Copyright and Licence Notice

© Commonwealth of Australia and the States and Territories of Australia 2020, published by the Australian Building Codes Board

The material in this publication is licensed under a Creative Commons Attribution-NoDerivatives - 4.0 International licence, with the exception of:

- any third party material
- any trade marks, and
- any images or photographs.

You may not make derivatives of this publication, but may only use a verbatim copy. More information on this CC BY ND license is set out at the Creative Commons Website. Enquiries about this publication can be sent to:

Australian Building Codes Board
GPO Box 2013, Canberra ACT 2601
Phone: 1300 134 631
Email: ncc@abcb.gov.au
Web: abcb.gov.au

Attribution

Use of all or part of this publication must include the following attribution: © Commonwealth of Australia and the States and Territories 2022, published by the Australian Building Codes Board.

Disclaimer

By accessing or using this publication, you agree to the following:

While care has been taken in the preparation of this publication, it may not be complete or up-to-date. You can ensure that you are using a complete and up-to-date version by checking the Australian Building Codes Board website (abcb.gov.au).

The Australian Building Codes Board, the Commonwealth of Australia and States and Territories of Australia do not accept any liability, including liability for negligence, for any loss (howsoever caused), damage, injury, expense or cost incurred by any person as a result of accessing, using or relying upon this publication, to the maximum extent permitted by law. No representation or warranty is made or given as to the currency, accuracy, reliability, merchantability, fitness for any purpose or completeness of this publication or any information which may appear on any linked websites, or in other linked information sources, and all such representations and warranties are excluded to the extent permitted by law.

This publication is not legal or professional advice. Persons rely upon this publication entirely at their own risk and must take responsibility for assessing the relevance and accuracy of the information in relation to their particular circumstances.
General table of contents

Preface
- Copyright and Licence Notice ... 2
- Introduction to the National Construction Code (NCC) 8
- Introduction to NCC Volume One .. 10
- List of NCC Specifications .. 11
- History of adoption of NCC Volume One ... 13

Section A Governing requirements
- **Part A1** Interpreting the NCC .. 25
- **Part A2** Compliance with the NCC ... 28
- **Part A3** Application of the NCC in States and Territories 32
- **Part A4** Referenced documents ... 33
- **Part A5** Documentation of design and construction 35
- **Part A6** Building classification ... 42
- **Part A7** United buildings ... 54
- **Part A8** Quantification of the fire safety Performance Requirements 56

Specification 1 Fire-resistance of building elements 60
Specification 2 Descriptions of elements referred to in Specification 1 66
Specification 3 Fire hazard properties .. 72

Section B Structure
- **Part B1** Structural provisions .. 74
- **Specification 4** Design of buildings in cyclonic areas 85

Section C Fire resistance
- **Part C1** Fire resistance Performance Requirements 91
- **Part C2** Fire resistance and stability .. 98
- **Part C3** Compartmentation and separation 105
- **Part C4** Protection of openings ... 113

Specification 5 Fire-resisting construction ... 120
Specification 6 Structural tests for lightweight construction 138
Specification 7 Fire hazard properties .. 142
Specification 8 Performance of external walls in fire 147
Specification 9 Cavity barriers for fire-protected timber 149
Specification 10 Fire-protected timber .. 151
Specification 11 Smoke-proof walls in health-care and residential care buildings 153
Specification 12 Fire doors, smoke doors, fire windows and shutters 155
Specification 13 Penetration of walls, floors and ceilings by services 157
<table>
<thead>
<tr>
<th>Section</th>
<th>Access and egress</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part D1</td>
<td>Access and egress – Performance Requirements</td>
<td>163</td>
</tr>
<tr>
<td>Part D2</td>
<td>Provision for escape</td>
<td>172</td>
</tr>
<tr>
<td>Part D3</td>
<td>Construction of exits</td>
<td>185</td>
</tr>
<tr>
<td>Part D4</td>
<td>Access for people with a disability</td>
<td>201</td>
</tr>
<tr>
<td>Specification 14</td>
<td>Non-required stairways, ramps and escalators</td>
<td>210</td>
</tr>
<tr>
<td>Specification 15</td>
<td>Braille and tactile signs</td>
<td>212</td>
</tr>
<tr>
<td>Specification 16</td>
<td>Accessible water entry/exit from swimming pools</td>
<td>214</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Services and equipment</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part E1</td>
<td>Fire fighting equipment</td>
<td>223</td>
</tr>
<tr>
<td>Part E2</td>
<td>Smoke hazard management</td>
<td>232</td>
</tr>
<tr>
<td>Part E3</td>
<td>Lift installations</td>
<td>243</td>
</tr>
<tr>
<td>Part E4</td>
<td>Visibility in an emergency, exit signs and warning systems</td>
<td>251</td>
</tr>
<tr>
<td>Specification 17</td>
<td>Fire sprinkler systems</td>
<td>256</td>
</tr>
<tr>
<td>Specification 18</td>
<td>Class 2 and 3 buildings not more than 25m in effective height</td>
<td>259</td>
</tr>
<tr>
<td>Specification 19</td>
<td>Fire control centres</td>
<td>262</td>
</tr>
<tr>
<td>Specification 20</td>
<td>Smoke detection and alarm systems</td>
<td>266</td>
</tr>
<tr>
<td>Specification 21</td>
<td>Smoke exhaust systems</td>
<td>271</td>
</tr>
<tr>
<td>Specification 22</td>
<td>Smoke-and-heat vents</td>
<td>275</td>
</tr>
<tr>
<td>Specification 23</td>
<td>Residential fire safety systems</td>
<td>276</td>
</tr>
<tr>
<td>Specification 24</td>
<td>Lift installations</td>
<td>280</td>
</tr>
<tr>
<td>Specification 25</td>
<td>Photoluminescent exit signs</td>
<td>282</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Health and amenity</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part F1</td>
<td>Damp and weatherproofing</td>
<td>289</td>
</tr>
<tr>
<td>Part F2</td>
<td>Wet areas and overflow protection</td>
<td>295</td>
</tr>
<tr>
<td>Part F3</td>
<td>Roof and wall cladding</td>
<td>299</td>
</tr>
<tr>
<td>Part F2F4</td>
<td>Sanitary and other facilities</td>
<td>305</td>
</tr>
<tr>
<td>Part F3F5</td>
<td>Room heights</td>
<td>320</td>
</tr>
<tr>
<td>Part F4F6</td>
<td>Light and ventilation</td>
<td>323</td>
</tr>
<tr>
<td>Part F5F7</td>
<td>Sound transmission and insulation</td>
<td>331</td>
</tr>
<tr>
<td>Part F6F8</td>
<td>Condensation management</td>
<td>337</td>
</tr>
<tr>
<td>Specification 26</td>
<td>Waterproofing and water-resistance requirements for building elements in wet areas</td>
<td>340</td>
</tr>
<tr>
<td>Specification 27</td>
<td>Accessible adult change facilities</td>
<td>343</td>
</tr>
<tr>
<td>Specification 28</td>
<td>Sound insulation for building elements</td>
<td>350</td>
</tr>
<tr>
<td>Specification 29</td>
<td>Impact sound – test of equivalence</td>
<td>366</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Ancillary provisions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part G1</td>
<td>Minor structures and components</td>
<td>371</td>
</tr>
</tbody>
</table>
Part G2 Boilers, pressure vessels, heating appliances, fireplaces, chimneys and flues ... 376
Part G3 Atrium construction ... 379
Part G4 Construction in alpine areas ... 381
Part G5 Construction in bushfire prone areas .. 385
Part G6 Occupiable outdoor areas ... 391
Part G7 Livable housing design ... 393
Specification 30 Installation of boilers and pressure vessels .. 395
Specification 31 Fire and smoke control systems in buildings containing atriums 397
Specification 43 Bushfire protection for certain Class 9 buildings .. 404

