48</td>
<td>0.28</td>
</tr>
<tr>
<td>1.20</td>
<td>0.18</td>
<td>0.23</td>
<td>0.37</td>
<td>0.33</td>
<td>0.22</td>
<td>0.39</td>
<td>0.42</td>
<td>0.26</td>
</tr>
<tr>
<td>1.40</td>
<td>0.17</td>
<td>0.21</td>
<td>0.32</td>
<td>0.30</td>
<td>0.22</td>
<td>0.32</td>
<td>0.37</td>
<td>0.22</td>
</tr>
<tr>
<td>1.60</td>
<td>0.15</td>
<td>0.18</td>
<td>0.28</td>
<td>0.26</td>
<td>0.18</td>
<td>0.29</td>
<td>0.34</td>
<td>0.21</td>
</tr>
<tr>
<td>1.80</td>
<td>0.13</td>
<td>0.18</td>
<td>0.27</td>
<td>0.22</td>
<td>0.17</td>
<td>0.28</td>
<td>0.30</td>
<td>0.18</td>
</tr>
<tr>
<td>2.00</td>
<td>0.12</td>
<td>0.17</td>
<td>0.23</td>
<td>0.21</td>
<td>0.16</td>
<td>0.24</td>
<td>0.28</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table 13.3.2r: Orientation Sector summer exposure factor \((E_S)\) for climate zone 3
Table 13.3.2r: Orientation Sector summer exposure factor (E_s) for climate zone 3

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.56</td>
<td>1.04</td>
<td>1.42</td>
<td>1.18</td>
<td>0.66</td>
<td>1.16</td>
<td>1.36</td>
<td>1.01</td>
</tr>
<tr>
<td>0.05</td>
<td>0.47</td>
<td>0.94</td>
<td>1.32</td>
<td>1.08</td>
<td>0.57</td>
<td>1.05</td>
<td>1.26</td>
<td>0.90</td>
</tr>
<tr>
<td>0.10</td>
<td>0.44</td>
<td>0.85</td>
<td>1.25</td>
<td>1.02</td>
<td>0.54</td>
<td>0.99</td>
<td>1.19</td>
<td>0.83</td>
</tr>
<tr>
<td>0.20</td>
<td>0.38</td>
<td>0.73</td>
<td>1.10</td>
<td>0.90</td>
<td>0.46</td>
<td>0.87</td>
<td>1.06</td>
<td>0.73</td>
</tr>
<tr>
<td>0.40</td>
<td>0.32</td>
<td>0.56</td>
<td>0.88</td>
<td>0.71</td>
<td>0.38</td>
<td>0.72</td>
<td>0.84</td>
<td>0.56</td>
</tr>
<tr>
<td>0.60</td>
<td>0.28</td>
<td>0.43</td>
<td>0.74</td>
<td>0.58</td>
<td>0.31</td>
<td>0.57</td>
<td>0.71</td>
<td>0.44</td>
</tr>
<tr>
<td>0.80</td>
<td>0.24</td>
<td>0.35</td>
<td>0.59</td>
<td>0.47</td>
<td>0.27</td>
<td>0.50</td>
<td>0.60</td>
<td>0.35</td>
</tr>
<tr>
<td>1.00</td>
<td>0.20</td>
<td>0.29</td>
<td>0.50</td>
<td>0.40</td>
<td>0.24</td>
<td>0.43</td>
<td>0.53</td>
<td>0.29</td>
</tr>
<tr>
<td>1.20</td>
<td>0.19</td>
<td>0.26</td>
<td>0.42</td>
<td>0.34</td>
<td>0.21</td>
<td>0.37</td>
<td>0.43</td>
<td>0.26</td>
</tr>
<tr>
<td>1.40</td>
<td>0.17</td>
<td>0.22</td>
<td>0.35</td>
<td>0.31</td>
<td>0.20</td>
<td>0.32</td>
<td>0.41</td>
<td>0.23</td>
</tr>
<tr>
<td>1.60</td>
<td>0.17</td>
<td>0.20</td>
<td>0.33</td>
<td>0.27</td>
<td>0.16</td>
<td>0.31</td>
<td>0.35</td>
<td>0.21</td>
</tr>
<tr>
<td>1.80</td>
<td>0.15</td>
<td>0.19</td>
<td>0.30</td>
<td>0.24</td>
<td>0.16</td>
<td>0.28</td>
<td>0.33</td>
<td>0.19</td>
</tr>
<tr>
<td>2.00</td>
<td>0.15</td>
<td>0.18</td>
<td>0.25</td>
<td>0.24</td>
<td>0.15</td>
<td>0.24</td>
<td>0.27</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table 13.3.2s: Orientation Sector summer exposure factor (E_s) for climate zone 4

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.72</td>
<td>1.19</td>
<td>1.40</td>
<td>1.05</td>
<td>0.57</td>
<td>0.99</td>
<td>1.31</td>
<td>1.12</td>
</tr>
<tr>
<td>0.05</td>
<td>0.61</td>
<td>1.10</td>
<td>1.31</td>
<td>0.97</td>
<td>0.49</td>
<td>0.91</td>
<td>1.22</td>
<td>1.02</td>
</tr>
<tr>
<td>0.10</td>
<td>0.56</td>
<td>1.00</td>
<td>1.24</td>
<td>0.91</td>
<td>0.46</td>
<td>0.85</td>
<td>1.17</td>
<td>0.94</td>
</tr>
<tr>
<td>0.20</td>
<td>0.43</td>
<td>0.87</td>
<td>1.12</td>
<td>0.82</td>
<td>0.41</td>
<td>0.76</td>
<td>1.05</td>
<td>0.81</td>
</tr>
<tr>
<td>0.40</td>
<td>0.30</td>
<td>0.66</td>
<td>0.92</td>
<td>0.67</td>
<td>0.34</td>
<td>0.62</td>
<td>0.85</td>
<td>0.62</td>
</tr>
<tr>
<td>0.60</td>
<td>0.27</td>
<td>0.50</td>
<td>0.74</td>
<td>0.56</td>
<td>0.29</td>
<td>0.53</td>
<td>0.72</td>
<td>0.45</td>
</tr>
<tr>
<td>0.80</td>
<td>0.24</td>
<td>0.38</td>
<td>0.63</td>
<td>0.49</td>
<td>0.25</td>
<td>0.45</td>
<td>0.59</td>
<td>0.36</td>
</tr>
<tr>
<td>1.00</td>
<td>0.20</td>
<td>0.31</td>
<td>0.55</td>
<td>0.42</td>
<td>0.22</td>
<td>0.39</td>
<td>0.51</td>
<td>0.30</td>
</tr>
<tr>
<td>1.20</td>
<td>0.19</td>
<td>0.26</td>
<td>0.46</td>
<td>0.37</td>
<td>0.20</td>
<td>0.35</td>
<td>0.45</td>
<td>0.25</td>
</tr>
<tr>
<td>1.40</td>
<td>0.16</td>
<td>0.23</td>
<td>0.39</td>
<td>0.34</td>
<td>0.17</td>
<td>0.33</td>
<td>0.38</td>
<td>0.21</td>
</tr>
<tr>
<td>1.60</td>
<td>0.16</td>
<td>0.20</td>
<td>0.38</td>
<td>0.30</td>
<td>0.16</td>
<td>0.29</td>
<td>0.33</td>
<td>0.20</td>
</tr>
<tr>
<td>1.80</td>
<td>0.14</td>
<td>0.18</td>
<td>0.32</td>
<td>0.27</td>
<td>0.14</td>
<td>0.25</td>
<td>0.32</td>
<td>0.17</td>
</tr>
<tr>
<td>2.00</td>
<td>0.13</td>
<td>0.17</td>
<td>0.28</td>
<td>0.23</td>
<td>0.14</td>
<td>0.24</td>
<td>0.26</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Table 13.3.2t: Orientation Sector summer exposure factor (E_s) for climate zone 5

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.82</td>
<td>1.09</td>
<td>1.19</td>
<td>0.96</td>
<td>0.68</td>
<td>1.04</td>
<td>1.30</td>
<td>1.16</td>
</tr>
<tr>
<td>0.05</td>
<td>0.69</td>
<td>0.96</td>
<td>1.07</td>
<td>0.85</td>
<td>0.57</td>
<td>0.92</td>
<td>1.19</td>
<td>1.04</td>
</tr>
<tr>
<td>0.10</td>
<td>0.63</td>
<td>0.88</td>
<td>1.01</td>
<td>0.79</td>
<td>0.54</td>
<td>0.86</td>
<td>1.11</td>
<td>0.94</td>
</tr>
<tr>
<td>0.20</td>
<td>0.51</td>
<td>0.76</td>
<td>0.89</td>
<td>0.70</td>
<td>0.48</td>
<td>0.76</td>
<td>0.99</td>
<td>0.83</td>
</tr>
</tbody>
</table>
Table 13.3.2u: Orientation Sector summer exposure factor (E_s) for climate zone 6

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.84</td>
<td>1.08</td>
<td>1.15</td>
<td>0.87</td>
<td>0.61</td>
<td>1.05</td>
<td>1.40</td>
<td>1.24</td>
</tr>
<tr>
<td>0.05</td>
<td>0.71</td>
<td>0.97</td>
<td>1.05</td>
<td>0.78</td>
<td>0.52</td>
<td>0.96</td>
<td>1.30</td>
<td>1.13</td>
</tr>
<tr>
<td>0.10</td>
<td>0.65</td>
<td>0.90</td>
<td>0.99</td>
<td>0.74</td>
<td>0.49</td>
<td>0.91</td>
<td>1.25</td>
<td>1.04</td>
</tr>
<tr>
<td>0.20</td>
<td>0.52</td>
<td>0.77</td>
<td>0.88</td>
<td>0.65</td>
<td>0.44</td>
<td>0.82</td>
<td>1.12</td>
<td>0.91</td>
</tr>
<tr>
<td>0.40</td>
<td>0.36</td>
<td>0.58</td>
<td>0.71</td>
<td>0.54</td>
<td>0.36</td>
<td>0.67</td>
<td>0.90</td>
<td>0.69</td>
</tr>
<tr>
<td>0.60</td>
<td>0.30</td>
<td>0.43</td>
<td>0.61</td>
<td>0.45</td>
<td>0.31</td>
<td>0.58</td>
<td>0.76</td>
<td>0.51</td>
</tr>
<tr>
<td>0.80</td>
<td>0.26</td>
<td>0.35</td>
<td>0.50</td>
<td>0.38</td>
<td>0.26</td>
<td>0.50</td>
<td>0.66</td>
<td>0.40</td>
</tr>
<tr>
<td>1.00</td>
<td>0.22</td>
<td>0.29</td>
<td>0.42</td>
<td>0.32</td>
<td>0.23</td>
<td>0.42</td>
<td>0.56</td>
<td>0.36</td>
</tr>
<tr>
<td>1.20</td>
<td>0.20</td>
<td>0.24</td>
<td>0.37</td>
<td>0.29</td>
<td>0.23</td>
<td>0.39</td>
<td>0.48</td>
<td>0.29</td>
</tr>
<tr>
<td>1.40</td>
<td>0.18</td>
<td>0.22</td>
<td>0.32</td>
<td>0.26</td>
<td>0.19</td>
<td>0.34</td>
<td>0.42</td>
<td>0.26</td>
</tr>
<tr>
<td>1.60</td>
<td>0.16</td>
<td>0.19</td>
<td>0.28</td>
<td>0.24</td>
<td>0.18</td>
<td>0.31</td>
<td>0.38</td>
<td>0.21</td>
</tr>
<tr>
<td>1.80</td>
<td>0.15</td>
<td>0.18</td>
<td>0.26</td>
<td>0.22</td>
<td>0.17</td>
<td>0.28</td>
<td>0.34</td>
<td>0.20</td>
</tr>
<tr>
<td>2.00</td>
<td>0.14</td>
<td>0.17</td>
<td>0.24</td>
<td>0.21</td>
<td>0.17</td>
<td>0.26</td>
<td>0.31</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table 13.3.2v: Orientation Sector summer exposure factor (E_s) for climate zone 7

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.96</td>
<td>1.17</td>
<td>1.21</td>
<td>0.94</td>
<td>0.64</td>
<td>0.91</td>
<td>1.19</td>
<td>1.18</td>
</tr>
<tr>
<td>0.05</td>
<td>0.83</td>
<td>1.05</td>
<td>1.10</td>
<td>0.83</td>
<td>0.54</td>
<td>0.81</td>
<td>1.09</td>
<td>1.07</td>
</tr>
<tr>
<td>0.10</td>
<td>0.76</td>
<td>0.97</td>
<td>1.04</td>
<td>0.80</td>
<td>0.51</td>
<td>0.76</td>
<td>1.03</td>
<td>0.98</td>
</tr>
<tr>
<td>0.20</td>
<td>0.62</td>
<td>0.85</td>
<td>0.93</td>
<td>0.70</td>
<td>0.45</td>
<td>0.68</td>
<td>0.91</td>
<td>0.86</td>
</tr>
<tr>
<td>0.40</td>
<td>0.40</td>
<td>0.65</td>
<td>0.76</td>
<td>0.58</td>
<td>0.38</td>
<td>0.55</td>
<td>0.74</td>
<td>0.64</td>
</tr>
<tr>
<td>0.60</td>
<td>0.32</td>
<td>0.51</td>
<td>0.65</td>
<td>0.50</td>
<td>0.33</td>
<td>0.47</td>
<td>0.63</td>
<td>0.51</td>
</tr>
<tr>
<td>0.80</td>
<td>0.28</td>
<td>0.40</td>
<td>0.54</td>
<td>0.44</td>
<td>0.28</td>
<td>0.41</td>
<td>0.53</td>
<td>0.40</td>
</tr>
<tr>
<td>1.00</td>
<td>0.25</td>
<td>0.33</td>
<td>0.48</td>
<td>0.37</td>
<td>0.25</td>
<td>0.35</td>
<td>0.44</td>
<td>0.32</td>
</tr>
<tr>
<td>1.20</td>
<td>0.22</td>
<td>0.28</td>
<td>0.41</td>
<td>0.34</td>
<td>0.23</td>
<td>0.31</td>
<td>0.38</td>
<td>0.27</td>
</tr>
<tr>
<td>1.40</td>
<td>0.19</td>
<td>0.23</td>
<td>0.36</td>
<td>0.30</td>
<td>0.21</td>
<td>0.28</td>
<td>0.33</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Table 13.3.2w: Orientation Sector summer exposure factor \((E_{S})\) for climate zone 8

<table>
<thead>
<tr>
<th>P/H (refer Figure 13.3.2a)</th>
<th>North</th>
<th>North east</th>
<th>East</th>
<th>South east</th>
<th>South</th>
<th>South west</th>
<th>West</th>
<th>North west</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.60</td>
<td>0.18</td>
<td>0.21</td>
<td>0.33</td>
<td>0.27</td>
<td>0.20</td>
<td>0.26</td>
<td>0.31</td>
<td>0.21</td>
</tr>
<tr>
<td>1.80</td>
<td>0.17</td>
<td>0.20</td>
<td>0.28</td>
<td>0.24</td>
<td>0.18</td>
<td>0.24</td>
<td>0.27</td>
<td>0.19</td>
</tr>
<tr>
<td>2.00</td>
<td>0.16</td>
<td>0.19</td>
<td>0.27</td>
<td>0.23</td>
<td>0.18</td>
<td>0.21</td>
<td>0.25</td>
<td>0.18</td>
</tr>
</tbody>
</table>
Figure 13.3.2a: Orientation sectors
Figure Notes:

1. An external shading device that complies with 13.3.3(b) is considered to achieve a P/H value of 2.00.
2. Where G exceeds 500 mm, the value of P must be halved.
Explanatory Information: Exposure factors

1. Winter exposure factors are not needed for climate zone 1.
2. For exposure factors between those in Tables 13.3.2i to 13.3.2o, either use the next highest P/H or interpolate.
3. For exposure factors between those in Tables 13.3.2p to 13.3.2w, either use the next lowest P/H or interpolate.

Explanatory Information: Conductance and performance values for external glazing

1. The conductance formula for climate zone 1 differs from the formula for all other Climate zones because there is little or no need for heating at any time of the year in climate zone 1. The conductance allowance is calculated to limit the rate of heat conduction through glazing into an air conditioned interior from a hotter outside environment. The limit is set at a level that allows the use of basic glazing systems in dwellings with average glazing areas whether or not they are air conditioned.
2. The conductance formula for climate zones 2 to 8 is based on wintertime conditions to account for the balance between potential solar gains and heat loss by conduction through glazing. The calculation favours orientations with higher potential solar gains in winter and the use of shading rather than glass toning. The improved insulation performance of glazing resulting from the calculations will also be beneficial under summertime conditions when outside temperatures exceed inside temperatures.
3. By referring to “glazing elements”, 13.3.2 requires and Total System SHGCs to be assessed for the combined effect of glass and frames. The measurement of these and Total System SHGCs is specified in the Technical Protocols and Procedures Manual for Energy Rating of Fenestration Products by the Australian Fenestration Rating Council (AFRC).
4. Various assessors using AFRC procedures might refer to their published performance values by slightly different terms including “U-factor” or “Uw” for or “SHGC” for Total System SHGC. Such values can be used under 13.3.2 provided they measure the combined glass and frame performance according to AFRC requirements.
5. and Total System SHGC are shown for some simple types of glazing elements in the table below. Lower figures indicate better glazing performance, although its effect on a dwelling’s energy efficiency can vary depending on the climate and orientation of the glazing. Explanatory Table 13.3.2a gives worst case assessments, which can be improved by obtaining generic or custom product assessments from suppliers, manufacturers, industry associations (including their online resources) and from competent assessors.
6. Typical ranges of generic ratings are set out in Explanatory Tables 13.2.3b to 13.3.2e below to illustrate the levels of performance available through such assessments. Numbers from this table should not be used in compliance calculations.
7. Custom assessments consider glazing element components in most detail and return the highest levels of assessed performance for a given type of glazing element. Generic assessments consider the components of glazing elements in less detail and return lower levels of assessed performance.
8. The calculations for conductance and solar heat gain both consider seasonal solar radiation, orientation, shading and the solar performance of the glazing.

Table 13.3.2a (explanatory): Worst case whole glazing element performance values

<table>
<thead>
<tr>
<th>Glass description</th>
<th>Framing type</th>
<th>Total System SHGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single clear</td>
<td>Aluminium</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>Timber or uPVC</td>
<td>5.6</td>
</tr>
<tr>
<td>Tinted single</td>
<td>Aluminium</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>Timber or uPVC</td>
<td>5.6</td>
</tr>
<tr>
<td>Clear double (3/6/3)</td>
<td>Aluminium</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>Timber or uPVC</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Table 13.3.2b (explanatory): Indicative ranges of whole glazing element performance—single glazed (monolithic or laminated)—aluminium frame

<table>
<thead>
<tr>
<th>Glass description</th>
<th>Comment</th>
<th>range</th>
<th>Total System SHGC range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>Minimum variation in glass U-Value and SHGC for different glass thicknesses.</td>
<td>7.9 - 5.5</td>
<td>0.81 - 0.64</td>
</tr>
<tr>
<td>Tinted</td>
<td>Glass SHGC depends on glass thickness and type of tint.</td>
<td>7.9 - 5.6</td>
<td>0.65 - 0.33</td>
</tr>
<tr>
<td>Coated</td>
<td>Glass U-Value and SHGC depend on coating type.</td>
<td>7.8 - 3.8</td>
<td>0.68 - 0.36</td>
</tr>
<tr>
<td>Tinted and coated</td>
<td>Glass U-Value depends on coating type and glass SHGC depends on coating type, type of tint, and glass thickness.</td>
<td>7.8 - 3.8</td>
<td>0.45 - 0.31</td>
</tr>
</tbody>
</table>

Table 13.3.2c (explanatory): Indicative ranges of whole glazing element performance—single glazed (monolithic or laminated)—timber or uPVC frame

<table>
<thead>
<tr>
<th>Glass description</th>
<th>Comment</th>
<th>range</th>
<th>Total System SHGC range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>Minimum variation in glass U-Value and SHGC for different glass thicknesses.</td>
<td>5.6 - 4.3</td>
<td>0.77 - 0.51</td>
</tr>
<tr>
<td>Tinted</td>
<td>Glass SHGC depends on glass thickness and type of tint.</td>
<td>5.6 - 4.3</td>
<td>0.61 - 0.25</td>
</tr>
<tr>
<td>Coated</td>
<td>Glass U-Value and SHGC depend on coating type.</td>
<td>5.5 - 2.9</td>
<td>0.64 - 0.27</td>
</tr>
<tr>
<td>Tinted and coated</td>
<td>Glass U-Value depends on coating type and glass SHGC depends on coating type, type of tint, and glass thickness.</td>
<td>5.5 - 3.1</td>
<td>0.42 - 0.23</td>
</tr>
</tbody>
</table>

Table 13.3.2d (explanatory): Indicative ranges of whole glazing element performance—double glazed—aluminium frame

<table>
<thead>
<tr>
<th>Glass description</th>
<th>Comment</th>
<th>range</th>
<th>Total System SHGC range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>Glass U-Value depends on cavity width.</td>
<td>6.2 - 3.1</td>
<td>0.72 - 0.63</td>
</tr>
<tr>
<td>Tinted</td>
<td>Glass U-Value depends on cavity width and glass SHGC depends on type of tint, tinted glass thickness and on cavity width.</td>
<td>6.2 - 3.1</td>
<td>0.57 - 0.36</td>
</tr>
<tr>
<td>Coated</td>
<td>Glass U-Value depends on cavity width and type of coating and glass SHGC depends on type of coating</td>
<td>6.1 - 2.4</td>
<td>0.60 - 0.22</td>
</tr>
</tbody>
</table>
Table 13.3.2e (explanatory): Indicative ranges of whole glazing element performance—double glazed—timber or uPVC

<table>
<thead>
<tr>
<th>Glass description</th>
<th>Comment</th>
<th>range</th>
<th>Total System SHGC range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tinted and coated</td>
<td>Glass U-Value depends on cavity width and type of tint, coated glass thickness and on cavity width.</td>
<td>6.1 - 2.5</td>
<td>0.41 - 0.21</td>
</tr>
</tbody>
</table>

Explanatory Information: Tables 13.3.2a to 13.3.2h

1. A floor in direct contact with the ground includes a concrete slab-on-ground or concrete slab-on-fill.
2. A suspended floor includes a suspended timber floor, suspended steel-framed floor or suspended concrete floor.
3. In general, a floor in direct contact with the ground more readily assimilates solar heat gains than a suspended floor. Consequently, lower stringency levels apply to glazing in a storey that has a floor in direct contact with the ground.
4. Whether a storey has Standard or High air movement depends upon the total ventilation opening area provided to habitable rooms on that storey and the presence of ceiling fans. The additional ventilation opening area required for High air movement without fans can be distributed to any of the habitable rooms on the storey. In climate zones 1 to 5, the storey can achieve High air movement when the total ventilation opening area is as for Standard air movement (without a ceiling fan or evaporative cooler) but with ceiling fans installed in every habitable rooms. Explanatory Table 13.3.2f below shows an example for climate zone 2.
5. The provisions of Part 13.3 assume that internal window coverings will be installed for privacy reasons. This assumption is already incorporated in the allowances for glazing.