Section I Special use buildings
Part I1 Class 9B buildings .. 410
Part I2 Public transport buildings .. 412
Part I3 Farm buildings and farm sheds ... 415
Specification 32 Construction of proscenium walls .. 419

Section J Energy efficiency
Part J1 Energy efficiency performance requirements .. 424
Part J2 Energy efficiency .. 428
Part J3 Building fabric ... 430
Part J4 Building sealing .. 435
Part J5 Air-conditioning and ventilation .. 438
Part J6 Artificial lighting and power ... 451
Part J7 Heated water supply and swimming pool and spa pool plant .. 459
Part J8 Facilities for energy monitoring ... 461
Specification 33 Additional requirements .. 463
Specification 34 Modelling parameters .. 465
Specification 35 Modelling profiles ... 469
Specification 36 Material properties .. 481
Specification 37 Calculation of u-value and solar admittance .. 487
Specification 38 Spandrel panel thermal performance ... 491
Specification 39 Sub-floor thermal performance ... 493
Specification 40 Lighting and power control devices ... 495

Schedule 1 Definitions
Abbreviations .. 499
Symbols .. 501
Glossary .. 503

Schedule 2 Referenced documents
Referenced documents .. 540
Preface

Schedule 3 Commonwealth of Australia

Footnote: Other legislation and policies affecting buildings555

Schedule 4 Australian Capital Territory

ACT Introduction ..561
ACT Footnote: Other legislation affecting buildings ...562

Schedule 5 New South Wales

NSW Introduction ..565
Section A Governing requirements ..566
Section C Fire resistance ..567
Section D Access and egress ...572
Section E Services and equipment ..579
Section F Health and amenity ...583
Section G Ancillary provisions ..584
Schedule 1 Definitions ..587
NSW Footnote: Other legislation affecting buildings ..588

Schedule 6 Northern Territory

NT Introduction ...595
Section B Structure ...596
Section E Services and equipment ..599
Section G Ancillary provisions ..600
NT Footnote: Other legislation affecting buildings ..601

Schedule 7 Queensland

QLD Introduction ...605
Section B Structure ...606
Section G Ancillary provisions ..609
Schedule 1 Definitions ..610
QLD Footnote: Other legislation affecting buildings ..611

Schedule 8 South Australia

SA Introduction ..614
Section A Governing requirements ..615
Section B Structure ...616
Section C Fire resistance ..617
Section D Access and egress ...619
Section E Services and equipment ..623
Section F Health and amenity ...628
Section G Ancillary provisions ..632
Section I Special use buildings ..633
Preface

Section J

Energy efficiency ... 634

Schedule 1

Definitions ... 635

SA

Footnote: Other legislation affecting buildings 636

Schedule 9
Tasmania

TAS

Introduction .. 643

Section A

Governing requirements .. 644

Section D

Access and egress .. 646

Section E

Services and equipment .. 647

Section F

Health and amenity .. 648

Section G

Ancillary provisions ... 650

Schedule 1

Definitions .. 652

TAS

Footnote: Other legislation affecting buildings 653

Schedule 10
Victoria

VIC

Introduction .. 656

Section B

Structure .. 657

Section C

Fire resistance ... 658

Section D

Access and egress .. 659

Section E

Services and equipment .. 660

Section F

Health and amenity .. 663

Section G

Ancillary provisions ... 667

Schedule 1

Definitions .. 668

VIC

Footnote: Other legislation affecting buildings 669

Schedule 11
Western Australia

WA

Introduction .. 676

WA

Footnote: Other legislation affecting buildings 677
Introduction to the National Construction Code (NCC)

About the NCC

The NCC is Australia’s primary set of technical design and construction provisions for buildings. As a performance-based code, it sets the minimum required level for the safety, health, amenity, accessibility and sustainability of certain buildings. It primarily applies to the design and construction of new buildings, and plumbing and drainage systems in new and existing buildings. In some cases it may also apply to structures associated with buildings and new building work or new plumbing and drainage work in existing buildings.