Table 13.3.2f (explanatory): Air movement with/without ceiling fans

<table>
<thead>
<tr>
<th>Air movement</th>
<th>With ceiling fans</th>
<th>Without ceiling fans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>10%</td>
<td>7.5%</td>
</tr>
<tr>
<td>High</td>
<td>20%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Explanatory Information: Tables 13.3.2i to 13.3.2w

1. Higher exposure factor (E_W) values in Tables 13.3.2i to 13.3.2o indicate greater exposure to desirable winter solar gains and should be adopted as far as possible.
2. Higher exposure factor (E_S) values in Tables 13.3.2p to 13.3.2w indicate greater exposure to unwanted summer...
Explanatory Information: Orientation sectors (Figure 13.3.2a)

1. The orientation sector for a wall or glazing element is the sector that contains a line drawn perpendicular to the face of the wall or glazing element.
2. Figure 13.3.2a is based on True North and all angles are measured clockwise from True North. Survey angles on site plans are usually marked in angles from True North. These angles can be used to establish True North for a particular site.
3. Magnetic North, found by a magnetic compass, varies from True North over time and by different amounts in different locations. Magnetic North is not an acceptable approximation of True North.
4. The eight orientation sectors shown in Figure 13.3.2a do not overlap at their boundaries. For example, north sector begins just clockwise after the NNW line and ends exactly on the NNE line. The start and end of other sectors are determined in a similar way, as indicated by the outer curved arrows.

13.3.3 Shading

Where shading is required to comply with 13.3.2, it must—

(a) be provided by an external permanent projection, such as a verandah, balcony, fixed canopy, eaves, shading hood or carport, which—
 (i) extends horizontally on both sides of the glazing for a distance greater than or equal to the projection distance P in Figure 13.3.2b; or
 (ii) provide the equivalent shading to (i) with a reveal or the like; or
(b) be provided by an external shading device, such as a shutter, blind, vertical or horizontal building screen with blades, battens or slats, which—
 (i) is capable of restricting at least 80% of the summer solar radiation; and
 (ii) if adjustable, is readily operated either manually, mechanically or electronically by the building occupants.

Explanatory Information:

1. Shading devices can include fixed louvres, shading screens and other types of perforated or fixed angle slatted shades. However, such devices need to be designed for the climate and latitude to ensure that summer sun penetration is restricted, while winter sun access is achieved. Winter access refers to the availability of winter solar gains to offset conducted heat losses.
2. The impact of shading is assessed with respect to the solar heat gain for the window. The requirements of 13.3.2 consider solar heat gain to be either beneficial or detrimental to the energy efficiency of a building based on seasonal variation (winter/summer), climate zone, orientation and P/H. Higher P/H values are more beneficial in minimising summer solar heat gain where as lower P/H values are more beneficial in allowing winter access.
3. Gutters can only be considered as providing shading if attached to a shading projection such as a verandah, fixed canopy, eaves, shading hood, balcony or the like.
4. Shading devices can be either attached or located adjacent to the building. For example, a free-standing lattice screen may be considered to provide shading to glazing if it complies with 13.3.3(b).
5. An adjustable shading device in 13.3.3(b)(ii) should be readily operated from a safe location or platform that does not require ladders, rigging, harnessing, or the like.
Part 13.4 Building sealing

13.4.1 Application of Part 13.4

(1) This Part applies to—
 (a) a Class 1 building; and
 (b) a Class 10a building with a *conditioned space*.

(2) The provisions of (1) do not apply to the following:
 (a) A building in climate zones 1, 2, 3 and 5 where the only means of air-conditioning is by using an evaporative cooler.
 (b) A permanent building *ventilation opening* that is necessary for the safe operation of a gas appliance.

(3) Part 13.4 must be applied as directed in H6D2(1)(a) or (b).

Explanatory Information:

1. An evaporatively cooled building in climate zones 4 and 6 must be sealed because of the likelihood of the building being heated during colder periods.
2. Appropriate ventilation requirements for gas appliances can be obtained from relevant legislation, referenced standards and product installation manuals.

13.4.2 Chimneys and flues

The chimney or flue of an open solid-fuel burning appliance must be provided with a damper or flap that can be closed to seal the chimney or flue.

Explanatory Information:

1. The requirements of this Part are to be read in conjunction with the fire safety requirements in Section 9 of the ABCB Housing Provisions.
2. A solid-fuel burning appliance is a heater that burns materials such as timber, coal and the like. This clause does not apply to gas and liquid fuel burning appliances.

13.4.3 Roof lights

(1) A *roof light* must be sealed, or capable of being sealed, when serving—
 (a) a *conditioned space*; or
 (b) a *habitable room* in climate zones 4, 5, 6, 7 and 8.

(2) A *roof light required* by (1) to be sealed, or capable of being sealed, must be constructed with—
 (a) an imperforate ceiling diffuser or the like installed at the ceiling or internal lining level; or
 (b) a weatherproof seal; or
 (c) a shutter system readily operated either manually, mechanically or electronically by the occupant.
Explanatory Information:
A roof light should be sealed regardless of which room it serves in climate zones 4, 5, 6, 7 and 8. For example, a roof light located in a hallway should be sealed to stop the transfer of cold air into adjoining conditioned spaces. This principle also applies to external doors and windows, exhaust fans, wall and floor junctions and evaporative coolers.

13.4.4 External windows and doors

(1) An external door, internal door between a Class 1 building and an unconditioned Class 10a building, openable window and other such opening must be sealed when serving—
 (a) a conditioned space; or
 (b) a habitable room in climate zones 4, 5, 6, 7 and 8.

(2) A seal to restrict air infiltration—
 (a) for the bottom edge of a door, must be a draft protection device; and
 (b) for the other edges of a door or the edges of an openable window or other such opening, may be a foam or rubber compressible strip, fibrous seal or the like.

(3) A window complying with the maximum air infiltration rates specified in AS 2047 need not comply with (2)(b).

13.4.5 Exhaust fans

An exhaust fan must be fitted with a sealing device such as a self-closing damper, filter or the like when serving—
 (a) a conditioned space; or
 (b) a habitable room in climate zones 4, 5, 6, 7 and 8.

Explanatory Information:
An exhaust fan is considered to be adequately sealed if it is fitted with a filter such as the type commonly used in kitchen range hoods.

13.4.6 Construction of ceilings, walls and floors

(1) Ceilings, walls, floors and any opening such as a window frame, door frame, roof light frame or the like must be constructed to minimise air leakage in accordance with (2) when forming part of the external fabric of—
 (a) a conditioned space; or
 (b) a habitable room in climate zones 4, 5, 6, 7 and 8.

(2) Construction required by (1) must be—
 (a) enclosed by internal lining systems that are close fitting at ceiling, wall and floor junctions; or
 (b) sealed at junctions and penetrations with—
 (i) close-fitting architrave, skirting or cornice; or
 (ii) expanding foam, rubber compressible strip, caulking or the like.

Explanatory Information:
1. A close fitting internal lining system is considered suitable to include an allowance for minimum lining movement gaps at wall, floor and ceiling junctions.
2. Caulking includes sealant, mastic or other gap filling material.
3. In 13.4.6(2)(b), penetrations include *windows*, doors, *roof lights*, flues, exhaust fans, heating and cooling ductwork and the like.

13.4.7 Evaporative coolers

An evaporative cooler must be fitted with a self-closing damper or the like when serving—

(a) a heated space; or

(b) a *habitable room* in *climate zones* 4, 5, 6, 7 or 8.

Explanatory Information:
The self-closing damper should create an effective seal against air infiltration.
13.5.1 Application of Part 13.5

(1) This Part applies to a habitable room in a Class 1 building.
(2) Part 13.5 must be applied as directed in H6D2(1)(a) or (b).

13.5.2 Air movement

(1) Air movement must be provided to habitable rooms in accordance with Table 13.5.2.
(2) Air movement required by (1) may be provided through an opening from an adjoining room (including an enclosed verandah) if—
 (a) the adjoining room is not a sanitary compartment; and
 (b) the opening between the adjoining room and the habitable room complies with Table 13.5.2 as if it were a ventilation opening to the habitable room or a proportion thereof if some ventilation is provided from another source; and
 (c) the ventilation opening to the adjoining room complies with Table 13.5.2 for the floor area of the adjoining room and the proportion of the habitable room that is ventilated from the adjoining room.
(3) The requirements of (1) do not apply to buildings in Region D severe tropical cyclone areas (see Figure 2.2.3 provided the external walls are shaded with a verandah, balcony, eaves, carport or the like that projects at a minimum angle of 15 degrees in accordance with Figure 13.2.5a.

Table 13.5.2: Minimum total ventilation opening area as a percentage of the floor area for each habitable room

<table>
<thead>
<tr>
<th>Climate zone</th>
<th>Without a ceiling fan or evaporative cooler</th>
<th>With a ceiling fan</th>
<th>With an evaporative cooler</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10%</td>
<td>7.5%</td>
<td>10% (see Note)</td>
</tr>
<tr>
<td>2</td>
<td>10%</td>
<td>7.5%</td>
<td>10% (see Note)</td>
</tr>
<tr>
<td>3</td>
<td>10%</td>
<td>7.5%</td>
<td>7.5%</td>
</tr>
<tr>
<td>4</td>
<td>10%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>5</td>
<td>7.5%</td>
<td>5%</td>
<td>7.5% (see Note)</td>
</tr>
<tr>
<td>6, 7 and 8</td>
<td>As required by Part 10.6</td>
<td>As required by Part 10.6</td>
<td>As required by Part 10.6</td>
</tr>
</tbody>
</table>

Table Notes:
Because evaporative coolers are less effective than ceiling fans in more humid locations, the requirement for ventilation opening in climate zones 1, 2 and 5 with an evaporative cooler is the same as without one.

Explanatory Information:
In humid locations, such as Darwin and Cairns, evaporative coolers would not provide the same cooling effect as in drier climates. Although they would provide some benefit from air movement if operated in ‘fan-only’ mode, they would cause discomfort, possible condensation and possible mould growth if operated in evaporative ‘water-on’ mode. However, even though a concession is not given in climate zones 1, 2 and 5, there are location, particularly in climate zone 5, where evaporative coolers would be effective.
13.5.3 Ventilation openings

(1) In climate zones 1, 2, 3, 4 and 5, the total ventilation opening area required by Table 13.5.2 to a habitable room must—
 (a) be connected by a breeze path complying with (2) to another ventilation opening in another room or space; or
 (b) be provided by a minimum of two ventilation openings located within the same habitable room, with each ventilation opening having an area of not less than 25% of the area required by Table 13.5.2.

(2) A breeze path required by (1)(a) must—
 (a) pass through not more than two openings in the internal walls with each opening having an area of not less than 1.5 m²; and
 (b) have a distance along the breeze path between ventilation openings of not more than 20 m.

Explanatory Information:
1. Ventilation openings should be designed to allow the interior of the building to take full advantage of any natural breeze. Careful consideration should be given to the type and location of openings to ensure optimum effect is achieved and that internal 'dead air' pockets are avoided.
2. An opening may serve more than one breeze path.
3. Two openings are stated in (2)(a) as limit of the number of openings permitted in a breeze path. These are typically doorways. Larger openings, such as those between adjoining lounge and dining areas in the same space are unlikely to restrict air movement significantly.

13.5.4 Ceiling fans and evaporative coolers

Ceiling fans or evaporative coolers required to comply with H6D3, Tables 13.3.2a to 13.2.3h, as appropriate or Table 13.5.2 must—
 (a) be permanently installed; and
 (b) have a speed controller; and
 (c) for ceiling fans, serve the whole room, with the floor area that a single fan serves not exceeding—
 (i) 15 m² if it has a blade rotation diameter of greater than or equal to 900 mm; and
 (ii) 25 m² if it has a blade rotation diameter of greater than or equal to 1200 mm.
13.6.1 Application of Part 13.6

(1) This Part applies to—
 (a) a Class 1 building; and
 (b) a Class 10a building; and
 (c) a Class 10b swimming pool associated with a Class 1 or 10a building.

(2) Part 13.6 must be applied as directed in H6D2(2).

(3) For a heated water supply system, Part 13.6 need not be complied with if H6D2(2)(b) is complied with.

13.6.2 Insulation of services

Thermal insulation for central heating water piping and heating and cooling ductwork must—
 (a) be protected against the effects of weather and sunlight; and
 (b) be able to withstand the temperatures within the piping or ductwork; and
 (c) use thermal insulation material in accordance with AS/NZS 4859.1.

Explanatory Information:
The central heating water piping provisions apply to systems designed to heat the building via water, such as a hydronic heating system.

13.6.3 Central heating water piping

(1) Central heating water piping that is not within a conditioned space must be thermally insulated to achieve the minimum material R-Values as set out in (2) to (6).

(2) Internal piping including—
 (a) flow and return piping that is—
 (i) within an unventilated wall space; or
 (ii) within an internal floor between storeys; or
 (iii) between ceiling insulation and a ceiling; and
 (b) heated water piping encased within a concrete floor slab (except that which is part of a floor heating system), must, in all climate zones, have a minimum material R-Value of 0.4.

(3) Piping located within a ventilated wall space, an enclosed building subfloor or a roof space, including—
 (a) flow and return piping; and
 (b) cold water supply piping within 500 mm of the connection to the central water heating system; and
 (c) relief valve piping within 500 mm of the connection to the central water heating system, must have a minimum material R-Value in accordance with (5).

(4) Piping located outside the building or in an unenclosed building subfloor or roof space, including—
 (a) flow and return piping; and

ABCBC Housing Provisions Standard 2022
(b) cold water supply piping within 500 mm of the connection to the central water heating system; and
(c) relief valve piping within 500 mm of the connection to the central water heating system,
must have a minimum material R-Value in accordance with (3).

(5) **Piping** referred to in (3) must have a minimum material R-Value of—
 (a) in climate zones 1, 2, 3 and 5 — 0.6; and
 (b) in climate zones 4, 6 and 7 — 0.9; and
 (c) in climate zone 8 — 1.3.

(6) **Piping** referred to in (4) must have a minimum material R-Value of—
 (a) in climate zones 1, 2, 3 and 5 — 0.6; and
 (b) in climate zones 4, 6 and 7 — 1.3; and
 (c) in climate zone 8 — 1.3.

Explanatory Information:

1. The insulation levels in the following table are typical examples of materials that can be used to insulate central heating water piping calculated in accordance with AS/NZS 4859.1.

2. The R-Value is that of the insulation and not the Total R-Value of the pipe, air film and insulation. Where piping has a significant inherent R-Value it may be subtracted from the material R-Value required. However, the inherent R-Value of most piping is not sufficient to satisfy the requirements of 13.6.3.

3. **Piping** within a timber member, such as that passing through a wall stud, is considered to have sufficient insulation for the purposes of 13.6.3.

4. The following table provides examples for the R-Value of the insulation used for smaller diameter piping.

<table>
<thead>
<tr>
<th>Insulation</th>
<th>R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 mm of closed cell polymer</td>
<td>0.4</td>
</tr>
<tr>
<td>13 mm of closed cell polymer</td>
<td>0.6</td>
</tr>
<tr>
<td>19 mm of closed cell polymer</td>
<td>0.9</td>
</tr>
<tr>
<td>25 mm of closed cell polymer</td>
<td>1.3</td>
</tr>
<tr>
<td>25 mm of glasswool</td>
<td>1.3</td>
</tr>
</tbody>
</table>

13.6.4 Heating and cooling ductwork

(1) Heating and cooling ductwork and fittings must—
 (a) achieve the material R-Value in (4); and
 (b) be sealed against air loss—
 (i) by closing all openings in the surface, joints and seams of ductwork with adhesives, mastics, sealants or gaskets in accordance with AS 4254.1 and AS 4254.2 for a Class C seal; or
 (ii) for flexible ductwork, with a draw band in conjunction with a sealant or adhesive tape.

(2) Duct insulation must—
 (a) abut adjoining duct insulation to form a continuous barrier; and
 (b) be installed so that it maintains its position and thickness, other than at flanges and supports; and
 (c) where located outside the building, under a suspended floor, in an attached Class 10a building or in a roof space—
 (i) be protected by an outer sleeve of protective sheathing to prevent the insulation becoming damp; and
have the outer protective sleeve sealed with adhesive tape not less than 48 mm wide creating an airtight
and waterproof seal.

(3) The requirements of (1) do not apply to heating and cooling ductwork and fittings located within the insulated building en
cvelope including a service riser within the conditioned space, internal floors between storeys and the like.

(4) The material R-Value required by (1)(a) must be determined in accordance with the following:
 (a) In a heating-only system or cooling-only system including an evaporative cooling system—
 (i) ductwork must have a minimum material R-Value of—
 (A) in climate zones 1 to 7 — 1.0; and
 (B) in climate zone 8 — 1.5; and
 (ii) fittings must have a minimum material R-Value of 0.4.
 (b) In a combined heating and refrigerated cooling system—
 (i) ductwork must have a minimum material R-Value of—
 (A) in climate zones 1, 3, 4, 6 and 7 — 1.5; and
 (B) in climate zones 2 and 5 — 1.0; and
 (C) in climate zone 8 — 1.5; and
 (ii) fittings must have a minimum material R-Value of 0.4.
 (c) For the purposes of (b)(i), the minimum material R-Value required for ductwork may be reduced by 0.5 for
 combined heating and refrigerated cooling systems in climate zones 1, 3, 4, 6 and 7 if the ducts are—
 (i) under a suspended floor with an enclosed perimeter; or
 (ii) in a roof space that has an insulation of greater than or equal to R0.5 directly beneath the roofing.

Explanatory Information:
1. Ductwork within a fully insulated building may still benefit from insulation particularly when the system is only
 operating for short periods.
2. In some climate zones condensation may create problems with uninsulated ductwork, in which case insulation
 should still be considered.
3. For information on an enclosed perimeter, refer to the explanatory information following 13.2.6.
4. Insulation for refrigerated cooling ductwork should have a vapour barrier to prevent possible damage by
 condensation.
5. The insulation levels in the following tables are typical examples of materials that can be used to insulate ductwork
 and the R-Values they contribute. Other methods are available for meeting the minimum material R-Value required
 by 13.6.4(4). These values do not take into account all issues that may reduce the effectiveness of insulation.
 AS/NZS 4859.1 should be used to confirm in-situ values.
6. For fittings, 11 mm polyurethane typically provides an R-Value of 0.4.
7. Any flexible ductwork used for the transfer of products, initiating from a heat source that contains a flame, must
 also have the fire hazard properties required by H3D2(2).

Table 13.6.4a (explanatory): R-Values for typical ductwork insulation materials – flexible ductwork

<table>
<thead>
<tr>
<th>Insulating material and thickness</th>
<th>R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 mm glasswool (11 kg/m³)</td>
<td>1.0</td>
</tr>
<tr>
<td>70 mm polyester (6.4 kg/m³)</td>
<td>1.0</td>
</tr>
<tr>
<td>63 mm glasswool (11 kg/m³)</td>
<td>1.5</td>
</tr>
<tr>
<td>90 mm polyester (8.9 kg/m³)</td>
<td>1.5</td>
</tr>
<tr>
<td>85 mm glasswool (11 kg/m³)</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Table 13.6.4b (explanatory): R-Value for typical ductwork insulation materials – sheetmetal ductwork – external insulation

<table>
<thead>
<tr>
<th>Insulating material and thickness</th>
<th>R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 mm glasswool (22 kg/m³)</td>
<td>1.0</td>
</tr>
<tr>
<td>50 mm polyester (20 kg/m³)</td>
<td>1.1</td>
</tr>
<tr>
<td>50 mm glasswool (22 kg/m³)</td>
<td>1.5</td>
</tr>
<tr>
<td>75 mm polyester (20 kg/m³)</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Table 13.6.4c (explanatory): R-Values for typical ductwork insulation materials – sheetmetal ductwork – internal insulation

<table>
<thead>
<tr>
<th>Insulating material and thickness</th>
<th>R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 mm glasswool (32 kg/m³)</td>
<td>1.0</td>
</tr>
<tr>
<td>50 mm polyester (32 kg/m³)</td>
<td>1.3</td>
</tr>
<tr>
<td>50 mm glasswool (32 kg/m³)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

13.6.5 Electric resistance space heating

An electric resistance space heating system that serves more than one room must have—

(a) separate isolating switches for each room; and
(b) a separate temperature controller and time switch for each group of rooms with common heating needs; and
(c) power loads of not more than 110 W/m² for living areas, and 150 W/m² for bathrooms.

13.6.6 Artificial lighting

(1) The lamp power density or illumination power density of artificial lighting, excluding heaters that emit light, must not exceed the allowance of—

(a) 5 W/m² in a Class 1 building; and
(b) 4 W/m² on a verandah, balcony or the like attached to a Class 1 building; and
(c) 3 W/m² in a Class 10a building associated with a Class 1 building.

(2) The illumination power density allowance in (1) may be increased by dividing it by the relevant illumination power density adjustment factor for a control device in (6) as applicable.

(3) When designing the lamp power density or illumination power density, the power of the proposed installation must be used rather than nominal allowances for exposed batten holders or luminaires.

(4) If halogen lamps are installed, they must be separately switched from fluorescent lamps.

(5) Artificial lighting around the perimeter of a building must—

(a) be controlled by a daylight sensor; or
(b) have an average light source efficacy of not less than 40 Lumens/W.

(6) The following illumination power density adjustment factors apply to control devices for artificial lighting:

(a) Lighting timer for corridor lighting: 0.7.
(b) Motion detector —
 (i) 0.9, where —
(A) at least 75% of the area of a space is controlled by one or more motion detectors; or
(B) an area of less than 200 m2 is switched as a block by one or more motion detectors; and
(i) 0.7, where up to 6 lights are switched as a block by one or more detectors; and
(ii) 0.55, where up to 2 lights are switched as a block by one or more detectors.

(c) Manual dimming system where not less than 75% of the area of a space is controlled by manually operated dimmers: 0.85.

(d) Programmable dimming system where not less than 75% of the area of a space is controlled by manually operated dimmers: 0.85.