The Australian Building Codes Board (ABCB), on behalf of the Australian Government and each State and Territory government, produces and maintains the NCC. When determining the content of the NCC, the ABCB seeks to—

- ensure requirements have a rigorously tested rationale; and
- effectively and proportionally address applicable issues; and
- create benefits to society that outweigh costs; and
- consider non-regulatory alternatives; and
- consider the competitive effects of regulation; and
- not be unnecessarily restrictive.

The primary users of the NCC include architects, builders, plumbers, building surveyors, hydraulic consultants, engineers and other building and plumbing related professions and trades.

Format of the NCC

The NCC is published in three volumes. The Building Code of Australia (BCA) is Volumes One and Two of the NCC and the Plumbing Code of Australia (PCA) is Volume Three of the NCC.

Components of the NCC

The NCC provides the technical provisions for the design and construction of buildings and other structures, and plumbing and drainage systems.

NCC Volume One primarily covers the design and construction of multi-residential, commercial, industrial and public assembly buildings and some associated structures.

NCC Volume Two primarily covers the design and construction of smaller scale buildings including houses, small sheds, carports and some associated structures.

NCC Volume Three covers the design, construction and maintenance of plumbing and drainage systems in new and existing buildings.

Each volume contains—

- Governing Requirements; and
- Performance Requirements; and
- compliance options to meet the NCC requirements; and
- State and Territory variations and additions.

The NCC uses building classifications to identify requirements for different intended purposes of buildings or parts of buildings. A building classification relates to the characteristics and the intended use of the building. Information on building classifications is found in Part A6 of the Governing Requirements.

Legislative arrangements and the NCC

The NCC is given legal effect through State and Territory, or other statutory authority, building and plumbing legislation. These Acts and Regulations set out the legal framework and administration mechanisms for the NCC to support the design and construction of buildings.
The dates of adoption of the NCC are determined by State and Territory building and plumbing administrations.

How to use the NCC

Each volume of the NCC is split into two main sections:

- Administrative requirements contained within the Governing Requirements.
- Technical requirements contained within the remaining sections of the NCC.

The Governing Requirements provide the rules and instructions for using and complying with the NCC. They are vital in understanding how the technical requirements of the NCC should be applied to any particular situation. The Governing Requirements are also important in understanding how the NCC fits with the building and plumbing regulatory framework within Australia.

NCC clause numbering system

The NCC uses a uniform clause numbering system across each of its three volumes. This system is called Section-Part-Type-Clause (SPTC). In each clause number—

- The first letter indicates which NCC Section sits within, or if the letter S is used, that the clause is part of a Specification. The letter S is used in place of a Section indicator because the same Specification may be called up in several different Sections of the NCC.
- The first number indicates the number of each Part within a Section, or the number of a Specification. Parts are numbered sequentially within each Section, starting at 1. Specifications are numbered sequentially across all three volumes, also starting at 1.
- The second letter indicates the clause Type. It will be either G, O, F, P, V, D or C and these are explained below.
- The second number is the clause number within each Part or Specification.

The clause Types used in the NCC are as follows:

- G = Governing requirement (mandatory)
- O = Objective (guidance)
- F = Functional Statement (guidance)
- P = Performance Requirement (mandatory)
- V = Verification Method (optional)
- D = Deemed-to-Satisfy Provision (optional)
- C = Clause in a Specification (clauses in Specifications may be mandatory or optional, depending on how the Specification is called up by the NCC).

Informative parts of the NCC (e.g. Introduction to the NCC) are not numbered and do not have numbered paragraphs. This helps make it easy to see that their content is information only and does not contain any regulatory requirements.
About NCC Volume One

NCC Volume One contains technical design and construction requirements for all Class 2 to 9 buildings (multi-residential, commercial, industrial, and public assembly buildings) and their associated structures.

NCC Volume One contains the requirements for—

- all Class 2 to 9 buildings; and
- access requirements for people with a disability in Class 1b and 10a buildings; and
- certain Class 10b structures including access requirements for people with a disability in Class 10b swimming pools.

Components of NCC Volume One

NCC Volume One contains the following Sections:

- Section A – Governing Requirements
- Section B – Structure
- Section C – Fire resistance
- Section D – Access and egress
- Section E – Services and equipment
- Section F – Health and amenity
- Section G – Ancillary provisions
- Section I – Special use buildings
- Section J – Energy efficiency

Schedules—

- Abbreviations and symbols
- Definitions
- Referenced documents
- State and Territory variations and additions

Section A contains the mandatory Governing Requirements for the NCC. Sections B to G and I to J contain the mandatory Performance Requirements and the pathways that can be used to comply with the NCC.

There is no Section H in NCC Volume One because the letter ‘H’ is used in NCC Volume Two. This avoids number clashes between NCC Volume One and NCC Volume Two.
Table 1: List of NCC Specifications

<table>
<thead>
<tr>
<th>Spec no.</th>
<th>Title</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vol. One and Two</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vol. Three</td>
</tr>
<tr>
<td>1</td>
<td>Fire resistance of building elements</td>
<td>A5G5; A5G6; C4D15; S2C1;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S9C2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A5G5; A5G6</td>
</tr>
<tr>
<td>2</td>
<td>Description of materials referred to in Specification 1</td>
<td>A5G5; A5G6; C4D15; S1C2;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S9C2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A5G5; A5G6</td>
</tr>
<tr>
<td>3</td>
<td>Fire hazard properties (determination)</td>
<td>A5G6</td>
</tr>
<tr>
<td>4</td>
<td>Design of buildings in cyclonic areas</td>
<td>B1D3</td>
</tr>
<tr>
<td>5</td>
<td>Fire-resisting construction</td>
<td>C2D2; C2D10; C3D6; C3D8;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3D9; C3D10; C3D11;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3D13; C4D6; C4D8;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4D13; C4D15; D2D13;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E1D5; G3D6; S17C11;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S18C4; S31C3</td>
</tr>
<tr>
<td>6</td>
<td>Structural tests for lightweight construction</td>
<td>B1D4; C2D9; S5C23; S14C2;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S32C2; S32C3; Housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provisions 9.3.1</td>
</tr>
<tr>
<td>7</td>
<td>Fire hazard properties (requirements)</td>
<td>C2D11; C2D14; S3C2;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S14C2; S19C7; S32C6</td>
</tr>
<tr>
<td>8</td>
<td>Performance of external walls in fire</td>
<td>C2D12</td>
</tr>
<tr>
<td>9</td>
<td>Cavity barriers for fire-protected timber</td>
<td>C2D13; C4D16; S5C11;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S5C20</td>
</tr>
<tr>
<td>10</td>
<td>Fire protected timber</td>
<td>S1C2</td>
</tr>
<tr>
<td>11</td>
<td>Smoke-proof walls in health-care and residential care buildings</td>
<td>C3D6; C3D15; C4D12;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E2D11</td>
</tr>
<tr>
<td>12</td>
<td>Fire doors, smoke doors, fire windows and shutters</td>
<td>C4D5; G3D4; S11C2; S11C3</td>
</tr>
<tr>
<td>13</td>
<td>Penetration of walls, floors and ceilings by services</td>
<td>C4D15</td>
</tr>
<tr>
<td>14</td>
<td>Non-required stairways, ramps and escalators</td>
<td>C2D11; D2D17</td>
</tr>
<tr>
<td>15</td>
<td>Braille and tactile signs</td>
<td>D4D7; S27C10</td>
</tr>
<tr>
<td>16</td>
<td>Accessible water entry/exit for swimming pools</td>
<td>D4D11</td>
</tr>
<tr>
<td>17</td>
<td>Fire sprinkler systems</td>
<td>C1V3; C2D6; C2D13; C3D2;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3D4; C3D7; C3D8; C4D6;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4D7; C4D8; C4D9; C4D12;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2D4; D2D17; E1D4; E2D8;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E2D9; E2D10; E2D11; E2D13;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E2D14; E2D15; E2D16; E2D17;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E2D19; E2D20; G3D1; G3D6;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G6D6; I1D2; S5C10; S5C11;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S5C14; S5C18; S5C19; S5C20;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S5C21; S5C22; S5C24;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S7C3; S7C4; S19C11;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S20C3; S20C4; S20C5; S31C2</td>
</tr>
<tr>
<td>18</td>
<td>Class 2 and 3 buildings not more than 25 m in effective</td>
<td>E1D4; S17C2; S23C1;</td>
</tr>
<tr>
<td>Spec no.</td>
<td>Title</td>
<td>References</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>19</td>
<td>Fire control centres</td>
<td>E1D14</td>
</tr>
<tr>
<td>20</td>
<td>Smoke detection and alarm systems</td>
<td>E2D3; E2D5; E2D7; E2D8; E2D9; E2D11; E2D13; E2D14; E2D15; E2D16; E2D17; E2D18; E2D19; E2D20; S5C19; S5C22; S17C8; S18C3; S21C7; S21C8; S22C3</td>
</tr>
<tr>
<td>21</td>
<td>Smoke exhaust systems</td>
<td>C3D13; E2D10; E2D14; E2D15; E2D16; E2D17; E2D18; E2D19; E2D20; S20C6; S20C8</td>
</tr>
<tr>
<td>22</td>
<td>Smoke-and-heat vents</td>
<td>E2D10; E2D14; E2D15; E2D16; E2D17; E2D18; E2D19; E2D20; S20C6; S20C8</td>
</tr>
<tr>
<td>23</td>
<td>Residential fire safety systems</td>
<td>S18C3; S18C4</td>
</tr>
<tr>
<td>24</td>
<td>Lift installations</td>
<td>E3D2</td>
</tr>
<tr>
<td>25</td>
<td>Photoluminescent exit signs</td>
<td>E4D8</td>
</tr>
<tr>
<td>26</td>
<td>Waterproofing and water resistance requirements for building elements in wet areas</td>
<td>F1D6</td>
</tr>
<tr>
<td>27</td>
<td>Accessible adult change facilities</td>
<td>F4D12; S15C1</td>
</tr>
<tr>
<td>28</td>
<td>Sound insulation for building elements</td>
<td>F5D3; F5D4</td>
</tr>
<tr>
<td>29</td>
<td>Impact sound — Test of equivalence</td>
<td>F5D4; S28C2</td>
</tr>
<tr>
<td>30</td>
<td>Installation of boilers and pressure vessels</td>
<td>G2D2</td>
</tr>
<tr>
<td>31</td>
<td>Fire and smoke control in buildings containing atriums</td>
<td>G3D4; G3D8; S14C2</td>
</tr>
<tr>
<td>32</td>
<td>Construction of proscenium walls</td>
<td>C2D11; I1D3</td>
</tr>
<tr>
<td>33</td>
<td>Additional requirements</td>
<td>J1V1; J1V2; J1V3</td>
</tr>
<tr>
<td>34</td>
<td>Modelling parameters</td>
<td>J1V2; J1V3; S35C1</td>
</tr>
<tr>
<td>35</td>
<td>Modelling profiles</td>
<td>S34C3</td>
</tr>
<tr>
<td>36</td>
<td>Material properties</td>
<td>J3D3</td>
</tr>
<tr>
<td>37</td>
<td>Calculation of U-Value and solar admittance</td>
<td>J3D3; J3D6</td>
</tr>
<tr>
<td>38</td>
<td>Spandrel panel thermal performance</td>
<td>S37C3; S37C4</td>
</tr>
<tr>
<td>39</td>
<td>Sub-floor thermal performance</td>
<td>J3D3</td>
</tr>
<tr>
<td>40</td>
<td>Lighting and power control devices</td>
<td>J6D3; J6D4; J6D5; J6D6; J6D7</td>
</tr>
<tr>
<td>41</td>
<td>Cross-connection hazards</td>
<td>B5D2; B5D3; B5D4</td>
</tr>
<tr>
<td>42</td>
<td>Heating and cooling load limits</td>
<td>H6D2</td>
</tr>
<tr>
<td>43</td>
<td>Bushfire protection for certain Class 9 buildings</td>
<td>G5D4</td>
</tr>
</tbody>
</table>
History of adoption of NCC Volume One

Adoption of BCA 96 Volume One

The 1996 edition of the BCA Volume One was adopted as set out in Table 1.