(e) Dynamic dimming system, with automatic compensation for lumen depreciation, the design lumen depreciation factor is not less than —
 (i) 0.9 for fluorescent lights; or
 (ii) 0.8 for high pressure discharge lights.

(f) Fixed dimming where at least 75% of the area is controlled by fixed dimmers that reduce the overall lighting level and the power consumption of the lighting — equal to the % of full power to which the dimmer is set divided by 0.95.

(g) Daylight sensor and dynamic lighting control device, with dimmed or stepped switching of lights adjacent to windows:
 (i) Lights within the space adjacent to windows other than roof lights for a distance from the window equal to the depth of the floor at window head height: 0.5.
 (ii) Lights within the space adjacent to roof lights: 0.6.

(7) For the purposes of (6)(c), manual dimming is where lights are controlled by a knob, slider or other mechanism or where there are pre-selected scenes that are manually selected.

(8) For the purposes of (6)(d), programmed dimming is where pre-selected scenes or levels are automatically selected by the time of day, photoelectric cell or occupancy sensor.

(9) For the purposes of (6)(e), dynamic dimming is where the lighting level is varied automatically by a photoelectric cell to either proportionately compensate for the availability of daylight or the lumen depreciation of the lamps.

(10) For the purposes of (6)(f), fixed dimming is where lights are controlled to a level and that level cannot be adjusted by the user.

(11) For the purposes of (6)(g)(i) and (ii), the illumination power density adjustment factor is only applied to lights controlled by that item — this adjustment factor does not apply to tungsten halogen or other incandescent sources.

Explanatory Information:

1. There are two approaches available for achieving compliance with (1) in Class 1 and associated Class 10a buildings. These are through the determination of the lamp power density or the illumination power density.

2. The first step in achieving compliance is to determine the relevant lamp power density or illumination power density allowance. Generally, the lamp power density or illumination power density is the relevant value in (1)(a), (b) or (c), however the illumination power density allowance can be increased in accordance with (2) if a control device is used.

3. When illumination power density and one or more control devices are used, the adjustment factor is only applied to the space(s) served by the control device. The adjusted allowance for this space is then combined with the allowances for the remaining spaces using an area weighted average, which subsequently increases the allowance provided in (1)(a), (b) or (c).

4. Where no control device is used the adjustment factor is equal to 1.

5. The second step in achieving compliance is to assess the overall lamp power density or overall illumination power density of the building.

6. The overall lamp power density is calculated by adding the maximum power ratings of all of the permanently wired lamps in a space and dividing this sum by the area of the space.

7. The overall illumination power density is calculated by adding the illumination power load for each space and dividing this sum by the area of the space.

8. Control device factors in (2) are only applied to the illumination power density, not the overall illumination power density.
9. To comply with (1), the overall lamp power density or overall illumination power density must be less than or equal to the allowance.

10. Trading of allowances between (1)(a), (b) and (c) is not permitted.

11. (1)(b) includes outdoor living spaces such as verandahs, balconies, patios, alfresco spaces or the like that are attached to a Class 1 building.

12. The artificial lighting requirements in 13.6.6 are to be read in conjunction with the artificial lighting requirements in 10.5.2.

13. The artificial lighting around the perimeter of a building does not need to comply to a maximum power density as neither the lighting required or the area of the space can be easily defined. Instead, external lights are required to be controlled by daylight sensors or to be efficient.

14. In (4), separate switching is required for halogen lamps to facilitate less frequent usage. This is because they are significantly less energy efficient that fluorescent lamps.

13.6.7 Water heater in a heated water supply system

[2019: 3.12.5.6]

A water heater in a heated water supply system must be designed and installed in accordance with Part B2 of NCC Volume Three — Plumbing Code of Australia.

13.6.8 Swimming pool heating and pumping

[2019: 3.12.5.7]

(1) Heating for a swimming pool must be by—
 (a) a solar heater not boosted by electric resistance heating; or
 (b) a heater using reclaimed energy; or
 (c) a gas heater; or
 (d) a heat pump; or
 (e) a combination of (a) to (d).

(2) Where some or all of the heating required by (1) is by a gas heater or a heat pump, the swimming pool must have—
 (a) a cover unless located in a conditioned space; and
 (b) a time switch to control the operation of the heater.

(3) A time switch must be provided to control the operation of a circulation pump for a swimming pool.

(4) For the purposes of 13.6.8, a swimming pool does not include a spa pool.

Explanatory Information:

Some jurisdictions may have requirements for a pool cover under the Smart Approved WaterMark Scheme.

13.6.9 Spa pool heating and pumping

[2019: 3.12.5.8]

(1) Heating for a spa pool that shares a water recirculation system with a swimming pool must be by—
 (a) a solar heater; or
 (b) a heater using reclaimed energy; or
 (c) a gas heater; or
 (d) a heat pump; or
(e) a combination of (a) to (d).

(2) Where some or all of the heating \textit{required} by (1) is by a gas heater or a heat pump, the spa pool must have—

(a) a cover; and

(b) a push button and a time switch to control the operation of the heater.

(3) A time switch must be provided to control the operation of a circulation pump for a spa pool having a capacity of 680 L or more.
Schedule 1 Definitions

Abbreviations

Symbols

Glossary
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCB</td>
<td>Australian Building Codes Board</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ACP</td>
<td>Aluminium Composite Panel</td>
</tr>
<tr>
<td>AS</td>
<td>Australian Standard</td>
</tr>
<tr>
<td>ASET</td>
<td>Available Safe Egress Time</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BCA</td>
<td>Building Code of Australia</td>
</tr>
<tr>
<td>BE</td>
<td>Fire blocks evacuation route</td>
</tr>
<tr>
<td>CCT</td>
<td>Correlated Colour Temperature</td>
</tr>
<tr>
<td>CF</td>
<td>Challenging fire</td>
</tr>
<tr>
<td>CHF</td>
<td>Critical Heat Flux</td>
</tr>
<tr>
<td>CRF</td>
<td>Critical Radiant Flux</td>
</tr>
<tr>
<td>CS</td>
<td>Fire starts in a concealed space</td>
</tr>
<tr>
<td>CSHGC</td>
<td>Constant for solar heat gain</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>CU</td>
<td>Constant for conductance</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>FED</td>
<td>Fractional Effective Dose</td>
</tr>
<tr>
<td>FI</td>
<td>Fire brigade intervention</td>
</tr>
<tr>
<td>FRL</td>
<td>Fire Resistance Level</td>
</tr>
<tr>
<td>GRP</td>
<td>Glass fibre reinforced polyester</td>
</tr>
<tr>
<td>HRR</td>
<td>Heat Release Rate</td>
</tr>
<tr>
<td>HS</td>
<td>Horizontal fire spread</td>
</tr>
<tr>
<td>IS</td>
<td>Rapid fire spread involving internal surface linings</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organisation for Standardisation</td>
</tr>
<tr>
<td>LED</td>
<td>Light-Emitting Diode</td>
</tr>
<tr>
<td>MEPS</td>
<td>Minimum Energy Performance Standards</td>
</tr>
<tr>
<td>NABERS</td>
<td>National Australian Built Environment Rating System</td>
</tr>
<tr>
<td>NATA</td>
<td>National Association of Testing Authorities</td>
</tr>
<tr>
<td>NatHERS</td>
<td>Nationwide House Energy Rating Scheme</td>
</tr>
<tr>
<td>NCC</td>
<td>National Construction Code</td>
</tr>
<tr>
<td>PBDB</td>
<td>Performance-based design brief</td>
</tr>
<tr>
<td>PCA</td>
<td>Plumbing Code of Australia</td>
</tr>
<tr>
<td>PMV</td>
<td>Predicted Mean Vote</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>RC</td>
<td>Robustness check</td>
</tr>
<tr>
<td>RSET</td>
<td>Required Safe Egress Time</td>
</tr>
<tr>
<td>RW</td>
<td>Weighted sound reduction index</td>
</tr>
<tr>
<td>SF</td>
<td>Smouldering fire</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definitions</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SHGC</td>
<td>Solar Heat Gain Coefficient</td>
</tr>
<tr>
<td>SS</td>
<td>Structural stability and other property</td>
</tr>
<tr>
<td>STC</td>
<td>Sound Transmission Class</td>
</tr>
<tr>
<td>UF</td>
<td>Unexpected catastrophic failure</td>
</tr>
<tr>
<td>UPVC</td>
<td>Unplasticized polyvinyl chloride</td>
</tr>
<tr>
<td>UT</td>
<td>Fire in normally unoccupied room threatening occupants of other rooms</td>
</tr>
<tr>
<td>U-Value</td>
<td>Thermal transmittance</td>
</tr>
<tr>
<td>VS</td>
<td>Vertical fire spread involving external cladding or external openings</td>
</tr>
</tbody>
</table>
Symbols

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>°</td>
<td>degree(s)</td>
</tr>
<tr>
<td>°C</td>
<td>degree(s) Celsius</td>
</tr>
<tr>
<td>°CDB</td>
<td>degree(s) Celsius Dry Bulb</td>
</tr>
<tr>
<td>°CWB</td>
<td>degree(s) Celsius Wet Bulb</td>
</tr>
<tr>
<td>-e/MJ</td>
<td>equivalent per Megajoule(s)</td>
</tr>
<tr>
<td>μm</td>
<td>micrometre</td>
</tr>
<tr>
<td>dB(A)</td>
<td>decibels “A” scale weighting network</td>
</tr>
<tr>
<td>f’c</td>
<td>Characteristic compressive strength of concrete at 28 days</td>
</tr>
<tr>
<td>f’y</td>
<td>Yield stress used in design</td>
</tr>
<tr>
<td>G</td>
<td>Dead load</td>
</tr>
<tr>
<td>J</td>
<td>Joule(s)</td>
</tr>
<tr>
<td>J/kg.K</td>
<td>Joules per kilogram degree Kelvin</td>
</tr>
<tr>
<td>J/s.m2</td>
<td>Joules per second square metre</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin(s)</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram(s)</td>
</tr>
<tr>
<td>kg/m</td>
<td>kilogram(s) per metre</td>
</tr>
<tr>
<td>kg/m2</td>
<td>kilogram(s) per square metre</td>
</tr>
<tr>
<td>kg/m3</td>
<td>kilogram(s) per cubic metre</td>
</tr>
<tr>
<td>kJ/m2.hour</td>
<td>kilojoules per square metre hour</td>
</tr>
<tr>
<td>km</td>
<td>kilometre(s)</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal(s)</td>
</tr>
<tr>
<td>kW/m2</td>
<td>kilowatt(s) per square metre</td>
</tr>
<tr>
<td>kW Heating</td>
<td>kilowatt(s) of heating</td>
</tr>
<tr>
<td>kWr</td>
<td>kilowatt(s) of refrigeration</td>
</tr>
<tr>
<td>L</td>
<td>litre(s)</td>
</tr>
<tr>
<td>L/min</td>
<td>litre(s) per minute</td>
</tr>
<tr>
<td>L/s</td>
<td>litre(s) per second</td>
</tr>
<tr>
<td>L/s.m2</td>
<td>litre(s) per second square metre</td>
</tr>
<tr>
<td>Lumens/W</td>
<td>Lumens per Watt</td>
</tr>
<tr>
<td>lx</td>
<td>lux</td>
</tr>
<tr>
<td>m</td>
<td>metre(s)</td>
</tr>
<tr>
<td>m/s</td>
<td>metre(s) per second</td>
</tr>
<tr>
<td>m2</td>
<td>square metre(s)</td>
</tr>
<tr>
<td>m2.K/W</td>
<td>square metre Kelvin(s) per Watt</td>
</tr>
<tr>
<td>m3</td>
<td>cubic metre(s)</td>
</tr>
<tr>
<td>m3/hour</td>
<td>cubic metre(s) per hour</td>
</tr>
<tr>
<td>m3/s</td>
<td>cubic metre(s) per second</td>
</tr>
<tr>
<td>mcd/m2</td>
<td>millicandelas per square metre</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>MJ/hour</td>
<td>Megajoules per hour</td>
</tr>
</tbody>
</table>
Symbols

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJ/m2.annum</td>
<td>Megajoules per square metre annum</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre(s)</td>
</tr>
<tr>
<td>mm²</td>
<td>square millimetre(s)</td>
</tr>
<tr>
<td>MW</td>
<td>megawatt(s)</td>
</tr>
<tr>
<td>N</td>
<td>newton(s)</td>
</tr>
<tr>
<td>N/m</td>
<td>Newton(s) per metre</td>
</tr>
<tr>
<td>Pa</td>
<td>pascal(s)</td>
</tr>
<tr>
<td>Pa/m</td>
<td>pascal(s) per metre</td>
</tr>
<tr>
<td>Q</td>
<td>Live load</td>
</tr>
<tr>
<td>s</td>
<td>second(s)</td>
</tr>
<tr>
<td>ULS</td>
<td>Ultimate limit state</td>
</tr>
<tr>
<td>V</td>
<td>Volt(s)</td>
</tr>
<tr>
<td>W</td>
<td>Watt(s)</td>
</tr>
<tr>
<td>W/input power</td>
<td>Watts of input power</td>
</tr>
<tr>
<td>W/(\text{W}\text{input power})</td>
<td>Watts of thermal refrigeration per watt of input power</td>
</tr>
<tr>
<td>W/kW/rej</td>
<td>Watts per kilowatt of heat rejected</td>
</tr>
<tr>
<td>W/m.K</td>
<td>Watts per metre degree Kelvin</td>
</tr>
<tr>
<td>W/m²</td>
<td>Watts per square metre</td>
</tr>
<tr>
<td>°south</td>
<td>degree south</td>
</tr>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>></td>
<td>greater than</td>
</tr>
<tr>
<td><</td>
<td>less than</td>
</tr>
<tr>
<td>≤</td>
<td>less than or equal to</td>
</tr>
<tr>
<td>≥</td>
<td>equal to or more than</td>
</tr>
</tbody>
</table>
Glossary

Above ground rainwater tank: A rainwater tank that is not in any way set into the ground.

Accessible: Having features to enable use by people with a disability.

Accessway: A continuous accessible path of travel (as defined in AS 1428.1) to, into or within a building.

Accredited Testing Laboratory: One of the following:

(a) An organisation accredited by the National Association of Testing Authorities (NATA) to undertake the relevant tests.

(b) An organisation outside Australia accredited to undertake the relevant tests by an authority recognised by NATA through a mutual recognition agreement.

(c) An organisation recognised as being an Accredited Testing Laboratory under legislation at the time the test was undertaken.

Activity support level: The degree to which occupants can undertake activities with respect to the likely activity traits and occupant traits.

Explanatory Information: This term is used to articulate whether the height of a room or space is sufficient and by what degree. This is achieved by having regard to the room or space’s intended use by occupants, through consideration of the defined terms ‘activity traits’ and ‘occupant traits’.

(a) For the purposes of Volume One, the features of the activities that will be undertaken in a habitable room or space.

(b) For the purposes of Volume Two, the features of the activities that will be undertaken in a room or space.

Explanatory Information: This term is used to describe the characteristics of the activities that will be undertaken in a room or space.

For example, the activities likely to be undertaken in a bedroom, and the associated features are—

- sleeping — a person laying horizontally; and
- resting — a person laying horizontally or sitting upright on the bed; and
- leisure activities, such as reading a book — a person sitting upright on the bed, with enough space to stretch their arms vertically; and
- dressing/changing clothes — a person standing with enough space to stretch their arms vertically.

Administering body: The body responsible for administering the WaterMark Certification Scheme.

Aged care building: A Class 9c building for residential accommodation of aged persons who, due to varying degrees of incapacity associated with the ageing process, are provided with personal care services and 24 hour staff assistance to evacuate the building during an emergency.

NSW

Air-conditioning: For the purposes of Section J of Volume One, a service that actively cools or heats the air within a space, but does not include a service that directly—

(a) cools or heats cold or hot rooms; or

(b) maintains specialised conditions for equipment or processes, where this is the main purpose of the service.

Alarm zone: For the purposes of Specification 23, an area of a building protected by one or more smoke alarms connected to one alarm circuit.

Alteration: In relation to a building, includes an addition or extension to a building.

Aluminium Composite Panel (ACP): Flat or profiled aluminium sheet material in composite with any type of materials.

Amenity: An attribute which contributes to the health, physical independence, comfort and well-being of people.
Definitions

Ancillary element: An element that is secondary to and not an integral part of another element to which it is attached.

Annual exceedance probability: The probability that a given rainfall total accumulated over a given duration will be exceeded in any one year.

Annual greenhouse gas emissions: The theoretical amount of greenhouse gas emissions attributable to the energy used annually by a building’s services, excluding kitchen exhaust and the like.

Appropriate authority: For the purposes of the Fire Safety Verification Method, means the relevant authority with the statutory responsibility to determine the particular matter satisfies the relevant Performance Requirement.

Explanatory Information:
The Appropriate Authority is typically the building surveyor or building certifier charged with the statutory responsibility to determine building compliance and issue the building permit / approval and occupancy certificate / approval.

NSW Appropriate authority

Appropriate authority: The relevant authority with the statutory responsibility to determine the particular matter.

Appropriately qualified person: A person recognised by the appropriate authority as having qualifications and/or experience in the relevant discipline in question.

Approved disposal system: A system for the disposal of sewage, sullage or stormwater approved by an authority having jurisdiction.

Articulated masonry: Masonry construction in which special provisions have been made for movement by articulation.

NSW Assembly building

Assembly building: A building where people may assemble for—

(a) civic, theatrical, social, political or religious purposes including a library, theatre, public hall or place of worship; or

(b) educational purposes in a school, early childhood centre, preschool, or the like; or

(c) entertainment, recreational or sporting purposes including—

(i) a discotheque, nightclub or a bar area of a hotel or motel providing live entertainment or containing a dance floor; or

(ii) a cinema; or

(iii) a sports stadium, sporting or other club; or

(d) transit purposes including a bus station, railway station, airport or ferry terminal.

Assessment Method: A method that can be used for determining that a Performance Solution or Deemed-to-Satisfy Solution complies with the Performance Requirements.

Atrium: A space within a building that connects 2 or more storeys and—

(a) is enclosed at the top by a floor or roof (including a glazed roof structure); and

(b) includes any adjacent part of the building not separated by an appropriate barrier to fire; but

(c) does not include a stairwell, rampwell or the space within a shaft; and

(d) for the purposes of (a) a space is considered enclosed if the area of the enclosing floor or roof is greater than 50% of the area of the space, measured in plan, of any of the storeys connected by the space.

Atrium well: A space in an atrium bounded by the perimeter of the openings in the floors or by the perimeter of the floors and the external walls.

Automatic: Designed to operate when activated by a heat, smoke or fire sensing device.

(a) The time between ignition of a fire and the onset of untenable conditions in a specific part of a building.

(b) The time referred to in (1) is the calculated interval between the time of ignition of a fire and the time at which conditions become such that the occupant is unable to take effective action to escape to a place of safety.

Average daylight factor: The ratio of the illumination level within a room provided by daylight to the level of daylight outside the building during overcast conditions.
Definitions

Average recurrence interval: Applied to rainfall, means the expected or average interval between exceedances for a 5 minute duration rainfall intensity.

Average specific extinction area: The average specific extinction area for smoke as determined by AS 5637.1.

Backflow prevention device: An air gap, break tank or mechanical device that is designed to prevent the unplanned reversal of flow of water or contaminants into the water service or a Network Utility Operator’s water supply.

Backpressure: A reversal of water flow caused by the downstream pressure becoming greater than the supply pressure.

Backsiphonage: A reversal of flow of water caused by negative pressure in the distributing pipes of a water service or supply.

Backstage: A space associated with, and adjacent to, a *stage* in a Class 9b building for scenery, props, equipment, dressing rooms, or the like.

Battery system: One or more chemical cells connected in series, parallel or a combination of the two for the purpose of electrical energy storage.

Blockage: An obstruction within a *water service or sanitary plumbing or drainage* system.

Boiler: A vessel or an arrangement of vessels and interconnecting parts, wherein steam or other vapour is generated, or water or other liquid is heated at a pressure above that of the atmosphere, by the application of fire, the products of combustion, electrical power, or similar high temperature means, and—

- includes superheaters, reheaters, economisers, boiler piping, supports, mountings, valves, gauges, fittings, controls, the boiler settings and directly associated equipment; but
- excludes a fully flooded or pressurised system where water or other liquid is heated to a temperature lower than the normal atmospheric boiling temperature of the liquid.

Bond breaker: A material used as part of a *waterproofing system* that prevents the membrane bonding to the substrate, bedding or lining.

Breaking surf: Any area of salt water in which waves break on an average of at least 4 days per week but does not include white caps or choppy water.

Explanatory Information

Breaking surf normally occurs in areas exposed to the open sea. Breaking surf does not normally occur in sheltered areas, such as that which occurs around Port Phillip Bay, Sydney Harbour, Swan River, Derwent River and similar locations.

Brittle failure: Loss of strength to resist design actions without first undergoing significant deformation which, for the purposes of the *Performance Requirements*, may be taken to include (but is not limited to) buckling, fatigue failure and soil bearing failure.

Building complexity criteria: Are used to determine whether all or part of a building is low, medium, high or very high building complexity — the building complexity criteria are:

- Attributes — the building is designed or constructed with any of the following sub-criteria:
 - *An effective height* of more than 25 m.
 - One or more *Performance Solutions* used to demonstrate compliance with *Performance Requirements* relating to material and systems for structural safety.
 - One or more *Performance Solutions* used to demonstrate compliance with *Performance Requirements* relating to material and systems for fire safety.
 - In an area prone to natural disaster or adverse environmental conditions.
- Class 2 — all or part of the building is Class 2 of three or more storeys.
- Occupant numbers — the building is to occupied by more than 100 people determined in accordance with D2D18.
- Occupant characteristics — the building is to be occupied by more than 10 people who will require assistance to evacuate the building in an emergency.
- Building Importance Level 4 — the building is determined to be Importance Level 4 in accordance with Table B1D3a.

Building complexity: high: Where a building meets three of *building complexity criteria* (a) (Attributes), (b) (Class 2), (c) (Occupant numbers), or (d) (Occupant characteristics).
Building complexity: low: Where a building meets one only of building complexity criteria (a) (Attributes), (b) (Class 2), (c) (Occupant numbers), or (d) (Occupant characteristics).

Building complexity: medium: Where a building meets two of building complexity criteria (a) (Attributes), (b) (Class 2), (c) (Occupant numbers), or (d) (Occupant characteristics).

Building complexity: very high: Where a building meets—
(a) all building complexity criteria (a) (Attributes), (b) (Class 2), (c) (Occupant numbers), and (d) (Occupant characteristics); or
(b) building complexity criterion (e) (Building Importance Level 4).