Table 1: History of adoption of NCC Volume One

<table>
<thead>
<tr>
<th>Edition</th>
<th>Commonwealth</th>
<th>ACT</th>
<th>NSW</th>
<th>NT</th>
<th>QLD</th>
<th>SA</th>
<th>TAS</th>
<th>VIC</th>
<th>WA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCA 96</td>
<td>1 Jul 1997</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>7 Jan</td>
<td>1 Jul</td>
<td>1 Jan</td>
<td>1 Jul</td>
<td>1 Aug</td>
<td>1 Jul</td>
</tr>
<tr>
<td>BCA 96 Amdt 1</td>
<td>1 Jul 1997</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>7 Jan</td>
<td>1 Jul</td>
<td>1 Jan</td>
<td>1 Jul</td>
<td>1 Aug</td>
<td>1 Jul</td>
</tr>
<tr>
<td>BCA 96 Amdt 2</td>
<td>1 Jan 1998</td>
<td>1 Jan</td>
<td>27 Feb</td>
<td>7 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
</tr>
<tr>
<td>BCA 96 Amdt 3</td>
<td>1 Jul 1998</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>13 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
</tr>
<tr>
<td>BCA 96 Amdt 4</td>
<td>1 Jan 1999</td>
<td>17 May</td>
<td>1 Feb</td>
<td>1 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
</tr>
<tr>
<td>BCA 96 Amdt 5</td>
<td>1 Jul 1999</td>
<td>3 Nov</td>
<td>1 Aug</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
</tr>
<tr>
<td>BCA 96 Amdt 6</td>
<td>1 Jan 2000</td>
<td>10 Feb</td>
<td>1 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
<td>17 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
</tr>
<tr>
<td>BCA 96 Amdt 7</td>
<td>1 Jul 2000</td>
<td>10 Jul</td>
<td>1 Jul</td>
</tr>
<tr>
<td>BCA 96 Amdt 8</td>
<td>1 Jan 2001</td>
<td>11 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
<td>2 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
<td>1 Jan</td>
</tr>
<tr>
<td>BCA 96 Amdt 9</td>
<td>1 Jul 2001</td>
<td>12 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>2 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
</tr>
<tr>
<td>BCA 96 Amdt 10</td>
<td>1 Jan 2002</td>
<td>1 Jan</td>
</tr>
<tr>
<td>BCA 96 Amdt 11</td>
<td>1 Jul 2002</td>
<td>1 Jul</td>
</tr>
<tr>
<td>BCA 96 Amdt 12</td>
<td>1 Jan 2003</td>
<td>1 Jan</td>
</tr>
<tr>
<td>BCA 96 Amdt 13</td>
<td>1 Jul 2003</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>1 Jul</td>
<td>To Be advised</td>
<td>1 Jul</td>
</tr>
<tr>
<td>BCA 2004</td>
<td>1 May 2004</td>
<td>1 May</td>
</tr>
<tr>
<td>BCA 2005</td>
<td>1 May 2005</td>
<td>1 May</td>
</tr>
<tr>
<td>BCA 2006</td>
<td>1 May 2006</td>
<td>1 May</td>
<td>01 May</td>
<td>1 May</td>
<td>1 May</td>
<td>1 May</td>
<td>1 May</td>
<td>1 May</td>
<td>1 May</td>
</tr>
<tr>
<td>BCA 2007</td>
<td>1 May 2007</td>
<td>1 May</td>
</tr>
<tr>
<td>BCA 2008</td>
<td>1 May 2008</td>
<td>1 May</td>
</tr>
<tr>
<td>BCA 2009</td>
<td>1 May 2009</td>
<td>1 May</td>
</tr>
</tbody>
</table>
Table Notes:

1. 1 May 2006 (except that the date for mandatory compliance with Section J provisions for Class 5 to 9 buildings is 1 November 2006).
2. 1 May 2006, except for Part I2 and Section J which were adopted on 1 August 2006.
3. 1 May 2010 except for Section J, which was adopted on 1 September 2010, and the restriction on child resistant door sets in G1.1 and the additional bushfire requirements for ‘excluded areas’ prescribed in SA G5.2(d) and (e), which were adopted on 2 December 2010.

BCA 96 Amendment No. 1

Amendment No. 1 of the 1996 edition of the BCA Volume One was adopted as set out in Table 1.
The purpose of Amendment No. 1 is to—

- correct minor typographical errors including spelling, punctuation and layout; and
- include reference to a Certificate of Conformity issued by the ABCB in A2.2; and
- change the reference to the Standards Mark Certificate to refer to JAS–ANZ in A2.2; and
- update references to Standards

Note: Only substantive typographical corrections are noted in the margin.

BCA 96 Amendment No. 2

Amendment No. 2 of the 1996 edition of the BCA Volume One was adopted as set out in Table 1.
The purpose of Amendment No. 2 is to—

- correct minor typographical errors; and
- update references to Standards.

BCA 96 Amendment No. 3

Amendment No. 3 of the 1996 edition of the BCA Volume One was adopted as set out in Table 1.
The purpose of Amendment No. 3 is to—
• incorporate the outcomes of the 1997 ABCB Variations Conference; and
• update references to Standards; and
• include minor technical changes.

BCA 96 Amendment No. 4
Amendment No. 4 of the 1996 edition of the BCA Volume One was adopted as set out in Table 1
The purpose of Amendment No. 4 is to—
• update references to Standards; and
• include minor technical changes.
Note: Only substantive typographical corrections are noted in the margin.

BCA 96 Amendment No. 5
Amendment No. 5 of the 1996 edition of the BCA Volume One was adopted as set out in Table 1
The purpose of Amendment No. 5 is to—
• update references to Standards; and
• include minor technical changes; and
• amend clauses to improve clarity and to reduce the possibility of differences in interpretation; and
• expand on the requirements for subfloor ventilation based on climatic conditions.
Note: Only substantive typographical corrections are noted in the margin.

BCA 96 Amendment No. 6
Amendment No. 6 of the 1996 edition of the BCA Volume One was adopted as set out in Table 1
The purpose of Amendment No. 6 is to—
• update references to Standards; and
• expand on the requirements for carparking for people with disabilities; and
• replace Sound Transmission Class (STC) with weighted sound reduction index (R_w) within Part F5; and
• include minor technical changes.
Note: Only substantive typographical corrections are noted in the margin.

BCA 96 Amendment No. 7
Amendment No. 7 of the 1996 edition of the BCA Volume One was adopted as set out in Table 1
The purpose of Amendment No. 7 is to—
• update references to Standards; and
• include requirements for non-required and private stairways; and
• include minor technical changes.
Note: Only substantive typographical corrections are noted in the margin.

BCA 96 Amendment No. 8
Amendment No. 8 of the 1996 edition of the BCA Volume One was adopted as set out in Table 1
The purpose of Amendment No. 8 is to—update references to Standards; and
update references to Standards; and
include minor technical changes; and
achieve greater consistency between both Volumes of the BCA for stairway construction.
Note: Only substantive typographical corrections are noted in the margin.

BCA 96 Amendment No. 9
Amendment No. 9 of the 1996 edition of the BCA Volume One was adopted as set out in Table 1
The purpose of Amendment No. 9 is to—
update references to Standards; and
include minor technical changes; and
clarify which glazed assemblies must comply with AS 2047 and which must comply with AS 1288.
Note: Only substantive typographical corrections are noted in the margin.

BCA 96 Amendment No. 10
Amendment No. 10 of the 1996 edition of the BCA Volume One was adopted as set out in Table 1
The purpose of Amendment No. 10 is to—
update references to Standards; and
clarify that windows must comply with AS 2047 for resistance to water penetration; and
subject to certain conditions, allow a non-fire-isolated stairway to connect an additional storey; and
update signage required for people with disabilities, including the need for signs to contain Braille and tactile information; and
include minor technical changes.
Note: Only substantive typographical corrections are noted in the margin.

BCA 96 Amendment No. 11
Amendment No. 11 of the 1996 edition of the BCA Volume One was adopted as set out in Table 1
The purpose of Amendment No. 11 is to—
update references to Standards; and
transfer public policy matters, with respect to structural adequacy, from the AS 1170 series to the BCA; and
introduce Class 7a, 7b and 9c classifications; and
update the provisions for residential buildings used for the accommodation of the aged to align with the Commonwealth Aged Care Act, 1997; and
include minor technical changes.
Note: Only substantive typographical corrections are noted in the margin.

BCA 96 Amendment No. 12
Amendment No. 12 of the 1996 edition of the BCA Volume One was adopted as set out in Table 1
The purpose of Amendment No. 12 is to—
apply the swimming pool safety provisions to swimming pools associated with Class 4 parts as well as Class 2 and 3 buildings; and
allow the use of either the 1989 editions or the 2002 editions of the 1170 series of standards; and
• include minor technical changes.

Note: Only substantive typographical corrections are noted in the margin.

BCA 96 Amendment No. 13

Amendment No. 13 of the 1996 edition of the BCA Volume One was adopted as set out in Table 1.

The purpose of Amendment No. 13 is to—

- update references to Standards; and
- reform the provisions for fire hazard properties of materials; and
- revise a requirement for the use of non-combustible materials; and
- include additional requirements for the protection of electrical switchboards which sustain electricity supply to emergency equipment; and
- include minor changes to the requirements for aged care buildings; and
- include minor technical changes.

Note: Only substantive typographical corrections are noted in the margin.

Adoption of BCA 2004 Volume One

The 2004 edition of the BCA Volume One was adopted as set out in Table 1.

The purpose of BCA 2004 Volume One is to—

- update references to Standards; and
- update references from BCA 96 to BCA 2004; and
- include a Performance Requirement considering human impact with glazing; and
- reform the provisions for sound insulation; and
- reform the maintenance provisions; and
- include minor technical changes.

Adoption of BCA 2005 Volume One

The 2005 edition of the BCA Volume One was adopted as set out in Table 1.

The purpose of BCA 2005 Volume One is to—

- update references to Standards; and
- clarify when fire sprinklers are required to be installed in buildings; and
- update the provisions for waterproofing of wet areas; and
- include energy efficiency measures for Class 2 and 3 buildings and Class 4 parts; and
- more closely align the requirements for lifts with those of Occupational Health and Safety legislation; and
- include minor technical changes.

Adoption of BCA 2006 Volume One

The 2006 edition of the BCA Volume One was adopted as set out in Table 1.

The purpose of BCA 2006 Volume One is to—

- update schedule of referenced documents; and
- include a national testing regime for cladding in cyclonic areas; and
- withdraw of AS 1530.3 tests on floor materials and floor coverings and wall and ceiling linings; and
- include energy efficiency measures for Class 5 to 9 buildings; and
• include minor technical changes.