Notes:
The NCC currently does not include corresponding technical requirements relating to the defined term ‘building complexity criteria’ and the various building complexity levels. It is intended that these terms will be integrated into future editions of the NCC.

Buried rainwater tank: A rainwater tank that is set into and completely covered by earth.

Burnout: Exposure to fire for a time that includes fire growth, full development, and decay in the absence of intervention or automatic suppression, beyond which the fire is no longer a threat to building elements intended to perform loadbearing or fire separation functions, or both.

Carpark: A building that is used for the parking of motor vehicles but is neither a private garage nor used for the servicing of vehicles, other than washing, cleaning or polishing.

Cavity: A void between 2 leaves of masonry, or in masonry veneer construction, a void between a leaf of masonry and the supporting frame.

Cavity wall: For the purposes of F1V1 and H2V1, a wall that incorporates a drained cavity.

Certificate of Accreditation: A certificate issued by a State or Territory accreditation authority stating that the properties and performance of a building material or method of construction or design fulfil specific requirements of the NCC.

Certificate of Conformity: A certificate issued under the ABCB scheme for products and systems certification stating that the properties and performance of a building material or method of construction or design fulfil specific requirements of the NCC.

Certification body: A person or organisation operating in the field of material, product, form of construction or design certification that has been accredited by the Joint Accreditation System of Australia and New Zealand (JAS-ANZ), and is accredited for a purpose other than as part of the CodeMark Australia Certification Scheme or WaterMark Certification Scheme.

Characteristic: The occupant data to be used in the modelling of access solutions which define how an occupant interacts with a building, i.e. occupant movement speeds, turning ability, reach capability, perception of luminance contrast and hearing threshold.

Clad frame: Timber or metal frame construction with exterior timber or sheet wall cladding that is not sensitive to minor movement and includes substructure masonry walls up to 1.5 m high.

Climate zone: Climate zone means an area defined in Figure 2 and in Tables 2a to 2h for specific locations, having energy efficiency provisions based on a range of similar climatic characteristics.

Table 2a: Climate zones for thermal design — Australian Capital Territory

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canberra</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 2b: Climate zones for thermal design — New South Wales

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albury</td>
<td>4</td>
</tr>
<tr>
<td>Armidale</td>
<td>7</td>
</tr>
<tr>
<td>Batemans Bay</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 2c: Climate zones for thermal design — Northern Territory

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathurst</td>
<td>7</td>
</tr>
<tr>
<td>Bega</td>
<td>6</td>
</tr>
<tr>
<td>Bellingen Shire - Dorrigo Plateau</td>
<td>7</td>
</tr>
<tr>
<td>Bellingen Shire - Valley & seaboard</td>
<td>2</td>
</tr>
<tr>
<td>Bourke</td>
<td>4</td>
</tr>
<tr>
<td>Broken Hill</td>
<td>4</td>
</tr>
<tr>
<td>Byron Bay</td>
<td>2</td>
</tr>
<tr>
<td>Cobar</td>
<td>4</td>
</tr>
<tr>
<td>Coffs Harbour</td>
<td>2</td>
</tr>
<tr>
<td>Dubbo</td>
<td>4</td>
</tr>
<tr>
<td>Goulburn</td>
<td>7</td>
</tr>
<tr>
<td>Grafton</td>
<td>2</td>
</tr>
<tr>
<td>Griffith</td>
<td>4</td>
</tr>
<tr>
<td>Ivanhoe</td>
<td>4</td>
</tr>
<tr>
<td>Lismore</td>
<td>2</td>
</tr>
<tr>
<td>Lord Howe Island</td>
<td>2</td>
</tr>
<tr>
<td>Moree</td>
<td>4</td>
</tr>
<tr>
<td>Newcastle</td>
<td>5</td>
</tr>
<tr>
<td>Nowra</td>
<td>6</td>
</tr>
<tr>
<td>Orange</td>
<td>7</td>
</tr>
<tr>
<td>Perisher - Smiggins</td>
<td>8</td>
</tr>
<tr>
<td>Port Macquarie</td>
<td>5</td>
</tr>
<tr>
<td>Sydney East</td>
<td>5</td>
</tr>
<tr>
<td>Sydney West</td>
<td>6</td>
</tr>
<tr>
<td>Tamworth</td>
<td>4</td>
</tr>
<tr>
<td>Thredbo</td>
<td>8</td>
</tr>
<tr>
<td>Wagga Wagga</td>
<td>4</td>
</tr>
<tr>
<td>Williamtown</td>
<td>5</td>
</tr>
<tr>
<td>Wollongong</td>
<td>5</td>
</tr>
<tr>
<td>Yass</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 2d: Climate zones for thermal design — Queensland

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birdsville</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 2e: Climate zones for thermal design — South Australia

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brisbane</td>
<td>2</td>
</tr>
<tr>
<td>Bundaberg</td>
<td>2</td>
</tr>
<tr>
<td>Cairns</td>
<td>1</td>
</tr>
<tr>
<td>Cooktown</td>
<td>1</td>
</tr>
<tr>
<td>Cunnamulla</td>
<td>3</td>
</tr>
<tr>
<td>Gladstone</td>
<td>2</td>
</tr>
<tr>
<td>Hervey Bay</td>
<td>2</td>
</tr>
<tr>
<td>Hughenden</td>
<td>3</td>
</tr>
<tr>
<td>Longreach</td>
<td>3</td>
</tr>
<tr>
<td>Mackay</td>
<td>2</td>
</tr>
<tr>
<td>Mount Isa</td>
<td>3</td>
</tr>
<tr>
<td>Normanton</td>
<td>1</td>
</tr>
<tr>
<td>Rockhampton</td>
<td>2</td>
</tr>
<tr>
<td>Roma</td>
<td>3</td>
</tr>
<tr>
<td>Southport</td>
<td>2</td>
</tr>
<tr>
<td>Toowoomba</td>
<td>5</td>
</tr>
<tr>
<td>Townsville</td>
<td>1</td>
</tr>
<tr>
<td>Warwick</td>
<td>5</td>
</tr>
<tr>
<td>Weipa</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adelaide</td>
<td>5</td>
</tr>
<tr>
<td>Bordertown</td>
<td>6</td>
</tr>
<tr>
<td>Ceduna</td>
<td>5</td>
</tr>
<tr>
<td>Cook</td>
<td>4</td>
</tr>
<tr>
<td>Elliston</td>
<td>5</td>
</tr>
<tr>
<td>Kingscote</td>
<td>6</td>
</tr>
<tr>
<td>Leigh Creek</td>
<td>5</td>
</tr>
<tr>
<td>Lobethal</td>
<td>6</td>
</tr>
<tr>
<td>Loxton</td>
<td>5</td>
</tr>
<tr>
<td>Naracoorte</td>
<td>6</td>
</tr>
<tr>
<td>Marree</td>
<td>4</td>
</tr>
<tr>
<td>Mount Gambier</td>
<td>6</td>
</tr>
<tr>
<td>Murray Bridge</td>
<td>6</td>
</tr>
<tr>
<td>Oodnadatta</td>
<td>4</td>
</tr>
<tr>
<td>Port Augusta</td>
<td>4</td>
</tr>
<tr>
<td>Port Lincoln</td>
<td>5</td>
</tr>
<tr>
<td>Renmark</td>
<td>5</td>
</tr>
<tr>
<td>Tarcoola</td>
<td>4</td>
</tr>
<tr>
<td>Victor Harbour</td>
<td>6</td>
</tr>
<tr>
<td>Whyalla</td>
<td>4</td>
</tr>
</tbody>
</table>
Table 2f: Climate zones for thermal design — Tasmania

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burnie</td>
<td>7</td>
</tr>
<tr>
<td>Bicheno</td>
<td>7</td>
</tr>
<tr>
<td>Deloraine</td>
<td>7</td>
</tr>
<tr>
<td>Devonport</td>
<td>7</td>
</tr>
<tr>
<td>Flinders Island</td>
<td>7</td>
</tr>
<tr>
<td>Hobart</td>
<td>7</td>
</tr>
<tr>
<td>Huonville</td>
<td>7</td>
</tr>
<tr>
<td>King Island</td>
<td>7</td>
</tr>
<tr>
<td>Launceston</td>
<td>7</td>
</tr>
<tr>
<td>New Norfolk</td>
<td>7</td>
</tr>
<tr>
<td>Oatlands</td>
<td>7</td>
</tr>
<tr>
<td>Orford</td>
<td>7</td>
</tr>
<tr>
<td>Rossarden</td>
<td>7</td>
</tr>
<tr>
<td>Smithton</td>
<td>7</td>
</tr>
<tr>
<td>St Marys</td>
<td>7</td>
</tr>
<tr>
<td>Zeehan</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 2g: Climate zones for thermal design — Victoria

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglesea</td>
<td>6</td>
</tr>
<tr>
<td>Ararat</td>
<td>7</td>
</tr>
<tr>
<td>Bairnsdale</td>
<td>6</td>
</tr>
<tr>
<td>Ballarat</td>
<td>7</td>
</tr>
<tr>
<td>Benalla</td>
<td>6</td>
</tr>
<tr>
<td>Bendigo</td>
<td>6</td>
</tr>
<tr>
<td>Bright</td>
<td>7</td>
</tr>
<tr>
<td>Colac</td>
<td>6</td>
</tr>
<tr>
<td>Dandenong</td>
<td>6</td>
</tr>
<tr>
<td>Echuca</td>
<td>4</td>
</tr>
<tr>
<td>Geelong</td>
<td>6</td>
</tr>
<tr>
<td>Hamilton</td>
<td>7</td>
</tr>
<tr>
<td>Horsham</td>
<td>6</td>
</tr>
<tr>
<td>Melbourne</td>
<td>6</td>
</tr>
<tr>
<td>Mildura</td>
<td>4</td>
</tr>
<tr>
<td>Portland</td>
<td>6</td>
</tr>
<tr>
<td>Sale</td>
<td>6</td>
</tr>
<tr>
<td>Shepparton</td>
<td>4</td>
</tr>
<tr>
<td>Swan Hill</td>
<td>4</td>
</tr>
<tr>
<td>Traralgon</td>
<td>6</td>
</tr>
<tr>
<td>Wangaratta</td>
<td>7</td>
</tr>
<tr>
<td>Warrnambool</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 2h: Climate zones for thermal design — Western Australia

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wodonga</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albany</td>
<td>6</td>
</tr>
<tr>
<td>Balladonia</td>
<td>4</td>
</tr>
<tr>
<td>Broome</td>
<td>1</td>
</tr>
<tr>
<td>Bunbury</td>
<td>5</td>
</tr>
<tr>
<td>Carnarvon</td>
<td>3</td>
</tr>
<tr>
<td>Christmas Island</td>
<td>1</td>
</tr>
<tr>
<td>Cocos Island</td>
<td>1</td>
</tr>
<tr>
<td>Derby</td>
<td>1</td>
</tr>
<tr>
<td>Esperance</td>
<td>5</td>
</tr>
<tr>
<td>Exmouth</td>
<td>1</td>
</tr>
<tr>
<td>Geraldton</td>
<td>5</td>
</tr>
<tr>
<td>Halls Creek</td>
<td>3</td>
</tr>
<tr>
<td>Kalgoorlie-Boulder</td>
<td>4</td>
</tr>
<tr>
<td>Karratha</td>
<td>1</td>
</tr>
<tr>
<td>Meekatharra</td>
<td>4</td>
</tr>
<tr>
<td>Northam</td>
<td>4</td>
</tr>
<tr>
<td>Pemberton</td>
<td>6</td>
</tr>
<tr>
<td>Perth</td>
<td>5</td>
</tr>
<tr>
<td>Port Hedland</td>
<td>1</td>
</tr>
<tr>
<td>Wagin</td>
<td>4</td>
</tr>
<tr>
<td>Wyndham</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 2: Climate zones for thermal design

Figure Notes:
(a) This map can be viewed in enlargeable form on the ABCB website at abcb.gov.au.
(b) A Zone 4 area in South Australia, other than a council area, at an altitude greater than 300 m above the Australian Height Datum is to be considered as Zone 5.
(c) The areas referred to in (2) have been defined in an enlarged format on the following maps produced by the Department of Planning, Transport and Infrastructure (these maps can be viewed on the Government of South Australia website at www.sa.gov.au):
(i) Adelaide Hills Climate Zone Map.
(ii) Barossa Council Climate Zone Map.
(iii) Regional Council of Goyder Climate Zone Map.
(d) Locations in climate zone 8 are in alpine areas.

Combustible: Applied to—
(a) a material — means combustible as determined by AS 1530.1; and
(b) construction or part of a building — means constructed wholly or in part of combustible materials.
(a) For the purposes of Volume One, a wall that is common to adjoining buildings.
(b) For the purposes of Volume Two and the ABCB Housing Provisions, a wall that is common to adjoining buildings other than Class 1 buildings.

Condensation: The formation of moisture on the surface of a building element or material as a result of moist air coming into contact with a surface which is at a lower temperature.
(a) For the purposes of Volume One, a space within a building, including a ceiling or under-floor supply air plenum or return air plenum, where the environment is likely, by the intended use of the space, to have its temperature controlled by air-conditioning.
(b) For the purposes of Volume Two, a space within a building that is heated or cooled by the building’s domestic services, excluding a non-habitable room in which a heater with a capacity of not more than 1.2 kW or 4.3 MJ/hour is installed.

Connections: The parts that fix the members into the structure, through which the loads pass.
Construction activity actions: Actions due to stacking of building materials or the use of equipment, including cranes and trucks, during construction or actions which may be induced by floor to floor propping.

Containment protection: The installation of a backflow prevention device at the point of connection of a Network Utility Operator’s water supply to a site.

Contaminant: Any substance (including gases, liquids, solids or micro-organisms), energy (excluding noise) or heat, that either by itself or in combination with the same, similar or other substances, energy or heat, changes or is likely to change the physical, chemical or biological condition of water.

Controlled fill: Material that has been placed and compacted in layers with compaction equipment (such as a vibrating plate) within a defined moisture range to a defined density requirement.

Cooling load: The calculated amount of energy removed from the cooled spaces of the building annually by artificial means to maintain the desired temperatures in those spaces.

Critical radiant flux (CRF): The critical heat flux at extinguishment (CHF in kW/m²) as determined by AS ISO 9239.1.

Cross-connection: Any actual or potential connection between a water supply and any contaminant.

Curtain wall: A non-loadbearing external wall that is not a panel wall.

Damp-proof course (DPC): A continuous layer of impervious material placed in a masonry wall or pier, or between a wall or pier and a floor, to prevent the upward or downward migration of water.

Deemed-to-Satisfy Provisions: Provisions which are deemed to satisfy the Performance Requirements.

Defined flood event (DFE): The flood event selected for the management of flood hazard for the location of specific development as determined by the appropriate authority.

Defined flood level (DFL): The flood level associated with a defined flood event relative to a specified datum (see Figure 3).
NSW Designated bushfire prone area

Designated bushfire prone area: Land which has been designated under a power of legislation as being subject, or likely to be subject, to bushfires.

Design bushfire: The characteristics of a bushfire, its initiation, spread and development, which arises from weather conditions, topography and fuel (vegetation) in a given setting, used to determine fire actions.

Design fire: The quantitative description of a representation of a fire within the design scenario.

Design scenario: The specific scenario of which the sequence of events is quantified and a fire safety engineering analysis is conducted against.

Design wind speed: The design gust wind speed for the area where the building is located, calculated in accordance with AS/NZS 1170.2 or AS 4055 (see Table 43 for wind classes).

Wind classes

<table>
<thead>
<tr>
<th>Non-cyclonic Region A and B</th>
<th>Cyclonic Region C and D</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1, N2, N3</td>
<td>C1</td>
</tr>
<tr>
<td>N4, N5, N6 (these wind classes are covered in the Housing Provisions Part 2.2, Structural provisions).</td>
<td>C2, C3, C4 (these wind classes are covered in the Housing Provisions Part 2.2, Structural provisions).</td>
</tr>
</tbody>
</table>

Table Notes:

(a) Wind classification map identifying wind regions is contained in Housing Provisions Part 2.2 (see Figure 2.2.3).

(b) Information on wind classes for particular areas may be available from the appropriate authority.
Definitions

“N” = non-cyclonic winds and “C” = cyclonic winds.

Detention centre: A building in which persons are securely detained by means of the built structure including a prison, remand centre, juvenile detention centre, holding cells or psychiatric detention centre.

Direct fix cladding wall: For the purposes of F1V1 and H2V1, means a wall with cladding attached directly to the wall framing without the use of a drained cavity.

(a) A wall having a minimum 20 mm cavity between 2 separate leaves, and—
 (i) for masonry, where wall ties are used to connect leaves, the ties are of the resilient type; and
 (ii) for other than masonry, there is no mechanical linkage between the leaves, except at the periphery.

(b) A staggered stud wall is not deemed to be discontinuous construction.

Display glazing: Glazing used to display retail goods in a shop or showroom directly adjacent to a walkway or footpath, but not including that used in a café or restaurant.

Domestic services: The basic engineering systems that use energy or control the use of energy; and—

(a) includes—
 (i) heating, air-conditioning, mechanical ventilation and artificial lighting; and
 (ii) pumps and heaters for swimming pools and spa pools; and
 (iii) heated water systems; but

(b) excludes cooking facilities and portable appliances.

Drainage: Any part of—

(a) sanitary drainage, liquid trade waste drainage or stormwater drainage system,

(b) a sanitary drainage system, including any liquid trade waste drainage; or

Drainage flange: A flange connected to a waste pipe, at the point at which it passes through the floor substrate, to prevent leakage and which enables tile bed drainage into the waste pipe.

Drainage riser: A waste pipe between the floor waste and the drainage system.

Drinking water: Water intended primarily for human consumption but which has other domestic uses.

Explanatory Information:

See also the Australian Drinking Water Guidelines produced by the National Health and Medical Research Council.

Ductile failure: Significant deformation of a member without loss of strength to resist design actions which, for the purposes of the Performance Requirements, may be taken to include (but not limited to) soil settlement and creep failure.

Early childhood centre: Any premises or part thereof providing or intending to provide a centre-based education and care service within the meaning of the Education and Care Services National Law Act 2010 (Vic), the Education and Care Services National Regulations and centre-based services that are licensed or approved under State and Territory children’s services law, but excludes education and care primarily provided to school aged children in outside school hours settings.

Effective height: The vertical distance between the floor of the lowest storey included in the calculation of rise in storeys and the floor of the topmost storey (excluding the topmost storey if it contains only heating, ventilating, lift or other equipment, water tanks or similar service units).

Efficacy: The degree to which a system achieves a design objective given that it performs to a level consistent with the system specification during the relevant fire scenario.

Electricity network substation: A building in which high voltage supply is converted or transformed and which is controlled by a licensed network service provider designated under a power of legislation.

Electric passenger lift: A power-operated lift for raising or lowering people in a car in which the motion of the car is obtained from an electric motor mechanically coupled to the hoisting mechanism.

Electrohydraulic passenger lift: A power-operated lift for raising or lowering people in a car in which the motion of the
car is obtained from the action of liquid under pressure acting on a piston or ram, the pressure being generated by a pump driven by an individual electric motor.

Engaged pier: A pier bonded to a masonry wall by course bonding of masonry units or by masonry ties.

(a) For the purposes of Section J in Volume One, the parts of a building’s **fabric** that separate a **conditioned space** or **habitable room** from—
 (i) the exterior of the building; or
 (ii) a non-**conditioned space** including—
 (A) the floor of a rooftop plant room, lift-machine room or the like; and
 (B) the floor above a **carpark** or warehouse; and
 (C) the **common wall** with a **carpark**, warehouse or the like.

(b) For the purposes of Part H6 in Volume Two and Section 13 of the Housing Provisions, the parts of a building’s **fabric** that separate artificially heated or cooled spaces from—
 (i) the exterior of the building; or
 (ii) other spaces that are not artificially heated or cooled.

Equivalent: Equivalent to the level of health, safety and amenity provided by the **Deemed-to-Satisfy Provisions**.

Evacuation route: The continuous path of travel (including **exits**, **public corridors** and the like) from any part of a building, including within a **sole-occupancy unit** in a Class 2 or 3 building or Class 4 part, to a **safe place**.

Evacuation time: The time calculated from when the emergency starts for the occupants of the building to evacuate to a **safe place**.

(a) Any, or any combination of the following if they provide egress to a road or **open space**:
 (i) An internal or external stairway.
 (ii) A ramp.
 (iii) A **fire-isolated passageway**.
 (iv) A doorway opening to a road or **open space**.

(b) A **horizontal exit** or a **fire-isolated passageway** leading to a **horizontal exit**.

TAS Expert Judgement

Expert Judgement: The judgement of an expert who has the qualifications and experience to determine whether a **Performance Solution** or **Deemed-to-Satisfy Solution** complies with the **Performance Requirements**.

Explanatory Information:

Contemporary and relevant qualifications and/or experience are necessary to determine whether a **Performance Solution** complies with the **Performance Requirements**. The level of qualification and/or experience may differ depending on the complexity of the proposal and the requirements of the regulatory authority. Practitioners should seek advice from the authority having jurisdiction or **appropriate authority** for clarification as to what will be accepted.

Exposed joint: A construction joint, control joint, expansion joint, contraction joint or movement joint that is exposed to rainwater.

(a) For the purposes of Volume One, an outer wall of a building which is not a **common wall**.

(b) For the purposes of Volume Two, an outer wall of a building which is not a **separating wall**.

Extra-low voltage: A **voltage** not exceeding 50 V AC or 120 V ripple-free DC.

Fabric: The basic building structural elements and components of a building including the roof, ceilings, walls, glazing and floors.

SA Farm building

Farm building: A Class 7 or 8 building located on land primarily used for **farming**—

(a) that is—
 (i) used in connection with **farming**; or
 (ii) used primarily to store one or more **farm vehicles**; or
Definitions

(iii) a combination of (i) and (ii); and
(b) in which the total number of persons accommodated at any time does not exceed one person per 200 m² of floor area or part thereof, up to a maximum of 8 persons; and
(c) with a total floor area of not more than 3500 m².

Farming: Includes—
(a) cultivating, propagating and harvesting plants or fungi or their products or parts, including seeds, spores, bulbs or the like, but does not include forestry; or
(b) maintaining animals in any physical environment for the purposes of—
(i) breeding them; or
(ii) selling them; or
(iii) acquiring and selling their bodily produce such as milk, wool, eggs or the like; or
(c) a combination of (a) and (b),
but does not include forestry or maintaining animals for sport or recreational purposes.