Adoption of BCA 2007 Volume One

The 2007 edition of the BCA Volume One was adopted as set out in Table 1.
The purpose of BCA 2007 Volume One is to—
• update references to other documents; and
• update energy efficiency provisions including providing additional information; and
• include minor technical changes.

Adoption of BCA 2008 Volume One

The 2008 edition of the BCA Volume One was adopted as set out in Table 1.
The purpose of BCA 2008 Volume One is to—
• update references to other documents; and
due to changes in the types of detector now available, rather than only allowing the use of a heat detectors when smoke detector would be unsuitable in the atmosphere, to allow the use of any type of detector deemed suitable by AS 1670.1; and
• clarify the intent of the BCA when a service penetrates a building element required to have an FRL; and
• amend the requirements for door handle heights to be consistent with AS 1428.1; and
• align some BCA terms with current industry terminology; and
• include lists of other Commonwealth, State and Territory legislation affecting buildings; and
• include suitable provisions for swimming pool water recirculation systems; and
• include minor technical changes.

Adoption of BCA 2009 Volume One

The 2009 edition of the BCA Volume One was adopted as set out in Table 1.
The purpose of BCA 2009 Volume One is to—
• update references to other documents; and
• after expiry of the agreed transition period, except for the 1993 edition of AS 1170.4, delete all references to the older loading standards contained in the AS 1170 series and consequently, all provisions referring to them; and
• clarify the application of the vertical separation provisions; and
• clarify the intent of separation of equipment; and
• simplify the wire balustrade provisions, including the addition of a Verification Method; and
• clarify the provisions for the construction of sanitary compartments to enable an unconscious occupant to be removed; and
• clarify the height of rooms in an attic and with a sloping ceiling; and
• further update the energy efficiency provisions; and
• include minor technical changes.

Adoption of BCA 2010 Volume One

The 2010 edition of the BCA Volume One was adopted as set out in Table 1.
The purpose of BCA 2010 Volume One is to—
• update references to other documents; and
• delete reference to the 1993 edition of AS 1170.4 and consequently all provisions referring to it; and
increase the stringency of the energy efficiency provisions and, as part of reducing greenhouse gas emissions, introduce provisions for the greenhouse gas intensity of the energy source for services such as water and space heaters; and

update Part G5, as a consequence of referencing the 2009 edition of AS 3959 construction in bushfire-prone areas, to include provisions which apply to a Class 10a building or deck associated with a Class 2 or 3 building located in a designated bushfire prone area; and

include minor technical changes.

Adoption of NCC 2011 Volume One

The 2011 edition of the NCC Volume One was adopted as set out in Table 1.
The purpose of NCC 2011 Volume One is to—

• update references to other documents; and
• align the NCC with the Access Code in the Disability (Access to Premises — Buildings) Standards; and
• restructure the fire hazard property provisions; and
• include minor technical changes.

Adoption of NCC 2012 Volume One

The 2012 edition of the NCC Volume One was adopted as set out in Table 1.
The purpose of NCC 2012 Volume One is to—

• update references to other documents; and
• include revised provisions aimed at reducing slips, trips and falls in buildings; and
• include a Verification Method for emergency lighting; and
• align the NCC with changes to the National Quality Standard for early childhood education and care; and
• include exemptions for Class 8 electricity network substations; and
• include minor technical changes.

Adoption of NCC 2013 Volume One

The 2013 edition of the NCC Volume One was adopted as set out in Table 1.
The purpose of NCC 2013 Volume One is to—

• update references to other documents; and
• include new provisions for openable windows to reduce falls in buildings; and
• include a Performance Requirement and reference a Standard for construction in flood hazard areas; and
• consolidate the building related components of the AS 1735 lift series into the BCA; and
• enhance the egress provisions for people with disability; and
• include minor technical changes.

Adoption of NCC 2014 Volume One

The 2014 edition of the NCC Volume One was adopted as set out in Table 1.
The purpose of NCC 2014 Volume One is to—

• update references to other documents; and
• quantify slip resistance on ramps, stairways and landings; and
• include provisions for photoluminescent exit signs; and
• expand the fire-resistance concession for timber-framed construction to include Class 3 buildings; and
• remove the requirement for fire hose reels in a Class 2 or Class 3 building or a Class 4 part of a building; and
• include minor technical changes.

Adoption of NCC 2015 Volume One
The 2015 edition of the NCC Volume One was adopted as set out in Table 1.
The purpose of NCC 2015 Volume One is to—
• update references to other documents; and
• include a Verification Method for structural reliability; and
• improve the usability of the barrier provisions; and
• expand the requirements for sprinkler protection to aged care buildings; and
• include a Verification Method for weatherproofing of external walls; and
• improve the usability of energy efficiency provisions for air-conditioning and ventilation systems.

Adoption of NCC 2016 Volume One
The 2016 edition of NCC Volume One was adopted as set out in Table 1.
The purpose of NCC 2016 Volume One is to—
• update references to other documents; and
• amend the “Introduction” and “General Requirements” as part of the initiative to increase the use of Performance Solutions; and
• include new Verification Methods for structural robustness and indoor air quality; and
• include provisions for fire-protected timber; and
• include requirements for farm-type buildings; and
• include minor technical changes.

NCC 2016 Volume One Amendment No. 1
Amendment No. 1 to the 2016 edition of NCC Volume One was adopted as set out in Table 1.
The purpose of Amendment No. 1 is to—
• introduce a new Verification method, CV3, for limiting fire spread via external wall assemblies; and
• include reference to the revised edition of AS 2118.1; and
• clarify provisions relating to the use of external wall claddings and attachments; and
• revise the evidence of suitability provisions.