Farm shed: A single storey Class 7 or 8 building located on land primarily used for farming—
(a) that is—
(i) used in connection with farming; or
(ii) used primarily to store one or more farm vehicles; or
(iii) a combination of (i) and (ii); and
(b) occupied neither frequently nor for extended periods by people; and
(c) in which the total number of persons accommodated at any time does not exceed 2; and
(d) with a total floor area of more than 500 m² but not more than 2000 m².

Farm vehicle: A vehicle used in connection with farming.

Fatigue failure: Fracture of a material through progressive brittle cracking under repeated alternating or cyclic stresses of an intensity considerably less than strength under static load.

Finished ground level: For the purposes of H1D4 and H2D3 in Volume Two and Section 4 of the Housing Provisions, means the ground level adjacent to footing systems at the completion of construction and landscaping.

Fire actions: Each of the following—
(a) airborne embers; and
(b) burning debris and/or accumulated embers adjacent to building elements; and
(c) heat transfer from combustible materials within the site; and
(d) radiant heat from a bushfire front; and
(e) flame contact from a bushfire front.

Fire brigade: A statutory authority constituted under an Act of Parliament having as one of its functions, the protection of life and property from fire and other emergencies.

Fire brigade station: For the purposes of E1D2(1)(b) and I3D9, means a state or territory government operated premises which is a station for a fire brigade.

Fire compartment: Either—
(a) the total space of a building; or
(b) when referred to in—
(i) the Performance Requirements — any part of a building separated from the remainder by barriers to fire such as walls and/or floors having an appropriate resistance to the spread of fire with any openings adequately protected; or
(ii) the Deemed-to-Satisfy Provisions — any part of a building separated from the remainder by walls and/or floors each having an FRL not less than that required for a fire wall for that type of construction and where all openings in the separating construction are protected in accordance with the Deemed-to-Satisfy Provisions of the relevant Part.
Fire growth: The stage of fire development during which the heat release rate and the temperature of the fire are generally increasing.

Fire hazard: The danger in terms of potential harm and degree of exposure arising from the start and spread of fire and the smoke and gases that are thereby generated.

Fire hazard properties: The following properties of a material or assembly that indicate how they behave under specific fire test conditions:

(a) Average specific extinction area, critical radiant flux and Flammability Index, determined as defined in Schedule 2.

(b) Smoke-Developed Index, smoke development rate and Spread-of-Flame Index, determined in accordance with Specification 3.

(c) Group number and smoke growth rate index (SMOGRA_{RC}), determined in accordance with Specification 7.

Fire intensity: The rate of release of calorific energy in watts, determined either theoretically or empirically, as applicable.

Fire-isolated passageway: A corridor, hallway or the like, of fire-resisting construction, which provides egress to or from a fire-isolated stairway or fire-isolated ramp or to a road or open space.

Fire-isolated ramp: A ramp within a fire-resisting enclosure which provides egress from a storey.

Fire-isolated stairway: A stairway within a fire-resisting shaft and includes the floor and roof or top enclosing structure.

(a) The sum of the net calorific values of the combustible contents which can reasonably be expected to burn within a fire compartment, including furnishings, built-in and removable materials, and building elements.

(b) For the purposes of (1), the calorific values must be determined at the ambient moisture content or humidity (the unit of measurement is MJ).

Fire-protective covering: Any one or more of the following:

(a) 13 mm fire-protective grade plasterboard.

(b) 12 mm cellulose cement flat sheeting complying with AS/NZS 2908.2 or ISO 8336.

(c) 12 mm fibrous plaster reinforced with 13 mm x 13 mm x 0.7 mm galvanised steel wire mesh located not more than 6 mm from the exposed face.

(d) Other material not less fire-protective than 13 mm fire-protective grade plasterboard, fixed in accordance with the normal trade practice for a fire-protective covering.

Fire-resistance level (FRL): The grading periods in minutes determined in accordance with Specifications 1 and 2, for the following criteria—

(a) structural adequacy; and

(b) integrity; and

(c) insulation,

and expressed in that order.

Notes:
A dash means there is no requirement for that criterion. For example, 90/–/– means there is no requirement for an FRL for integrity and insulation, and –/–/– means there is no requirement for an FRL.

Fire-resisting construction: For the purposes of Volume One, means one of the Types of construction referred to in Part C2 of Volume One.

(a) For the purposes of Volume One, applied to a building element, having an FRL appropriate for that element.

(b) For the purposes of Volume Two, applied to a structural member or other part of a building, having the FRL required for that structural member or other part.

Fire safety engineering: Application of engineering principles, rules and expert judgement based on a scientific appreciation of the fire phenomenon, often using specific design scenario, of the effects of fire and of the reaction and behaviour of people in order to—

(a) save life, protect property and preserve the environment and heritage from destructive fire; and

(b) quantify the hazards and risk of fire and its effects; and
(c) mitigate fire damage by proper design, construction, arrangement and use of buildings, materials, structures, industrial processes and transportation systems; and

(d) evaluate analytically the optimum protective and preventive measures, including design, installation and maintenance of active and passive fire and life safety systems, necessary to limit, within prescribed levels, the consequences of fire.

Fire safety system: One or any combination of the methods used in a building to—

(a) warn people of an emergency; or

(b) provide for safe evacuation; or

(c) restrict the spread of fire; or

(d) extinguish a fire,

and includes both active and passive systems.

Fire-source feature: Any one or more of the following:

(a) The far boundary of a road, river, lake or the like adjoining the allotment.

(b) A side or rear boundary of the allotment.

(c) An *external wall* of another building on the allotment which is not a Class 10 building.

Fire wall: A wall with an appropriate resistance to the spread of fire that divides a *storey* or building into *fire compartments*.

Fixed wired: For the purposes of *Specification 23*, a system of electrical wiring (either AC or DC), in which cables are fixed or supported in position.

Flammability Index: The index number as determined by AS 1530.2.

Flashing: A strip or sleeve of impervious material dressed, fitted or built-in to provide a barrier to moisture movement, or to divert the travel of moisture, or to cover a joint where water would otherwise penetrate to the interior of a building.

(a) *Perimeter flashing:* A flashing used at the floor-wall junction.

(b) *Vertical flashing:* A flashing used at wall junctions within shower areas.

Flashover: In relation to *fire hazard properties*, means a *heat release rate* of 1 MW.

Flight: That part of a stair that has a continuous series of *risers*, including *risers of winders*, not interrupted by a *landing* or floor.

Explanatory Information:

A flight is the part of a stair that has a continuous slope created by the nosing line of treads. The length of a flight is limited to restrict the distance a person could fall down a stair.

Quarter *landings*, as shown in *Explanatory Figure 1*, are considered sufficient to halt a person’s fall and therefore are considered for the purposes of Volume Two and the ABCB Housing Provisions not to be part of the flight.
Definitions

VIC Flood hazard area

Flood hazard area: The site (whether or not mapped) encompassing land lower than the flood hazard level which has been determined by the appropriate authority.

Flood hazard level (FHL): The flood level used to determine the height of floors in a building and represents the defined flood level plus the freeboard (see Figure 3).

(a) For the purposes of Volume One—

(i) in relation to a building — the total area of all storeys; and

(ii) in relation to a storey — the area of all floors of that storey measured over the enclosing walls, and includes—

(A) the area of a mezzanine within the storey, measured within the finished surfaces of any external walls; and

(B) the area occupied by any internal wall or partitions, any cupboard, or other built-in furniture, fixture or fitting; and

(C) if there is no enclosing wall, an area which has a use that contributes to the fire load or impacts on the safety, health or amenity of the occupants in relation to the provisions of the BCA; and

(iii) in relation to a room — the area of the room measured within the internal finished surfaces of the walls, and includes the area occupied by any cupboard or other built-in furniture, fixture or fitting; and

(iv) in relation to a fire compartment — the total area of all floors within the fire compartment measured within the finished internal surfaces of the bounding construction, and if there is no bounding construction, includes an area which has a use which contributes to the fire load; and

(v) in relation to an atrium — the total area of all floors within the atrium measured within the finished surfaces of the bounding construction and if no bounding construction, within the external walls.
For the purposes of Volume Two and the ABCB Housing Provisions, in relation to a room, the area of the room measured within the finished surfaces of the walls, and includes the area occupied by any cupboard or other built-in furniture, fixture or fitting (see Figure 4).

Figure 4: Identification of floor area of a room

Floor waste: A grated inlet within a graded floor intended to drain the floor surface.

Foundation: The ground which supports the building (see Figure 5).

Fractional effective dose (FED): The fraction of the dose (of thermal effects) that would render a person of average susceptibility incapable of escape.

Explanatory Information:
The definition for FED has been modified from the ISO definition to be made specific for the Fire Safety Verification Method. The use of CO or CO₂ as part of FED is not part of that Verification Method. This is because the ability to measure CO in a repeatable test varies by two orders of magnitude for common cellulosic fuel.

VIC Freeboard

Freeboard: The height above the defined flood level as determined by the appropriate authority, used to compensate for effects such as wave action and localised hydraulic behaviour.

Fully developed fire: The state of total involvement of the majority of available combustible materials in a fire.

(a) For the purposes of Section J, a transparent or translucent element and its supporting frame located in the envelope, and includes a window other than a roof light.

(b) For the purposes of Part H6 and Section 13 of the Housing Provisions—
 (i) a transparent or translucent element and its supporting frame located in the external fabric of the building; and
 (ii) includes a window other than a roof light.

Going: The horizontal dimension from the front to the back of a tread less any overhang from the next tread or landing above (see Figure 11.2.2f in the Housing Provisions).
Gradual failure: Relatively slow collapse of a structure that occurs through significant plastic deformation and/or moment redistribution.

Green Star: The building sustainability rating scheme managed by the Green Building Council of Australia.

Group number: The number of one of 4 groups of materials used in the regulation of fire hazard properties and applied to materials used as a finish, surface, lining, or attachment to a wall or ceiling.

Habitable room: A room used for normal domestic activities, and—
(a) includes a bedroom, living room, lounge room, music room, television room, kitchen, dining room, sewing room, study, playroom, family room, home theatre and sunroom; but
(b) excludes a bathroom, laundry, water closet, pantry, walk-in wardrobe, corridor, hallway, lobby, photographic darkroom, clothes-drying room, and other spaces of a specialised nature occupied neither frequently nor for extended periods.

Hazard Rating: A level of potential toxicity that may cause contamination in a drinking water system, having a range of either Low Hazard, Medium Hazard or High Hazard, is determined in accordance with NCC Volume Three, Specification 41, for any Deemed-to-Satisfy Solution.

Health-care building: A building whose occupants or patients undergoing medical treatment generally need physical assistance to evacuate the building during an emergency and includes—
(a) a public or private hospital; or
(b) a nursing home or similar facility for sick or disabled persons needing full-time care; or
(c) a clinic, day surgery or procedure unit where the effects of the predominant treatment administered involve patients becoming non-ambulatory and requiring supervised medical care on the premises for some time after the treatment.

Heated water: Water that has been intentionally heated; normally referred to as hot water or warm water.

Heating load: The calculated amount of energy delivered to the heated spaces of the building annually by artificial means to maintain the desired temperatures in those spaces.

Heat release: The thermal energy produced by combustion (measured in kJ).

Heat release rate (HRR): The rate of thermal energy production generated by combustion, measured in kW (preferred) or MW.

High Hazard: Any condition, device or practice which, in connection with a water supply, has the potential to cause death.

High wind area: A region that is subject to design wind speed more than N3 or C1 (see Table 3).

Hob: The upstand at the perimeter to a shower area.

Horizontal exit: A required doorway between 2 parts of a building separated from each other by a fire wall.

Hours of operation: The number of hours when the occupancy of the building is greater than 20% of the peak occupancy.
(a) For the purposes of Volume One, means software accredited under the Nationwide House Energy Rating Scheme.
(b) For the purposes of Volume Two—
(i) applied to H6V2—software accredited or previously accredited under the Nationwide House Energy Rating Scheme and the additional functionality provided in non-regulatory mode; and
(ii) applied to H6D3—software accredited under the Nationwide House Energy Rating Scheme.

Explanatory Information:
The Nationwide House Energy Rating Scheme (NatHERS) refers to the Australian Governments’ scheme that facilitates consistent energy ratings from software tools which are used to assess the potential thermal efficiency of dwelling envelopes.

Housing Provisions: The requirements for Class 1 and 10 buildings referenced in Volume Two of the National Construction Code, as published by the Australian Building Codes Board.

Illuminance: The luminous flux falling onto a unit area of surface.

Illumination power density: The total of the power that will be consumed by the lights in a space, including any lamps, ballasts, current regulators and control devices other than those that are plugged into socket outlets for intermittent use such as floor standing lamps, desk lamps or work station lamps, divided by the area of the space, and expressed...
in W/m².

Explanatory Information:

Illumination power density relates to the power consumed by the lighting system and includes the light source or luminaire and any control device. The power for the lighting system is the illumination power load. This approach is more complicated than the *lamp power density* approach but provides more flexibility for a dwelling with sophisticated control systems.

The area of the space refers to the area the lights serve. This could be considered a single room, open plan space, verandah, balcony or the like, or the total area of all these spaces.

Importance Level: A number which ranks the relative importance of structures and buildings (shown in Table 3) based on the potential risk to life resulting from their scale and/or use.

Table 3: Importance Levels for building types

<table>
<thead>
<tr>
<th>Importance Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Structures presenting a low degree of hazard to life and other property</td>
</tr>
<tr>
<td>2</td>
<td>Normal structures and structures not in other Importance Levels</td>
</tr>
<tr>
<td>3</td>
<td>Structures that as a whole may contain people in crowds or contents of high value to the community or pose risks to people in crowds</td>
</tr>
<tr>
<td>4</td>
<td>Structures with special post-disaster functions</td>
</tr>
<tr>
<td>5</td>
<td>Special structures</td>
</tr>
</tbody>
</table>

Explanatory Information:

Examples of Importance Levels of certain buildings, structures and facilities

(a) **Importance Level 1**, include but not limited to:
 (i) Structures with a total floor area < 30 m².
 (ii) Farm buildings, isolated structures, towers in rural situations.

(b) **Importance Level 2**, include but not limited to:
 (i) Buildings not included in Importance Level 1, 3 or 4.
 (ii) Single family dwellings.

(c) **Importance Level 3**, include but not limited to:
 (i) Where more than 300 people can congregate in one area.
 (ii) Day care facilities with a capacity greater than 150.
 (iii) Primary school or secondary school facilities with a capacity greater than 250.
 (iv) Colleges or adult education facilities with a capacity greater than 500.
 (v) Health care facilities with a capacity of 50 or more residents.
 (vi) Airport terminals, principal railway stations with a capacity greater than 250.
 (vii) Correctional institutions.
 (viii) Multi-occupancy residential, commercial (including shops), industrial, office and retailing buildings designed to accommodate more than 5000 people and with a gross area greater than 10,000 m².
 (ix) Public assembly buildings, theatres and cinemas of greater than 1,000 m².
 (x) Emergency medical and other emergency facilities not designated as post-disaster.
 (xi) Power-generating facilities, water treatment and waste-water treatment facilities and other public utilities not designated as post-disaster.
 (xii) Buildings and facilities not designated as post-disaster containing hazardous materials capable of causing hazardous conditions that do not extend beyond the property boundaries.

(d) **Importance Level 4**, include but not limited to:
(i) Buildings and facilities designated as essential facilities buildings and facilities with special post-disaster functions medical emergency or surgical facilities.

(ii) Emergency service facilities such as fire, police stations and emergency vehicle garages.

(iii) Utilities or emergency supplies or installations required as backup for buildings and facilities of Importance Level 4.

(iv) Designated emergency shelters, designated emergency centres and ancillary facilities.

(v) Buildings and facilities containing hazardous materials capable of causing hazardous conditions that extend beyond the property boundaries.

(e) Importance Level 5, include but not limited to:

(i) Structures that have special functions or whose failure poses catastrophic risk to a large area (e.g. 100 km²) or a large number of people (e.g. 100,000).

(ii) Major dams, extreme hazard facilities.

Inclined lift: A power-operated device for raising or lowering people within a carriage that has one or more rigid guides on an inclined plane.

Individual protection: The installation of a backflow prevention device at the point where a water service connects to a single fixture or appliance.

Individual risk: The frequency at which an individual may be expected to sustain a given level of harm from the realisation of a specified hazard.

Insulation: In relation to an FRL, the ability to maintain a temperature on the surface not exposed to the furnace below the limits specified in AS 1530.4.

Integrity: In relation to an FRL, the ability to resist the passage of flames and hot gases specified in AS 1530.4.

(a) For the purposes of Volume One, excludes a common wall or a party wall.

(b) For the purposes of Volume Two, excludes a separating wall, common wall or party wall.

Interstitial condensation: The condensation of moisture on surfaces between material layers inside the building component.

Irrigation system: An irrigation system of the following types:

(a) Type A— all permanently open outlets and piping more than 150mm above finished ground level, not subject to ponding or back-pressure and not involving injection systems.

(b) Type B— irrigation systems in domestic or residential buildings with piping or outlets installed less than 150mm above finished surface level and not involving injection systems.

(c) Type C— irrigation systems in other than domestic or residential buildings with piping outlets less than 150mm above finished surface level and not involving injection systems.

(d) Type D— irrigation systems where fertilizers, herbicides, nemacides or the like are injected or siphoned into the system.

JAS-ANZ: The Joint Accreditation System of Australia and New Zealand.

Lamp power density: The total of the maximum power rating of the lamps in a space, other than those that are plugged into socket outlets for intermittent use such as floor standing lamps, desk lamps or work station lamps, divided by the area of the space, and expressed in W/m².

Explanatory Information:
Lamp power density is a simple means of setting energy consumption at an efficient level for Class 1 and associated Class 10a buildings.

Lamp refers to the globe or globes that are to be installed in a permanently wired light fitting. The maximum power of a lamp is usually marked on the fitting as the maximum allowable wattage.

The area of the space refers to the area the lights serve. This could be considered a single room, open plan space, verandah, balcony or the like, or the total area of all these spaces.

Landing: An area at the top or bottom of a flight or between two flights.

Latent heat gain: The heat gained by the vapourising of liquid without change of temperature.
Definitions

Lateral support: A support (including footing, buttress, cross wall, beam, floor or braced roof structure) that effectively restrains the wall or pier at right angles to the face of the wall or pier.

Lightweight construction: Construction which incorporates or comprises—

(a) sheet or board material, plaster, render, sprayed application, or other material similarly susceptible to damage by impact, pressure or abrasion; or

(b) concrete and concrete products containing pumice, perlite, vermiculite, or other soft material similarly susceptible to damage by impact, pressure or abrasion; or

(c) masonry having a width of less than 70 mm.

Loadbearing: Intended to resist vertical forces additional to those due to its own weight.

Loadbearing wall: For the purposes of H1D4, H2D3 and Section 4 of the Housing Provisions, means any wall imposing on the footing a load greater than 10 kN/m.

Loss: Physical damage, financial loss or loss of amenity.

Low Hazard: Any condition, device or practice which, in connection with a water supply, would constitute a nuisance by colour, odour or taste but does not have the potential to injure or endanger health.

Low lead: Where a plumbing product or material in contact with drinking water is calculated using a weighted average lead content of no more than 0.25%.

Low rainfall intensity area: An area with a 5 minute rainfall intensity for an annual exceedance probability of 5% average recurrence interval of 20 years of not more than 125 mm/hour.

Explanatory Information:

Rainfall intensity figures can be obtained from Tables 7.4.3d to 7.4.3k in the Housing Provisions.

Low-rise, low-speed constant pressure lift: A power-operated low-rise, low-speed device for raising or lowering people with limited mobility on a carriage that is controlled by the application of constant pressure to a control.

Low-rise platform lift: A power-operated device for raising or lowering people with limited mobility on a platform, that is controlled automatically or by the application of constant pressure to a control.

Low voltage: A voltage exceeding extra-low voltage, but not exceeding 1000 V AC or 1500 V DC.

Luminance contrast: The light reflected from one surface or component, compared to the light reflected from another surface or component.

Massive timber: An element not less than 75 mm thick as measured in each direction formed from solid and laminated timber.

Maximum acceptable annual probability of structural failure of structures, buildings, members and connections:

The probability that, in any year, there could be a structural failure leading to collapse of either the whole of the structure or building, or significant members and/or their connections, expressed as 1 in … (e.g. 1 in 1,000 meaning a probability of 1 in 1,000 that the failure could occur).

Maximum retained water level: The point where surface water will start to overflow out of the shower area.

Medium Hazard: Any condition, device or practice which, in connection with a water supply, has the potential to injure or endanger health.

Members: The parts of a structure or component that provide resistance to structural actions.

Members and connections that do not provide primary building support: Those components of a building or other structure that are not necessary to resist collapse of other members, parts of the building or the whole building, including but are not limited to—

(a) non-loadbearing walls including framing, wall cladding, roof cladding, roof purlins and battens, mezzanine floors; and

(b) connections and fixings that fix in position only those members that do not provide primary building support.

Members and connections that provide primary building support: Those components of a building or other structure that provide the structural system resisting collapse of other members, parts of the building or the whole building under the design actions, including but are not limited to—

(a) beams, columns, trusses, portal frames, posts, loadbearing walls, floor systems, footings, foundations and earth retaining structures; and
(b) connections and fixings that transfer loads between members that provide primary building support.

Membrane: A barrier impervious to moisture.

Explanatory Information:
A barrier may be a single or multi-part system.

Mezzanine: An intermediate floor within a room.

Minimum Acceptable Annual Structural Reliability Index of Structures, Buildings, Members and Connections: The Structural Reliability Index (β), determined in accordance with the ABCB Structural Reliability Handbook (Version 2022.1) that corresponds to the maximum acceptable annual probability of structural failure tabulated in Table B1P1.

Mixed construction: A building consisting of more than one form of construction, particularly in double-storey buildings.

Mould: A fungal growth that can be produced from conditions such as dampness, darkness, or poor ventilation.

Multiple resistance paths: Situations where the failure of a part of a building or structure is resisted collectively by more than one member or connection, such that the failure of any member or connection will result in the transfer of loads to the other members and connections with sufficient combined capacity to resist the total applied loads.

NABERS Energy for Apartment Buildings: The National Australian Built Environment Rating System for apartment building energy efficiency, which is managed by the New South Wales Government.

NABERS Energy for Hotels: The National Australian Built Environment Rating System for hotel building energy efficiency, which is managed by the New South Wales Government.

NABERS Energy for Offices: The National Australian Built Environment Rating Systems for office energy efficiency, which is managed by the New South Wales Government.

NABERS Energy for Shopping Centres: The National Australian Built Environment Rating System for shopping centre energy efficiency, which is managed by the New South Wales Government.

TAS Network Utility Operator

Network Utility Operator: A person who—

(a) undertakes the piped distribution of drinking water or non-drinking water for supply; or

(b) is the operator of a sewerage system or a stormwater drainage system.

Explanatory Information:
A Network Utility Operator in most States and Territories is the water and sewerage authority licensed to supply water and receive sewage and/or stormwater. The authority operates or proposes to operate a network that undertakes the distribution of water for supply and undertakes to receive sewage and/or stormwater drainage. This authority may be a licensed utility, local government body or council.

(a) Applied to a material — means not deemed combustible as determined by AS 1530.1 — Combustibility Tests for Materials.

(b) Applied to construction or part of a building — means constructed wholly of materials that are not deemed combustible.

Non-drinking water: Water which is not intended primarily for human consumption, but which may have other uses, drinking water.

Non-transient actions: The combination of structural actions in which the combined magnitude of the permanent gravity action and imposed gravity action is equal to or greater than 50% of the magnitude of the total combined actions.

(a) For the purposes of Volume One, the features, needs and profile of the occupants in a habitable room or space.

(b) For the purposes of Volume Two, the features, needs and profile of the occupants in a room or space.

Explanatory Information:
For the purpose of Volume Two, this term is used to describe the characteristics of the occupants and their associated requirements in relation to a room or space.
For example, in relation to a bedroom, the following occupant characteristics and associated requirements should be considered:

- Characteristics: height, mobility and how often the space will be used.
- Requirements: a sleeping space and a space to undertake leisure activities.

Occupiable outdoor area: A space on a roof, balcony or similar part of a building—

(a) that is open to the sky; and
(b) to which access is provided, other than access only for maintenance; and
(c) that is not open space or directly connected with open space.

TAS On-site wastewater management system

On-site wastewater management system: A system installed on premises that receives and/or treats wastewater generated and discharges on the premises and applies the resulting effluent to an approved disposal system or re-use system.

Open-deck carpark: A carpark in which all parts of the parking storeys are cross-ventilated by permanent unobstructed openings in not fewer than 2 opposite or approximately opposite sides, and—

(a) each side that provides ventilation is not less than \(\frac{1}{6} \) of the area of any other side; and
(b) the openings are not less than \(\frac{1}{2} \) of the wall area of the side concerned.

Open space: A space on the allotment, or a roof or similar part of a building adequately protected from fire, open to the sky and connected directly with a public road.

Open spectator stand: A tiered stand substantially open at the front.

Other property: All or any of the following—

(a) any building on the same or an adjoining allotment; and
(b) any adjoining allotment; and
(c) a road.

Outdoor air: Air outside the building.

Outdoor air economy cycle: A mode of operation of an air-conditioning system that, when the outdoor air thermodynamic properties are favourable, increases the quantity of outdoor air used to condition the space.

Outfall: That part of the disposal system receiving surface water from the drainage system and may include a natural water course, kerb and channel, or soakage system.

Overflow devices: A device that provides relief to a water service, sanitary plumbing and drainage system, rainwater service harvesting system or stormwater system to avoid the likelihood of uncontrolled discharge.

Panel wall: A non-loadbearing external wall, in frame or similar construction, that is wholly supported at each storey.

Partially buried rainwater tank: A rainwater tank that is not completely covered by earth but is partially set into the ground.

Patient care area: A part of a health-care building normally used for the treatment, care, accommodation, recreation, dining and holding of patients including a ward area and treatment area.

Performance-based design brief (PBDB): The process and the associated report that defines the scope of work for the performance-based analysis, the technical basis for analysis, and the criteria for acceptance of any relevant Performance Solution as agreed by stakeholders.

Performance Requirement: A requirement which states the level of performance which a Performance Solution or Deemed-to-Satisfy Solution must meet.

Performance Solution: A method of complying with the Performance Requirements other than by a Deemed-to-Satisfy Solution.

Perimeter of building: For the purposes of Section 8 of the Housing Provisions, means the external envelope of a building.

Personal care services: Any of the following:

(a) The provision of nursing care.
(b) Assistance or supervision in—
 (i) bathing, showering or personal hygiene; or
(ii) toileting or continence management; or
(iii) dressing or undressing; or
(iv) consuming food.

c) The provision of direct physical assistance to a person with mobility problems.

d) The management of medication.

e) The provision of substantial rehabilitative or development assistance.

Piping: For the purposes of Section J in Volume One or Part H6 in Volume Two, and Section 13 of the Housing Provisions, means an assembly of pipes, with or without valves or other fittings, connected together for the conveyance of liquids and gases.

Pliable building membrane: A water barrier as classified by AS/NZS 4200.1.

Plumbing: Any water service plumbing or roof plumbing, sanitary plumbing system or heating, ventilation and air-conditioning plumbing.

Plumbing or Drainage Solution: A solution which complies with the Performance Requirement and is a—

(a) Performance Solution; or
(b) Deemed-to-Satisfy Solution; or
(c) combination of (a) and (b).

Point of connection: Any of the following:

(a) For a heated water service means the point where the water heater connects to the cold water service downstream of the isolation valve.

(b) For sanitary plumbing means the point where the sanitary plumbing system connects to the sanitary drainage system.

(c) For sanitary drainage sewage disposal means the point where the on-site sanitary drainage system connects to the Network Utility Operator’s sewerage system or to an on-site wastewater management system.

(i) the Network Utility Operator’s sewerage system; or
(ii) an on-site wastewater management system.

(d) For stormwater disposal means the point where the on-site stormwater drainage system connects to—

(i) the Network Utility Operator’s stormwater system; or
(ii) an approved on-site disposal system.

(e) For a fire-fighting water service means the point where the service connects to—

(i) a cold water service, downstream of a backflow prevention device; or
(ii) the Network Utility Operator’s water supply system; or
(iii) the point of isolation to an alternative water source.

(f) For a cold water service means the point where the cold water service connects to—

(i) the Network Utility Operator’s water supply system; or
(ii) the point of isolation to an alternative water source where there is no Network Utility Operator’s water supply system available or is not utilised.

(g) For a rainwater service means the point where the rainwater service connects to the point of isolation to the rainwater storage.

Notes:
A domestic fire sprinkler service conforming to FPAA101D is considered part of the cold water service.

Explanatory Information:
The point of connection is usually determined by the Network Utility Operator according to the water and sewerage
Point of discharge: The outlet of a—

(a) tap or outlet that discharges water over plumbing fixtures; or

(b) cistern inlet valve or flushing device of a sanitary fixture; or

(c) water service used for the connection of an appliance which is readily accessible and easily connected or disconnected; or

(d) tap, outlet or end of line valve where water is discharged to the atmosphere under normal operating conditions; or

(e) isolating valve or the outlet provided for the connection of industrial or specialist equipment to the water service; or

(f) backflow prevention device connected to a fire service or irrigation system; or

(g) relief drain line or vent pipe from a water heater, temperature and pressure relief valve or expansion control valve.

Explanatory Information:

The point of discharge of a tap or fixture commonly includes the outlets of a basin or bath taps, shower heads, drinking fountains, flush valves or cistern inlet valves.

The point of discharge of a water service used for the connection of an appliance commonly includes outlets of an isolation valve provided for the connection of dishwashers, clothes washers, coffee machines and fridges with beverage dispensing and ice making capabilities.

The point of discharge for a tap discharging to atmosphere may include hose cocks. It does not include any subsequent connections to this outlet such as garden hoses.

Contamination control may be required to avoid contamination of the water service where a hazard exists beyond the point of discharge.

Water services downstream of the backflow prevention device are considered an unprotected water service.

Predicted Mean Vote (PMV): The Predicted Mean Vote of the thermal perception of building occupants determined in accordance with ANSI/ASHRAE Standard 55.

Preformed shower base: A preformed, prefinished vessel installed as the finished floor of a shower compartment, and which is provided with a connection point to a sanitary drainage system.

Explanatory Information:

Shower bases are commonly made of plastics, composite materials, vitreous enamelled pressed steel, or stainless steel.

Pressure vessel: A vessel subject to internal or external pressure, including interconnected parts and components, valves, gauges and other fittings up to the first point of connection to connecting piping, and—

(a) includes fire heaters and gas cylinders; but

(b) excludes—

(i) any vessel that falls within the definition of a boiler; and

(ii) storage tanks and equipment tanks intended for storing liquids where the pressure at the top of the tank is not exceeding 1.4 kPa above or 0.06 kPa below atmospheric pressure; and

(iii) domestic-type hot water supply heaters and tanks; and

(iv) pressure vessels installed for the purposes of fire suppression or which serve a fire suppression system.

QLD Primary building element

(a) For the purposes of Volume One, a member of a building designed specifically to take part of the loads specified in B1D3 and includes roof, ceiling, floor, stairway or ramp and wall framing members including bracing members designed for the specific purpose of acting as a brace to those members.

(b) For the purposes of Part 3.4 of the Housing Provisions, means a member of a building designed specifically to
Definitions

take part of the building loads and includes roof, ceiling, floor, stairway or ramp and wall framing members including bracing members designed for the specific purpose of acting as a brace to those members.

Explanatory Information:
The loads to which a building may be subjected are dead, live, wind, snow and earthquake loads. Further information on building loads can be found in the AS 1170 series of Standards.

Private bushfire shelter: A structure associated with, but not attached to, or part of a Class 1a dwelling that may, as a last resort, provide shelter for occupants from immediate life threatening effects of a bushfire.

(a) For the purposes of Volume One—
 (i) any garage associated with a Class 1 building; or
 (ii) any single storey of a building of another Class containing not more than 3 vehicle spaces, if there is only one such storey in the building; or
 (iii) any separate single storey garage associated with another building where such garage contains not more than 3 vehicle spaces.

(b) For the purposes of Volume Two—
 (i) any garage associated with a Class 1 building; or
 (ii) any separate single storey garage associated with another building where such garage contains not more than 3 vehicle spaces.

Product: Plumbing and drainage items within the scope of Volume Three including but not limited to—

(a) materials, fixtures and components used in a plumbing or drainage installation; and
(b) appliances and equipment connected to a plumbing or drainage system.

Product Technical Statement: A form of documentary evidence stating that the properties and performance of a building material, product or form of construction fulfil specific requirements of the NCC, and describes—

(a) the application and intended use of the building material, product or form of construction: and
(b) how the use of the building material, product or form of construction complies with the requirements of the NCC Volume One and Volume Two; and
(c) any limitations and conditions of the use of the building material, product or form of construction relevant to (b).

TAS Professional engineer
Professional engineer: A person who is—

(a) if legislation is applicable — a registered professional engineer in the relevant discipline who has appropriate experience and competence in the relevant field; or
(b) if legislation is not applicable—
 (i) registered in the relevant discipline on the National Engineering Register (NER) of the Institution of Engineers Australia (which trades as ‘Engineers Australia’); or
 (ii) eligible to become registered on the Institution of Engineers Australia’s NER and has appropriate experience and competence in the relevant field.

Public corridor: An enclosed corridor, hallway or the like which—

(a) serves as a means of egress from 2 or more sole-occupancy units to a required exit from the storey concerned; or
(b) is required to be provided as a means of egress from any part of a storey to a required exit.

Rainwater service harvesting system: A water service which distributes water from the isolation valve of the rainwater storage to the rainwater points of discharge for purposes such as for clothes washing, urinal and water closet flushing and external hose cocks. A plumbing installation that comprises—

A plumbing installation that comprises—

(a) any plumbing that connects a rainwater tank to any drinking water or non-drinking water outlet; and
(b) any top-up line that conveys drinking water from a Network Utility Operator’s water supply to a rainwater tank.

Rainwater storage: Any storage of rainwater collected from a roof catchment area which is used to supply water for the
primary purposes of drinking, personal hygiene or other uses.

Notes:
Generally this applies to water which is not supplied by a Network Utility Operator. This does not include rainwater storage for non-drinking purposes.

Rapid roller door: A door that opens and closes at a speed of not less than 0.5 m/s.

TAS Recognised expert

Recognised expert: A person with qualifications and experience in the area of plumbing or drainage in question recognised by the authority having jurisdiction.

Explanatory Information:
A recognised expert is a person recognised by the authority having jurisdiction as qualified to provide evidence under A5G4(5). Generally, this means a hydraulic consultant or engineer, however the specific requirements are determined by the authority having jurisdiction.

Under A5G4(5), a report from a recognised expert may be used as evidence of suitability that a product listed on the WaterMark Schedule of Excluded Products, or a plumbing or drainage system, complies with a Performance Requirement or Deemed-to-Satisfy Provisions.

(a) For the purposes of Volume One, a hypothetical building that is used to calculate the maximum allowable annual greenhouse gas emissions and determine the thermal comfort level for the proposed building.

(b) For the purposes of Volume Two, means a hypothetical building that is used to determine the maximum allowable heating load and cooling load for the proposed building.

Reflective insulation: A building membrane with a reflective surface such as a reflective foil laminate, reflective barrier, foil batt or the like capable of reducing radiant heat flow.

Explanatory Information:
For Volume Two:

(a) Typical R-Value achieved by adding reflective insulation are given in the explanatory information accompanying Section 13 of the Housing Provisions. Information on specific products may be obtained from reflective insulation manufacturers.

(b) The surface of reflective insulation may be described in terms of its emittance (or infra-red emittance) or in terms of its reflectance (or solar reflectance). Generally, for the surface of a particular reflective insulation –

(c) emittance + reflectance = 1.

(d) Some types of reflective insulation may also serve the purposes of waterproofing or vapour proofing.

Regulated energy: The energy consumed by a building’s services minus the amount of renewable energy generated and used on site.

Reinforced masonry: Masonry reinforced with steel reinforcement that is placed in a bed joint or grouted into a core to strengthen the masonry.

Reliability: The probability that a system performs to a level consistent with the system specification.

Renewable energy: Energy that is derived from sources that are regenerated, replenished, or for all practical purposes cannot be depleted and the energy sources include, but are not limited to, solar, wind, hydroelectric, wave action and geothermal.

Reportable fire: A fire that would be reported to the fire brigade.

Required: Required to satisfy a Performance Requirement or a Deemed-to-Satisfy Provision of the NCC as appropriate.

Required safe egress time (RSET): The time required for safe evacuation of occupants to a place of safety prior to the onset of untenable conditions.

Residential aged care building: A Class 3 or 9a building whose residents, due to their incapacity associated with the ageing process, are provided with physical assistance in conducting their daily activities and to evacuate the building during an emergency.
Residential care building: A Class 3, 9a or 9c building which is a place of residence where 10% or more of persons who reside there need physical assistance in conducting their daily activities and to evacuate the building during an emergency (including any aged care building or residential aged care building) but does not include a hospital.

Resident use area: Part of a Class 9c building normally used by residents, and—
(a) includes sole-occupancy units, lounges, dining areas, activity rooms and the like; but
(b) excludes offices, storage areas, commercial kitchens, commercial laundries and other spaces not for the use of residents.

Resistance to the incipient spread of fire: In relation to a ceiling membrane, means the ability of the membrane to insulate the space between the ceiling and roof, or ceiling and floor above, so as to limit the temperature rise of materials in this space to a level which will not permit the rapid and general spread of fire throughout the space.

Explanatory Information:
Resistance to the incipient spread of fire refers to the ability of a ceiling to prevent the spread of fire and thermally insulate the space between the ceiling and the roof or floor above. “Resistance to the incipient spread of fire” is superior to “fire-resistance” because it requires a higher standard of heat insulation.

The definition is used in Volume Two for separating floors/ceilings for a Class 1a dwelling located above a non-appurtenant private garage.

Rise in storeys: The greatest number of storeys calculated in accordance with C2D3 of Volume One.

Riser: The height between consecutive treads and between each landing and continuous tread.

Rolled fill: Material placed in layers and compacted by repeated rolling by an excavator.

Roof light: For the purposes of Section J and Part F4 in Volume One, Part H6 in Volume Two, and Part 10.5 and Section 13 of the Housing Provisions, a skylight, window or the like installed in a roof—
(a) to permit natural light to enter the room below; and
(b) at an angle between 0 and 70 degrees measured from the horizontal plane.

R-Value: The thermal resistance of a component calculated by dividing its thickness by its thermal conductivity, expressed in m²K/W.

Safe place: Either—
(a) a place of safety within a building—
 (i) which is not under threat from a fire; and
 (ii) from which people must be able to safely disperse after escaping the effects of an emergency to a road or open space; or
(b) a road or open space.

Sanitary compartment: A room or space containing a closet pan or urinal (see Figures 6a and 6b).
Figure 6a: Identification of a sanitary compartment (diagram a)
Figure 6b: Identification of a sanitary compartment (diagram b)

Sarking-type material: A material such as a *reflective insulation* or other flexible membrane of a type normally used for a purpose such as waterproofing, vapour management or thermal reflectance.

School: Includes a primary or secondary school, college, university or similar educational establishment.

Screed: A layer of material (usually cement based) of defined minimum thickness which sets in situ between a structural base and the finished floor material.

Self-closing: Is defined—
(a) For the purposes of Volume One, applied to a door, means equipped with a device which returns the door to the fully closed position immediately after each opening.
(b) For the purposes of Volume Two, applied to a door or *window*, means equipped with a device which returns the door or *window* to the fully closed and latched position immediately after each manual opening.

Self draining: Materials, systems or ballast that—
(a) are above the structural substrate; and
(b) have sufficient gaps or openings to permit drainage of rainwater to a membrane on the structural substrate below.

Sensible heat gain: The heat gained which causes a change in temperature.

Separating element: A barrier that exhibits fire *integrity*, *structural adequacy*, *insulation*, or a combination of these for a period of time under specified conditions (often in accordance with AS 1530.4).

Separating wall: A wall that is common to adjoining Class 1 buildings (see Figure 7).
Figure Notes:
In Volume Two a separating wall may also be known as a party wall and typically is required to be fire-resisting construction (see Housing Provisions Parts and).

Service: For the purposes of Section J in Volume One, means a mechanical or electrical system that uses energy to provide air-conditioning, mechanical ventilation, heated water supply, artificial lighting, vertical transport and the like within a building, but which does not include—

(a) systems used solely for emergency purposes; and
(b) cooking facilities; and
(c) portable appliances.

Service station: A garage which is not a private garage and is for the servicing of vehicles, other than only washing, cleaning or polishing.

Shaft: The walls and other parts of a building bounding—

(a) a well, other than an atrium well; or
(b) a vertical chute, duct or similar passage, but not a chimney or flue.

Shower area: The area affected by water from a shower, including a shower over a bath.

(a) Enclosed — The area enclosed by walls or screens including hinged or sliding doors that control the spread of water to within the enclosure but excludes—
 (i) a shower fitted with a frameless or semi frameless shower screen, shower curtain or the like; and
 (ii) a shower fitted over a bath with a screen less than 1500 mm long.
(b) Unenclosed — The area where, under normal use, water out of the shower rose is not contained within 1500 mm of the shower rose.

Shower screen: The panels, doors or windows enclosing or partially enclosing a shower area.

Single leaf masonry: Outer walls constructed with a single thickness of masonry unit.

Single resistance paths: Situations where the failure of a part of a building or structure is resisted by only one member or connection, such that the failure of that member or connection will result in the collapse of a significant part of the building or structure.

Site: The part of the allotment of land on which a building stands or is to be erected.

Sitework: Work on or around a site, including earthworks, preparatory to or associated with the construction, alteration, demolition or removal of a building.

Small-sized, low-speed automatic lift: A restricted use power-operated device for the infrequent raising or lowering of people with limited mobility on a platform that is controlled automatically but has the capability of being electrically isolated by a key-lockable control.
Smoke-and-heat vent: A vent, located in or near the roof for smoke and hot gases to escape if there is a fire in the building.

Smoke-Developed Index: The index number for smoke as determined by AS/NZS 1530.3.

Smoke development rate: The development rate for smoke as determined by testing flooring materials in accordance with AS ISO 9239.1.

Smoke growth rate index (SMOGRA$_{RC}$): The index number for smoke used in the regulation of fire hazard properties and applied to materials used as a finish, surface, lining or attachment to a wall or ceiling.

Societal risk: Frequency and the number of people suffering from a specified level of harm in a given population from the realisation of specified hazards.

Solar admittance: The fraction of incident irradiance on a wall-glazing construction that adds heat to a building’s space.

Sole-occupancy unit: A room or other part of a building for occupation by one or joint owner, lessee, tenant, or other occupier to the exclusion of any other owner, lessee, tenant, or other occupier and includes—

(a) a dwelling; or
(b) a room or suite of rooms in a Class 3 building which includes sleeping facilities; or
(c) a room or suite of associated rooms in a Class 5, 6, 7, 8 or 9 building; or
(d) a room or suite of associated rooms in a Class 9c building, which includes sleeping facilities and any area for the exclusive use of a resident.

Spandrel panel: For the purposes of Section J, means the opaque part of a façade in curtain wall construction which is commonly adjacent to, and integrated with, glazing.

Specialist equipment: Equipment used within hospitality or health care industries which is installed by specialist technicians.

Notes:
Examples may include medical equipment, commercial chemical or beverage dispensers, dental chairs or similar specialist equipment.

Spiral stairway: A stairway with a circular plan, winding around a central post with steps that radiate from a common centre or several radii (see Figures 11.2.2d and 11.2.2e in the Housing Provisions).

Spread-of-Flame Index: The index number for spread of flame as determined by AS/NZS 1530.3.

Sprinkler alarm switch: For the purposes of Specification 23, a device capable of sending an electrical signal to activate an alarm when a residential sprinkler head is activated (e.g. a flow switch).

Stage: A floor or platform in a Class 9b building on which performances are presented before an audience.

Stairway platform lift: A power-operated device for raising or lowering people with limited mobility on a platform (with or without a chair) in the direction of a stairway.

Storey: A space within a building which is situated between one floor level and the floor level next above, or if there is no floor above, the ceiling or roof above, but not—

(a) a space that contains only—
 (i) a lift shaft, stairway or meter room; or
 (ii) a bathroom, shower room, laundry, water closet, or other sanitary compartment; or
 (iii) accommodation intended for not more than 3 vehicles; or
 (iv) a combination of the above; or
(b) a mezzanine.

Structural adequacy: In relation to an FRL, means the ability to maintain stability and adequate loadbearing capacity as determined by AS 1530.4.

Structural member: A component or part of an assembly which provides vertical or lateral support to a building or structure.

Substantive parts of a building or structure: Those parts of a building or other structure that serve the purpose for which the building or structure has been constructed, including but are not limited to—
(a) the whole of a building or structure; and
(b) any significant portion of a building or structure (such as habitable or non-habitable storey, a roof system, a floor system, a system of loadbearing walls and the like) which could result in loss of life or injury should it fail.

Sudden failure: Relatively rapid collapse of a structure that occurs with little warning with little plastic deformation and/or moment redistribution.

Surface water: All naturally occurring water, other than sub-surface water, which results from rainfall on or around the site or water flowing onto the site.

Swimming pool: Any excavation or structure containing water and principally used, or that is designed, manufactured or adapted to be principally used for swimming, wading, paddling, or the like, including a bathing or wading pool, or spa.

Tapered tread: A stair tread with a walking area that grows smaller towards one end.

Thermal comfort level: The level of thermal comfort in a building expressed as a PMV sensation scale.

Total R-Value: The sum of the R-Values of the individual component layers in a composite element including any building material, insulating material, airspace, thermal bridging and associated surface resistances, expressed in m².K/W.

(a) For the purposes of Volume One, the fraction of incident irradiance on a wall-glazing construction or a roof light that adds heat to a building’s space.

(b) For the purposes of Volume Two, the fraction of incident irradiance on glazing or a roof light that adds heat to a building’s space.

(a) For the purposes of Volume One, the thermal transmittance of the composite element allowing for the effect of any airspaces, thermal bridging and associated surface resistances, expressed in W/m².K.

(b) For the purposes of Volume Two, means the thermal transmittance of the composite element allowing for the effect of any airspaces and associated surface resistances, expressed in W/m².K.

Transient actions: The combination of structural actions in which the combined magnitude of the permanent gravity action and imposed gravity action is less than 50% of the magnitude of the total combined actions.

Treatment area: An area within a patient care area such as an operating theatre and rooms used for recovery, minor procedures, resuscitation, intensive care and coronary care from which a patient may not be readily moved.

Uncontrolled discharge: Any unintentional release of fluid from a plumbing and drainage system and includes leakage and seepage.

Unique wall: For the purposes of F1V1 in Volume One and H2V1 in Volume Two, a wall which is neither a cavity wall nor a direct fix cladding wall.

Unobstructed opening: For the purposes of Section 8 of the Housing Provisions, a glazed area that a person could mistake for an open doorway or clearway and walk into the glazed panel.

Unreinforced masonry: Masonry that is not reinforced.

Vapour pressure: The pressure at which water vapour is in thermodynamic equilibrium with its condensed state.

Ventilation opening: An opening in the external wall, floor or roof of a building designed to allow air movement into or out of the building by natural means including a permanent opening, an openable part of a window, a door or other device which can be held open.

Verification Method: A test, inspection, calculation or other method that determines whether a Performance Solution complies with the relevant Performance Requirements.

Vessel: For the purposes of Volume One and Part 10.2 of the Housing Provisions, an open, pre-formed, pre-finished concave receptacle capable of holding water, usually for the purpose of washing, including a basin, sink, bath, laundry tub and the like.

Visibility: The maximum distance at which an object of defined size, brightness and contrast can be seen and recognised.

Voltage: A difference of potential, measured in Volts (V) and includes extra-low voltage and low voltage.

(a) In relation to a building — the volume of the total space of the building measured above the lowest floor (including, for a suspended floor, any subfloor space), over the enclosing walls, and to the underside of the roof covering.

(b) In relation to a fire compartment — the volume of the total space of the fire compartment measured within the inner finished surfaces of the enclosing fire-resisting walls and/or floors, and—

(i) if there is no fire-resisting floor at the base of the fire compartment, measured above the finished surface of the lowest floor in the fire compartment; and

(ii) if there is no fire-resisting floor at the top of the fire compartment, measured to the underside of the roof.
covering of the fire compartment; and

(iii) if there is no fire-resisting wall, measured over the enclosing wall and if there is no enclosing wall, includes any space within the fire compartment that has a use which contributes to the fire load.

(c) In relation to an atrium — the volume of the total space of the atrium measured within the finished surfaces of the bounding construction and if no bounding construction, within the external walls.

Waffle raft: A stiffened raft with closely spaced ribs constructed on the ground and with slab panels supported between ribs.

Wall-glazing construction: For the purposes of Section J in Volume One, the combination of wall and glazing components comprising the envelope of a building, excluding—

(a) display glazing; and
(b) opaque non-glazed openings such as doors, vents, penetrations and shutters.

Ward area: That part of a patient care area for resident patients and may contain areas for accommodation, sleeping, associated living and nursing facilities.

Water control layer: A pliable building membrane or the exterior cladding when no pliable building membrane is present.

WaterMark Certification Scheme: The ABCB scheme for certifying and authorising plumbing and drainage products.

WaterMark Conformity Assessment Body (WMCAB): A conformity assessment body registered with and accredited by the JAS-ANZ to conduct evaluations leading to product certification and contracted with the administering body to issue the WaterMark Licence.

WaterMark Licence: A licence issued by a WaterMark Conformity Assessment Body.

WaterMark Schedule of Excluded Products: The list maintained by the administering body of products excluded from the WaterMark Certification Scheme.

WaterMark Schedule of Products: The list maintained by the administering body of products included in the WaterMark Certification Scheme, and the specifications to which the products can be certified.

Explanatory Information:

The WaterMark Schedule of Products and the WaterMark Schedule of Excluded Products can be viewed on the ABCB website at www.abcb.gov.au.

Waterproof: The property of a material that does not allow moisture to penetrate through it.

Waterproofing system: A combination of elements that are required to achieve a waterproof barrier as required by H4D2 and H4D3 including substrate, membrane, bond breakers, sealants, finishes and the like.

Water resistant: The property of a system or material that restricts moisture movement and will not degrade under conditions of moisture.

Water sensitive materials: Materials that have an inherent capacity to absorb water vapour and include timber, plasterboard, plywood, oriented strand board and the like.

Waterstop: A vertical extension of the waterproofing system forming a barrier to prevent the passage of moisture in the floor.

Watertight: Will not allow water to pass from the inside to the outside of the component or joint and vice versa.

Weighted average: Is calculated across the wetted surface area of a pipe, pipe fitting or plumbing fixture.

Wet area: An area within a building supplied with water from a water supply system, which includes bathrooms, showers, laundries and sanitary compartments and excludes kitchens, bar areas, kitchenettes or domestic food and beverage preparation areas.

Wetted surface area: Is calculated by the total sum of diameter (D) in contact with drinking water.

Winders: Treads within a straight flight that are used to change direction of the stair (see Figure 4).

Window: includes a roof light, glass panel, glass block or brick, glass louvre, glazed sash, glazed door, or other device which transmits natural light directly from outside a building to the room concerned when in the closed position.

Withstand: For the purposes of A8G3(1) means that in response to an imposed fire action the following conditions must not occur:

(a) Fire spread more than 5m above an opening in the façade through which flames are venting.
(b) Fire spread more than 2m beyond the extent of flames from a burning item adjacent to the structure such as a vehicle, waste bin, collection of combustible rubbish depending on the use and access to adjacent areas.

(c) Ignition and propagation as the result of the imposed heat flux from a fire in an adjacent building or potential building on an adjoining allotment (embers are likely to be present and therefore piloted ignition should be considered if combustible materials are present).

(d) Ignition and fire propagation within cladding materials and building cavities.

(e) Release of flaming droplets.

(f) Release of significant quantities of debris (criteria should be developed during the PBDB process having regard for the proximity of other property and the requirements of the emergency services).

(g) Structural failure.

Explanatory Information:

For item (f), the risk to life of occupants evacuating the building from falling debris should be evaluated under A8G2.

Yield: The mass of a combustion product generated during combustion divided by the mass loss of the test specimen as specified in the design fire.

Zone protection: The installation of a backflow prevention device at the point where a water service is connected to multiple fixtures or appliances, with no backflow prevention device installed as individual protection downstream of this point.
Schedule 2

Referenced documents

<table>
<thead>
<tr>
<th>Referenced documents</th>
<th></th>
</tr>
</thead>
</table>
Referenced documents

The Standards and other documents listed in this Schedule are referenced in the NCC.
Table 1: Schedule of referenced documents

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Title</th>
<th>Volume One</th>
<th>Volume Two</th>
<th>Housing Provisions</th>
<th>Volume Three</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS/NZS ISO 717 Part 1</td>
<td>2004</td>
<td>Acoustics — Rating of sound insulation in buildings and of building elements — Airborne sound insulation (See Note 1)</td>
<td>F₆V₁, F₆V₂, F₆V₃, F₆V₄, F₆₇D₃</td>
<td>H₄V₄</td>
<td>10.7.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS ISO 717 Part 2</td>
<td>2004</td>
<td>Acoustics — Rating of sound insulation in buildings and of building elements — Impact sound insulation</td>
<td>F₆V₁, F₆V₃, F₆₇D₄</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1056 Part 1</td>
<td>1991</td>
<td>Storage water heaters — General requirements (incorporating amendments 1, 2, 3, 4 and 5)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>B2D2</td>
</tr>
<tr>
<td>AS/NZS 1170 Part 0</td>
<td>2002</td>
<td>Structural design actions — General principles (incorporating amendments 1, 3 and 4)</td>
<td>B₁V₁, B₁D₂, Spec 4</td>
<td>H₁V₁, H₂D₆</td>
<td>2.2.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1170 Part 1</td>
<td>2002</td>
<td>Structural design actions — Permanent, imposed and other actions (incorporating amendments 1 and 2)</td>
<td>B₁D₃</td>
<td>N/A</td>
<td>2.2.3, 2.2.4, 8.3.1, 11.2.2, 11.2.3, 11.3, 11.3.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1170 Part 2</td>
<td>2011</td>
<td>Structural design actions — Wind actions (incorporating amendments 1, 2, 3, 4 and 5)</td>
<td>B₁D₃, B₁D₄, Spec 4, F₄₃V₁, Schedule 2</td>
<td>H₄V₄, H₂D₆ Schedule 2</td>
<td>2.2.3, Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS/NZS 1170 Part 3</td>
<td>2003</td>
<td>Structural design actions — Snow and ice actions (incorporating amendments 1 and 2)</td>
<td>B₁D₃, Schedule 2</td>
<td>N/A</td>
<td>2.2.3, Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS 1170 Part 4</td>
<td>2007</td>
<td>Structural design actions — Earthquake actions in Australia (incorporating amendments 1 and 2)</td>
<td>B₁D₃</td>
<td>H₁D₄, H₁D₅, H₁D₆, H₁D₉</td>
<td>2.2.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1191</td>
<td>2002</td>
<td>Acoustics — Method for laboratory measurement of airborne sound transmission insulation of building elements</td>
<td>Spec 29</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1273</td>
<td>1991</td>
<td>Unplasticized PVC (UPVC) downpipe and fittings for rainwater</td>
<td>N/A</td>
<td>N/A</td>
<td>7.4.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1288</td>
<td>2006</td>
<td>Glass in buildings — Selection and installation (incorporating amendments 1, 2 and 3)</td>
<td>B₁D₄, Spec 11, Spec 12</td>
<td>H₁D₈, H₂D₇</td>
<td>8.2.1</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1289.6.3.3</td>
<td>1997</td>
<td>Methods of testing soils for engineering purposes — Method 6.3.3: Soil strength and consolidation tests — Determination of the penetration resistance of a soil — Perth</td>
<td>N/A</td>
<td>N/A</td>
<td>4.2.4</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>--</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>AS 1397</td>
<td>2011</td>
<td>Continuous hot-dip metallic coated steel sheet and strip — Coatings of zinc and zinc alloyed with aluminium and magnesium (incorporating amendment 1)</td>
<td>N/A</td>
<td>N/A</td>
<td>7.2.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1428 Part 1</td>
<td>2009</td>
<td>Design for access and mobility — General requirements for access — New building work (incorporating amendments 1 and 2)</td>
<td>D3D11, D3D16, D3D22, D4D2, D4D3, D4D4, D4D7, D4D10, D4D11, D4D13, Spec 16, E3D10, F24D5, G4D6, Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2, E1D2</td>
</tr>
<tr>
<td>AS 1428 Part 1</td>
<td>2001</td>
<td>Design for access and mobility — General requirements for access — New building work</td>
<td>I2D6, I2D8, I2D10, I2D15</td>
<td>N/A</td>
<td>N/A</td>
<td>E1D2</td>
</tr>
<tr>
<td>AS 1428 Part 1 (Supplement 1)</td>
<td>1993</td>
<td>Design for access and mobility — General requirements for access — Buildings — Commentary</td>
<td>I2D2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1428 Part 2</td>
<td>1992</td>
<td>Design for access and mobility — Enhanced and additional requirements — Buildings and facilities</td>
<td>I2D2, I2D3, I2D4, I2D5, I2D7, I2D10, I2D11, I2D12, I2D13, I2D14</td>
<td>N/A</td>
<td>N/A</td>
<td>E1D2</td>
</tr>
<tr>
<td>AS 1428 Part 4</td>
<td>1992</td>
<td>Design for access and mobility — Tactile ground surface indicators for the orientation of people with vision impairment</td>
<td>I2D11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1428 Part 4.1</td>
<td>2009</td>
<td>Design for access and mobility — Means to assist the orientation of people with vision impairment — Tactile ground surface indicators (incorporating amendments 1 and 2)</td>
<td>D4D9</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1530 Part 1</td>
<td>1994</td>
<td>Methods for fire tests on building materials, components and structures — Combustibility test for materials (See Note 2)</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS 1530 Part 2</td>
<td>1993</td>
<td>Methods for fire tests on building materials, components and structures — Test for flammability of materials (incorporating amendment 1) (See Note 2)</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS/NZS 1530 Part</td>
<td>1999</td>
<td>Methods for fire tests on building materials,</td>
<td>Schedule 2, Spec</td>
<td>Schedule 2, Spec</td>
<td>Schedule 2, Spec 3</td>
<td>Schedule 2,</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>AS 1530 Part 4</td>
<td>2014</td>
<td>Methods for fire tests on building materials, components and structures — Fire resistance tests for elements of construction (See Note 2)</td>
<td>A5G7, C4D15, C4D16, Spec 9, Spec 10, Spec 13, Spec 14, Schedule 2, Spec 3</td>
<td>A5G7, Schedule 2, Spec 3</td>
<td>A5G7, Schedule 2, Spec 3</td>
<td>A5G7, Schedule 2, Spec 3</td>
</tr>
<tr>
<td>AS 1562 Part 1</td>
<td>2018</td>
<td>Design and installation of sheet roof and wall cladding — Metal (See Note 3)</td>
<td>B1D4, F<sub>4</sub>D<sub>24</sub></td>
<td>H2D6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1562 Part 2</td>
<td>1999</td>
<td>Design and installation of sheet roof and wall cladding — Corrugated fibre-reinforced cement</td>
<td>F<sub>4</sub>D<sub>24</sub></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1562 Part 3</td>
<td>2006</td>
<td>Design and installation of sheet roof and wall cladding — Plastic</td>
<td>B1D4, F<sub>4</sub>D<sub>4</sub>F<sub>3</sub>D<sub>2</sub></td>
<td>H2D6 H1D7</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1657</td>
<td>2018</td>
<td>Fixed platforms, walkways, stairways and ladders — Design, construction and installation</td>
<td>D2D21, D2D22, D3D23, I1D6, I3D5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1664 Part 1</td>
<td>1997</td>
<td>Aluminium structures — Limit state design (incorporating amendment 1)</td>
<td>B1D4</td>
<td>N/A</td>
<td>2.2.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1664 Part 2</td>
<td>1997</td>
<td>Aluminium structures — Allowable stress design (incorporating amendment 1)</td>
<td>B1D4</td>
<td>N/A</td>
<td>2.2.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1668 Part 1</td>
<td>2015</td>
<td>The use of ventilation and air conditioning in buildings — Fire and smoke control in buildings (incorporating amendment 1)</td>
<td>C3D13, C4D15, Spec 11, D2D12, Spec 19, E2D3, E2D4, F46D12, Spec 21, Spec 31</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1668 Part 2</td>
<td>2012</td>
<td>The use of ventilation and air conditioning in buildings — Mechanical ventilation in buildings (incorporating amendments 1 and 2)</td>
<td>E2D4, F46V1, F46D6, F46D11, F46D12, J5D4</td>
<td>H4V3</td>
<td>9.5.5</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1668 Part 4</td>
<td>2012</td>
<td>The use of ventilation and air conditioning in buildings — Natural ventilation of buildings</td>
<td>F46D11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1670 Part 1</td>
<td>2018</td>
<td>Fire detection, warning, control and interconnective systems (See Note 2)</td>
<td>C4D6, C4D7,</td>
<td>N/A</td>
<td>9.5.1, 9.5.5</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>AS 1670 Part 3</td>
<td>2018</td>
<td>Fire detection, warning, control and intercom systems — System design, installation and commissioning — Fire alarm monitoring (See Note 4)</td>
<td>Spec 20, Spec 23</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1670 Part 4</td>
<td>2018</td>
<td>Fire detection, warning, control and intercom systems — System design, installation and commissioning — Emergency warning and intercom systems (See Note 4)</td>
<td>E3V2, E4D9, Spec 31</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1680 Part 0</td>
<td>2009</td>
<td>Interior lighting — Safe movement</td>
<td>F46D4</td>
<td>N/A</td>
<td>10.5.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1684 Part 2</td>
<td>2010</td>
<td>Residential timber framed construction — Non-cyclonic areas (incorporating amendments 1 and 2)</td>
<td>B1D4, B1D5, F1D10</td>
<td>H1D6</td>
<td>2.2.5, 4.2.13, 4.5.7, 6.2.1, 6.3.6, 7.5.2, 7.5.3, 7.5.5</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1684 Part 3</td>
<td>2010</td>
<td>Residential timber framed construction — Cyclonic areas (incorporating amendment 1)</td>
<td>B1D4, B1D5, F1D10</td>
<td>H1D6</td>
<td>2.2.5, 4.2.13, 4.5.7, 6.2.1, 6.3.6, 7.5.2, 7.5.3, 7.5.5</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1684 Part 4</td>
<td>2010</td>
<td>Residential timber framed construction — Simplified — Noncyclonic areas (incorporating amendment 1)</td>
<td>B1D4, B1D5, F1D10</td>
<td>H1D6</td>
<td>2.2.5, 4.2.13, 4.5.7, 6.2.1, 6.3.6, 7.5.2, 7.5.3, 7.5.5</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1720 Part 1</td>
<td>2010</td>
<td>Timber structures — Design methods (incorporating amendments 1, 2 and 3)</td>
<td>B1V1, B1D4</td>
<td>H2V2, H1D6</td>
<td>5.3.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1720 Part 4</td>
<td>2006</td>
<td>Timber structures — Fire resistance for structural adequacy of timber members</td>
<td>Spec 1</td>
<td>Spec 21</td>
<td>Spec 2</td>
<td>Spec 21</td>
</tr>
<tr>
<td>AS 1720 Part 5</td>
<td>2015</td>
<td>Timber structures — Nailplated timber roof trusses (incorporating amendment 1)</td>
<td>B1D4</td>
<td>H1D6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1735 Part 11</td>
<td>1986</td>
<td>Lifts, escalators and moving walks — Fire rated landing doors</td>
<td>C4D11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1735 Part 12</td>
<td>1999</td>
<td>Lifts, escalators and moving walks — Facilities for persons with disabilities (incorporating amendment 1)</td>
<td>E3D7, I2D6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1859 Part 4</td>
<td>2018</td>
<td>Reconstituted wood based panels — Specifications — Wet process fibreboard See Note 5</td>
<td>N/A</td>
<td>N/A</td>
<td>7.5.3, 7.5.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1860 Part 2</td>
<td>2006</td>
<td>Particleboard flooring — Installation (incorporating amendment 1)</td>
<td>B1D4</td>
<td>H1D6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1905 Part 1</td>
<td>2015</td>
<td>Components for the protection of openings in fire-resistant walls — Fire-resistant</td>
<td>C4D7, Spec 12</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>AS 1905 Part 2</td>
<td>2005</td>
<td>Components for the protection of openings in fire-resistant walls — Fire-resistant roller shutters</td>
<td>Spec 12</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1926 Part 1</td>
<td>2012</td>
<td>Swimming pool safety — Safety barriers for swimming pools</td>
<td>G1D2, G1D4</td>
<td>H7D2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1926 Part 2</td>
<td>2007</td>
<td>Swimming pool safety — Location of safety barriers for swimming pools (incorporating amendments 1 and 2)</td>
<td>G1D2</td>
<td>H7D2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1926 Part 3</td>
<td>2010</td>
<td>Swimming pool safety — Water recirculation systems (incorporating amendment 1)</td>
<td>G1D2</td>
<td>H7D2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2047</td>
<td>2014</td>
<td>Windows and external glazed doors in buildings (incorporating amendments 1 and 2) See Note 6</td>
<td>B1D4, F13V1, F13D44, J4D5</td>
<td>H2V2, H1D8, H2D7</td>
<td>8.2.1, 13.4.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2049</td>
<td>2002</td>
<td>Roof tiles (incorporating amendment 1)</td>
<td>F13D24</td>
<td>H1D7</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2050</td>
<td>2018</td>
<td>Installation of roof tiles</td>
<td>B1D4, F13D24</td>
<td>H2D6</td>
<td>7.3.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2118 Part 1</td>
<td>2017</td>
<td>Automatic fire sprinkler systems — General systems (incorporating amendments 1 and 2)</td>
<td>C1V3, E1D2, Spec 17, Spec 18</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2118 Part 4</td>
<td>2012</td>
<td>Automatic fire sprinkler systems — Sprinkler protection for accommodation buildings not exceeding four storeys in height</td>
<td>E1D2, Spec 17, Spec 18</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2118 Part 6</td>
<td>2012</td>
<td>Automatic fire sprinkler systems — Combined sprinkler and hydrant systems in multi-storey buildings</td>
<td>E1D2, Spec 17</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2159</td>
<td>2009</td>
<td>Piling — Design and installation (incorporating amendment 1)</td>
<td>B1D4</td>
<td>H1D4, H2D3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2179 Part 1</td>
<td>2014</td>
<td>Specifications for rainwater goods, accessories and fasteners — Metal shape or sheet rainwater goods, and metal accessories and fasteners</td>
<td>N/A</td>
<td>N/A</td>
<td>7.4.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2269 Part 0</td>
<td>2012</td>
<td>Plywood — Structural — Specifications (incorporating amendment 1)</td>
<td>N/A</td>
<td>N/A</td>
<td>7.5.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2293 Part 1</td>
<td>2018</td>
<td>Emergency lighting and exit signs for buildings — System design, installation and operation</td>
<td>E4D4, E4D8, Spec 25, I3D15</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2327</td>
<td>2017</td>
<td>Composite structures — Composite steel-concrete construction in buildings</td>
<td>B1D4, Spec 1</td>
<td>Spec 21</td>
<td>2.2.4, Spec 2</td>
<td>Spec 21</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>--</td>
<td>---------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>AS 2419 Part 1</td>
<td>2005</td>
<td>Fire hydrant installations — System design, installation and commissioning (incorporating amendment 1)</td>
<td>C3D13, E1D2, Spec 18, I3D9</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2441</td>
<td>2005</td>
<td>Installation of fire hose reels (incorporating amendment 1)</td>
<td>E1D3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2444</td>
<td>2001</td>
<td>Portable fire extinguishers and fire blankets — Selection and location</td>
<td>E1D14, I3D11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2665</td>
<td>2001</td>
<td>Smoke/heat venting systems — Design, installation and commissioning</td>
<td>Spec 22, Spec 31</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS-2699 Part 1</td>
<td>2009</td>
<td>Built-in components for masonry construction — Wall ties. See Note (I)(i)</td>
<td>C2D10</td>
<td>N/A</td>
<td>5.2.10, 5.6.5</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS-2699 Part 3</td>
<td>2002</td>
<td>Built-in components for masonry construction — Lintels and shelf angles (durability requirements). See Note (I)(ii)</td>
<td>C2D10</td>
<td>N/A</td>
<td>5.2.12, 5.6.7</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2870</td>
<td>2011</td>
<td>Residential slabs and footings</td>
<td>F1D98</td>
<td>H1D3, H1D4, H2D3,</td>
<td>3.3.4, 3.4.3, 4.2.2, 4.2.6, 4.2.8, 4.2.11, 4.2.14, 4.3.3, 4.4.1, 4.5, 4.5.3, 4.5.7, 10.2.10</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2890 Part 6</td>
<td>2009</td>
<td>Parking facilities — Offstreet parking for people with disabilities</td>
<td>D4D6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2904</td>
<td>1995</td>
<td>Damp-proof courses and flashings (incorporating amendments 1 and 2)</td>
<td>F1D87</td>
<td>N/A</td>
<td>5.2.7, 5.7.3, 7.5.6, 12.3.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2908 Part 1</td>
<td>2000</td>
<td>Cellulose-cement products — Corrugated sheets</td>
<td>B1D4, F43D24</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2908 Part 2</td>
<td>2000</td>
<td>Cellulose-cement products — Flat sheets</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>7.5.3, 7.5.4, 7.5.5, 10.2,10,10.2.11, Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS/NZS 2918</td>
<td>2018</td>
<td>Domestic solid fuel burning appliances — Installation See Note 11</td>
<td>G2D2</td>
<td>H7D5,</td>
<td>12.4.4, 12.4.5</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 3013</td>
<td>2005</td>
<td>Electrical installations — Classification of the fire and mechanical performance of wiring system elements</td>
<td>C3D14</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 3500 Part 0</td>
<td>2003</td>
<td>Plumbing and drainage — Glossary of terms</td>
<td>A1G1</td>
<td>A1G1</td>
<td>A1G1</td>
<td>A1G1</td>
</tr>
<tr>
<td>AS/NZS 3500 Part 1</td>
<td>2018</td>
<td>Plumbing and drainage — Water services</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>B1D4, B3D3, B4D2, B5D2,</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>AS/NZS 3500 Part 2</td>
<td>2018</td>
<td>Plumbing and drainage — Sanitary plumbing and drainage</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>C1D3, C2D2, C2D4</td>
</tr>
<tr>
<td>AS/NZS 3500 Part 3</td>
<td>2018</td>
<td>Plumbing and drainage — Stormwater drainage</td>
<td>F1D2</td>
<td>H1D3, H1D7</td>
<td>3.3.4, 7.4.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 3500 Part 4</td>
<td>2018</td>
<td>Plumbing and drainage — Heated water services (incorporating amendment 1)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>B2D2, B2D6, B2D7, B2D8, B2D9</td>
</tr>
<tr>
<td>AS/NZS 3600</td>
<td>2018</td>
<td>Concrete structures (incorporating amendment 1)</td>
<td>B1V1, B1D4, Spec 2</td>
<td>H1V1, H1D4, Spec 2</td>
<td>2.2.4, 3.4.3, 4.2.6, 4.2.10, 4.2.13, 4.3.2, 4.5.7, 5.3.3, 10.2.10, Spec 2</td>
<td>Spec 2</td>
</tr>
<tr>
<td>AS 3660 Part 1</td>
<td>2014</td>
<td>Termite management — New building work (incorporating amendment 1)</td>
<td>B1D4, F1D2</td>
<td>N/A</td>
<td>3.4.1, 3.4.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 3660 Part 3</td>
<td>2014</td>
<td>Termite management — Assessment criteria for termite management systems</td>
<td>N/A</td>
<td>N/A</td>
<td>3.4.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 3666 Part 1</td>
<td>2011</td>
<td>Air-handling and water systems of buildings — Microbial control — Design, installation and commissioning</td>
<td>F2D10, F4D6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 3700</td>
<td>2018</td>
<td>Masonry structures</td>
<td>B1D4, Spec 2</td>
<td>H1D5, H2D4,</td>
<td>5.2.4, 5.4.2, 5.6.3, 6.3.6, 10.2.10, 12.4.3, Spec 2</td>
<td>Spec 2</td>
</tr>
<tr>
<td>AS 3740</td>
<td>2010</td>
<td>Waterproofing of domestic wet areas (incorporating amendment 1)</td>
<td>F1D2</td>
<td>H4D3</td>
<td>10.2.9</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 3786</td>
<td>2014</td>
<td>Smoke alarms using scattered light, transmitted light or ionization (incorporating amendment 1 and 2) See Note 7</td>
<td>Spec 20</td>
<td>N/A</td>
<td>9.5.1, 9.5.5</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 3823 Part 1.2</td>
<td>2012</td>
<td>Performance of electrical appliances — Airconditioners and heat pumps — Ducted airconditioners and air-to-air heat pumps — Testing and rating for performance</td>
<td>Spec 33, J5D12</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 3959</td>
<td>2018</td>
<td>Construction of buildings in bushfire-prone areas</td>
<td>G5D2, G5D3, Spec 44</td>
<td>H7D4</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4020</td>
<td>2018</td>
<td>Testing of products for use in contact with drinking water</td>
<td>A5G4</td>
<td>A5G4</td>
<td>A5G4</td>
<td>A5G4, A5G7</td>
</tr>
<tr>
<td>AS 4055</td>
<td>2012</td>
<td>Wind loads for housing (incorporating amendment 1)</td>
<td>Schedule 2</td>
<td>H1D8, Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS 4072 Part 1</td>
<td>2005</td>
<td>Components for the protection of openings</td>
<td>C4D15, C4D16</td>
<td>N/A</td>
<td>9.3.2</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>--</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>AS 4100</td>
<td>1998-2020</td>
<td>Steel structures (incorporating amendment 1)</td>
<td>B1D4, Spec 21</td>
<td>H1D6, Spec 21</td>
<td>4.2.13, 4.5.7-5.2.12, 6.6.7, 12.3.2, Spec 2</td>
<td>Spec 21</td>
</tr>
<tr>
<td>AS/NZS 4200 Part 1</td>
<td>2017</td>
<td>Pliable building membranes and underlays — Materials</td>
<td>F13D3, F68D3, Spec 2</td>
<td>Spec 2</td>
<td>7.3.4, 7.5.2, 7.5.8, 10.8.1, Spec 2</td>
<td>Spec 2</td>
</tr>
<tr>
<td>AS 4200 Part 2</td>
<td>2017</td>
<td>Pliable building membranes and underlays — Installation requirements (incorporating amendment 1)</td>
<td>F1D5, F68D3</td>
<td>N/A</td>
<td>10.8.1</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4234</td>
<td>2008</td>
<td>Heated water systems — Calculation of energy consumption (incorporating amendments 1, 2 and 3)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>B2V1, B2D2</td>
</tr>
<tr>
<td>AS 4254 Part 1</td>
<td>2012</td>
<td>Ductwork for airhandling systems in buildings — Flexible duct</td>
<td>Spec 7, J5D7</td>
<td>H3D2</td>
<td>13.6.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 4254 Part 2</td>
<td>2012</td>
<td>Ductwork for airhandling systems in buildings — Rigid duct</td>
<td>Spec 7, J5D5, J5D7</td>
<td>N/A</td>
<td>13.6.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4256 Part 1</td>
<td>1994</td>
<td>Plastic roof and wall cladding materials — General requirements</td>
<td>F1D4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4256 Part 2</td>
<td>1994</td>
<td>Plastic roof and wall cladding materials — Unplasticized polyvinyl chloride (uPVC) building sheets</td>
<td>F1D4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4256 Part 3</td>
<td>1994</td>
<td>Plastic roof and wall cladding materials — Glass fibre reinforced polyester (GRP)</td>
<td>F1D4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4256 Part 5</td>
<td>1996</td>
<td>Plastic roof and wall cladding materials — Polycarbonate</td>
<td>F1D4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4284</td>
<td>2008</td>
<td>Testing of building facades</td>
<td>F13V1</td>
<td>H1V1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4505</td>
<td>2012</td>
<td>Garage doors and other large access doors (incorporating amendment 1)</td>
<td>B1D4</td>
<td>N/A</td>
<td>2.2.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 4552</td>
<td>2005</td>
<td>Gas fired water heaters for hot water supply and/or central heating</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>B2D2</td>
</tr>
<tr>
<td>AS 4586</td>
<td>2013</td>
<td>Slip resistance classification of new pedestrian surface materials (incorporating amendment 1) See Note 10</td>
<td>D3D11, D3D14, D3D15. Spec 27</td>
<td>N/A</td>
<td>11.2.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 4597</td>
<td>1999</td>
<td>Installation of roof slates and shingles (Noninterlocking type)</td>
<td>B1D4, F34D24</td>
<td>H2D6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4600</td>
<td>2018</td>
<td>Cold-formed steel structures</td>
<td>B1D4, Spec 2</td>
<td>H1D6, Spec 2</td>
<td>5.3.3, 6.3.6, Spec 2</td>
<td>Spec 2</td>
</tr>
<tr>
<td>AS 4654 Part 1</td>
<td>2012</td>
<td>Waterproofing membranes for external above-ground use — Materials</td>
<td>F1D3</td>
<td>H2D8</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>AS 4654 Part 2</td>
<td>2012</td>
<td>Waterproofing membranes for external above-ground use — Design and installation</td>
<td>E1D3</td>
<td>H2D8</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 4678</td>
<td>2002</td>
<td>Earth-retaining structures</td>
<td>N/A</td>
<td>H1D3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 4773 Part 1</td>
<td>2015</td>
<td>Masonry in small buildings — Design (incorporating amendment 1)</td>
<td>N/A</td>
<td>H1D5, H2D4</td>
<td>5.2.4, 5.6.3, 12.4.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 4773 Part 2</td>
<td>2015</td>
<td>Masonry in small buildings — Construction</td>
<td>N/A</td>
<td>H1D5, H2D4</td>
<td>5.2.4, 5.6.3, 12.4.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4859 Part 1</td>
<td>2018</td>
<td>Thermal insulation materials for buildings — General criteria and technical provisions</td>
<td>J3D3, J5D6, J5D9</td>
<td>N/A</td>
<td>13.2.2, 13.2.6, 13.6.2, 13.6.3, 13.6.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4859 Part 2</td>
<td>2018</td>
<td>Thermal insulation materials for buildings — Design</td>
<td>J3D3, Spec 37</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 5113</td>
<td>2016</td>
<td>Classification of external walls of buildings based on reaction-to-fire performance (incorporating amendment 1)</td>
<td>C1V3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 5146 Part 1</td>
<td>2015</td>
<td>Reinforced autoclaved aerated concrete — Structures (incorporating amendment 1)</td>
<td>B1D4</td>
<td>H2D6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 5216</td>
<td>2018</td>
<td>Design of post-installed and cast-in fastenings in concrete</td>
<td>B1D4</td>
<td>N/A</td>
<td>2.2.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 5637 Part 1</td>
<td>2015</td>
<td>Determination of fire hazard properties — Wall and ceiling linings</td>
<td>Spec 7, Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS ISO 9239 Part 1</td>
<td>2003</td>
<td>Reaction to fire tests for floorings — Determination of the burning behaviour using a radiant heat source</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS/NZS ISO 9972</td>
<td>2015</td>
<td>Thermal performance of buildings — Determination of air permeability of buildings — Fan pressurization method</td>
<td>J1V4</td>
<td>H6V3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AIRAH-DA09</td>
<td>1998</td>
<td>Air conditioning load estimation</td>
<td>Spec 35</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AIRAH-DA28</td>
<td>2011</td>
<td>Building management and control systems</td>
<td>Spec 34</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ANSI/ASHRAE Standard 55</td>
<td>2013</td>
<td>Thermal environmental conditions for human occupancy</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>ANSI/ASHRAE Standard 140</td>
<td>2007</td>
<td>Standard method of test for the evaluation of building energy analysis computer programs</td>
<td>J1V1, J1V2, J1V3</td>
<td>H6V2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ASTM E2073-10</td>
<td>2010</td>
<td>Standard Test Method for Photopic Luminance of Photoluminescent (Phosphorescent) Markings</td>
<td>Spec 25</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ASTM E72-15</td>
<td>2015</td>
<td>Standard Test Methods of Conducting Strength Tests of Panels for Building</td>
<td>Spec 6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>--</td>
<td>------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ASTM E695-03</td>
<td>2003</td>
<td>Standard Test Method of Measuring Relative Resistance of Wall, Floor and Roof Construction to Impact Loading</td>
<td>Spec 6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ASTM E903</td>
<td>2012</td>
<td>Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres</td>
<td>N/A</td>
<td>N/A</td>
<td>13.2.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AHRI 460</td>
<td>2005</td>
<td>Performance rating of remote mechanical-draft air-cooled refrigerant condensers</td>
<td>J5D13</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AHRI 551/591</td>
<td>2015</td>
<td>Performance rating of water-chilling and heat pump water-heating packages using the vapor compression cycle.</td>
<td>Spec 33, J5D11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ABCB</td>
<td>2011</td>
<td>Protocol for Structural Software, Version 2011.2</td>
<td>B1D5</td>
<td>H1D6</td>
<td>2.2.5</td>
<td>N/A</td>
</tr>
<tr>
<td>ABCB</td>
<td>2012</td>
<td>Standard for Construction of Buildings in Flood Hazard Areas, Version 2012.3</td>
<td>B1D6</td>
<td>H1D10</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ABCB</td>
<td>2022</td>
<td>Fire Safety Verification Method</td>
<td>C1V4, D1V4, E1V1, E2V1, E3V1, E4V2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCB</td>
<td>2019</td>
<td>Standard for NatHERS Heating and Cooling Load Limits, Version 2019.1</td>
<td>J2D3</td>
<td>H6D3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CIBSE Guide A</td>
<td>2015</td>
<td>Environmental design</td>
<td>Spec 34, Spec 35, J3D3, J3D7</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Disability Standards for Accessible Public Transport</td>
<td>2002</td>
<td></td>
<td>F2D12, I2D1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Education and Care Services National Law Act (Vic)</td>
<td>2010</td>
<td></td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>European Union Commission Regulation 547/2012</td>
<td>2012</td>
<td>Ecodesign requirements for water pumps</td>
<td>J5D8</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>European Union Commission Regulation 622/Annex II, point</td>
<td>2012</td>
<td>Eco-design requirements for glandless standalone circulators and glandless circulators integrated in products</td>
<td>J5D8</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>--</td>
<td>--</td>
<td>------------</td>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>FPAA101D</td>
<td>2018</td>
<td>Automatic Fire Sprinkler System Design and Installation — Drinking Water Supply</td>
<td>C1V3, C2D6, C3D14, C3D2, C3D7, C4D6, C4D7, C4D8, C4D9, C4D12, Spec 5, Spec 7, D2D4, D2D17, D3D26, D3D30, E1D2, Spec 17, Spec 18, E2D3, Spec 20, G3D1, G3D6, Spec 31, H1D2</td>
<td>N/A</td>
<td>N/A</td>
<td>B4D2</td>
</tr>
<tr>
<td>FPAA101H</td>
<td>2018</td>
<td>Automatic Fire Sprinkler System Design and Installation — Hydrant Water Supply</td>
<td>C1V3, C2D6, C3D14, C3D2, C3D7, C4D6, Spec 5, Spec 7, E1D2, Spec 17, Spec 18, E2D3, Spec 20, G3D1, G3D6, Spec 31, H1D2</td>
<td>N/A</td>
<td>N/A</td>
<td>B4D2</td>
</tr>
<tr>
<td>ISO 140 Part 6</td>
<td>1998E</td>
<td>Acoustics — Measurement of sound insulation in buildings and of building elements — Laboratory measurements of impact sound insulation of floors</td>
<td>Spec 29</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ISO 540</td>
<td>2008</td>
<td>Hard coal and coke — Determination of ash fusibility</td>
<td>Spec 13</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ISO 8336</td>
<td>1993E</td>
<td>Fibre-cement flat sheets</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>7.5.3, 7.5.4, 7.5.5, Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>ISO 25745 Part 2</td>
<td>2015</td>
<td>Energy performance of lifts, escalators and moving walks: Energy calculation and classification for lifts (elevators)</td>
<td>J6D8</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>NASH Standard</td>
<td>2014</td>
<td>Steel Framed Construction in Bushfire Areas (incorporating amendment A)</td>
<td>N/A</td>
<td>H1D6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>NASH Standard Part 1</td>
<td>2005</td>
<td>Residential and LowRise Steel Framing — Design Criteria (incorporating amendments A, B and C)</td>
<td>B1D4</td>
<td>H1D6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>NASH Standard</td>
<td>2014</td>
<td>Residential and LowRise Steel Framing —</td>
<td>B1D4, B1D5,</td>
<td>H1D6</td>
<td>2.2.5, 6.2.1, 6.3.6,</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>Northern Territory Deemed to Comply Standards Manual</td>
<td>N/A</td>
<td>N/A</td>
<td>2.2.4</td>
<td>N/A</td>
</tr>
<tr>
<td>SA TS 5344</td>
<td>2019</td>
<td>Permanent labelling for Aluminium Composite Panel (ACP) products</td>
<td>A5G8</td>
<td>A5G8</td>
<td>A5G8</td>
<td>A5G8</td>
</tr>
<tr>
<td>TN 61</td>
<td></td>
<td>Cement Concrete and Aggregates Australia — Technical note — Articulated walling</td>
<td>N/A</td>
<td>H1D4</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table Notes:

1. **For AS/NZS ISO 717.1:**
 (i) Test reports based on AS 1276—1979 and issued prior to AS/NZS 1276.1—1999 being referenced in the NCC remain valid.
 (ii) The STC values in reports based on AS 1276—1979 shall be considered to be equivalent to R_w values.
 (iii) Test reports based on AS/NZS 1276.1 prepared after the NCC reference date for AS/NZS 1276.1—1999 must be based on that version.
 (iv) Test reports based on ISO 717-1—1996 and issued prior to AS/NZS ISO 717.1—2004 being referenced in the NCC remain valid.
 (v) Reports based on AS/NZS ISO 717.1 relating to tests carried out after the NCC reference date for AS/NZS ISO 717.1—2004 must relate to the amended Standard.

2. **For AS 1530 Parts 1 to 4:**
 (i) Until 1 May 2022, subject to the note to AS 4072.1, reports relating to tests carried out under earlier editions of AS 1530 Parts 1 to 4 remain valid.
 (ii) Reports relating to tests carried out after the date of an amendment to a Standard must relate to the amended Standard.

3. **For AS 1562.1:** tests carried out based on AS 1562.1—1992 and issued prior to AS 1562.1—2018 being referenced in the NCC remain valid. Reports relating to tests carried out after the NCC reference date for AS 1562.1 must relate to the revised Standard.

4. **For AS 1670.1, AS 1670.3 and AS 1670.4:**
 (i) Notwithstanding A4G1(5), until 1 May 2022 either the current edition or the previous editions of the documents listed in Table 1.8 of AS 1670.1, AS 1670.3 and AS 1670.4 may be used to meet the requirements of AS 1670.1, AS 1670.3 and AS 1670.4 as applicable.
 (ii) From 1 May 2022 A4G1(5) applies and only the edition of the documents listed in Table 1.8 of AS 1670.1, AS 1670.3 and AS 1670.4 that existed at the time of publication of the primary document may be used.
 (iii) For AS/NZS 1859.4, the 2004 edition has been retained for a transitional period ending on 30 April 2020.

5. **For AS 2047:**
 (i) Tests carried out under earlier editions of AS 2047 remain valid.
 (ii) Reports based on AS 2047 relating to tests carried out after the NCC reference date for AS 2047—2014 Amendment 2 must relate to the amended Standard.

6. **For AS 3786:**
 (i) Tests carried out under AS 3786—2014 Amendment 1 remain valid.
 (ii) Reports based on AS 3786 relating to tests carried out after the NCC reference date for AS 3786—2014 Amendment 2 must relate to the amended Standard.

7. Test reports based on the 2005 edition of AS/NZS 4020 will continue to be accepted until 1 May 2024. Test reports prepared after the NCC reference date for the

8. For AS 4072.1, until 1 May 2022, systems tested to AS 1530.4 prior to 1 January 1995 need not be retested to comply with the provisions in AS 4072.1.

9. For AS 4586:
 (i) Test reports based on the 2004 edition of AS/NZS 4586 and issued prior to the 2013 edition of AS 4586 being referenced in the NCC remain valid.
 (ii) Test reports prepared after the NCC reference date of the 2013 edition of AS 4586 must be based on that version.
 (iii) For the purposes of assessing compliance, the slip-resistance classifications of V, W and X in reports based on the 2004 edition of AS/NZS 4586 may be considered to be equivalent to slip-resistance classifications of P5, P4 and P3 respectively in the 2013 edition of AS 4586.
 (iv) Test reports based on Appendix D of AS 4586—2013 and issued prior to the NCC reference date for AS 4586—2013 (incorporating Amendment 1) remain valid.
 (v) Test reports based on Appendix D of AS 4586—2013 and prepared after the NCC reference date for AS 4586—2013 (incorporating Amendment 1) must be based on that version.

10. Tests carried out based on AS/NZS 2918—2001 and issued prior to AS/NZS 2918—2018 being referenced in the BCA remain valid. Reports relating to tests carried out after the NCC reference date for AS/NZS 2918 must relate to the revised Standard.

11. For AS 2699 Parts 1 and 3:
 (i) For AS 2699.1, the 2000 edition has been retained for a transitional period ending on 30 April 2025.
 (ii) For AS 2699.3, the 2002 edition has been retained for a transitional period ending on 30 April 2025.