Adoption of NCC 2019 Volume One
The 2019 edition of NCC Volume One was adopted as set out in Table 1.
The purpose of NCC 2019 Volume One is to—
• include the Governing Requirements, that result from revision of Section A to improve readability and are common to all NCC volumes; and
• introduce the use of schedules that are common to all NCC volumes; and
• include new Verification Methods, including the Fire Safety Verification Method; and
• clarify provisions, including provisions relating to measurement of distance between required alternative exits; and
• expand the requirements for sprinkler protection to residential buildings; and
• introduce requirements for accessible adult change facilities; and
• introduce requirements for management of water vapour and condensation; and
• introduce requirements for occupiable outdoor areas; and
• increase stringency of energy efficiency requirements; and
• update references to other documents; and
• include minor technical changes.

NCC 2019 Amendment No. 1
Amendment No. 1 to the 2019 edition of NCC Volume One was adopted as set out in Table 1. The purpose of Amendment No. 1 is to—
• require that a process be followed to improve the quality of and documentation for Performance Solutions; and
• include a new provision regarding egress from early childhood centres; and
• require labelling of Aluminium Composite Panels; and
• clarify the concession that permits timber framing for low-rise Class 2 and 3 buildings.
Section A Governing requirements

Part A1 Interpreting the NCC

Governing Requirements

A1G1 Scope of NCC Volume One
A1G2 Scope of NCC Volume Two
A1G3 Scope of NCC Volume Three
A1G4 Interpretation

Part A2 Compliance with the NCC

Governing Requirements

A2G1 Compliance
A2G2 Performance Solution
A2G3 Deemed-to-Satisfy Solution
A2G4 A combination of solutions

Part A3 Application of the NCC in States and Territories

Governing Requirements

A3G1 State and Territory compliance

Part A4 Referenced documents

Governing Requirements

A4G1 Referenced documents
A4G2 Differences between referenced documents and the NCC
A4G3 Adoption of referenced documents

Part A5 Documentation of design and construction

Governing Requirements

A5G1 Suitability
A5G2 Evidence of suitability — Volumes One, Two and Three
A5G3 Evidence of suitability — Volumes One and Two (BCA)
A5G4 Evidence of suitability — Volume Three (PCA)
A5G5 Fire-resistance of building elements
A5G6 Fire hazard properties
A5G7 Resistance to the incipient spread of fire
A5G8 Labelling of Aluminium Composite Panels

Part A6 Building classification

Governing Requirements

A6G1 Determining a building classification
A6G2 Class 1 buildings
A6G3 Class 2 buildings
A6G4 Class 3 buildings
A6G5 Class 4 buildings
A6G6 Class 5 buildings
A6G7 Class 6 buildings
A6G8 Class 7 buildings
A6G9 Class 8 buildings
A6G10 Class 9 buildings
A6G11 Class 10 buildings and structures
A6G12 Multiple classifications

Part A7 United buildings
Governing Requirements
A7G1 United buildings
A7G2 Alterations in a united building

Part A8 Quantification of the fire safety Performance Requirements
Governing Requirements
A8G1 Application of Part
A8G2 Fire safety
A8G3 Spread of fire

Specification 1 Fire-resistance of building elements
S1C1 Scope
S1C2 Rating
S1C3 FRLs determined by calculation
S1C4 Interchangeable materials
S1C5 Columns covered with lightweight construction
S1C6 Non-loadbearing elements

Specification 2 Descriptions of elements referred to in Specification 1
S2C1 Scope
S2C2 Mortar for masonry
S2C3 Gypsum blocks
S2C4 Gypsum-sand mortar and plaster
S2C5 Gypsum-perlite and gypsum-vermiculite plaster
S2C6 Plaster of cement and sand or cement, lime and sand
S2C7 Plaster reinforcement
S2C8 Ashlar stone masonry
S2C9 Dimensions of masonry
S2C10 Solid units
S2C11 Hollow units
S2C12 Equivalent thickness
S2C13 Height-to-thickness ratio of certain walls
S2C14 Walls
S2C15 Columns
Governing requirements

S2C16 Walls
S2C17 Columns
S2C18 Beams
S2C19 Columns
S2C20 Beams
S2C21 Filling of column spaces
S2C22 Hollow terracotta blocks
S2C23 Masonry
S2C24 Gypsum blocks and hollow terracotta blocks
S2C25 Structural concrete and poured gypsum
S2C26 Gypsum-perlite or gypsum-vermiculite plaster sprayed to contour
S2C27 Measurement of thickness of column and beam protection

Specification 3 Fire hazard properties

S3C1 Scope
S3C2 General requirement
S3C3 Form of test
S3C4 Test specimens
S3C5 Concession
S3C6 Smaller specimen permitted
Introduction to this Part

This Part explains important concepts on how the NCC must be interpreted and applied. There are certain conventions and approaches that need to be taken into account when using the NCC. This includes interpreting specific language and terms. This is critical to understanding the intended technical and legal meaning of the NCC. This Part also explains the difference between the mandatory parts of the NCC and the parts that are only explanatory or guidance in nature.

Governance Requirements

A1G1 Scope of NCC Volume One

NCC Volume One contains the requirements for—

(a) all Class 2 to 9 buildings; and
(b) access requirements for people with a disability in Class 1b and 10a buildings; and
(c) certain Class 10b structures including access requirements for people with a disability in Class 10b swimming pools.

A1G2 Scope of NCC Volume Two

NCC Volume Two contains the requirements for—

(a) Class 1 and 10a buildings (other than access requirements for people with a disability in Class 1b and 10a buildings); and
(b) certain Class 10b structures (other than access requirements for people with a disability in Class 10b swimming pools); and
(c) Class 10c private bushfire shelters.

A1G3 Scope of NCC Volume Three

(1) NCC Volume Three contains technical requirements for the design, construction, installation, replacement, repair, alteration and maintenance for plumbing and drainage systems in new and existing buildings.
(2) NCC Volume Three applies to these systems in all classes of buildings whenever plumbing and drainage work is carried out.
(3) NCC Volume Three additionally applies to sites where services are constructed independently of buildings.

A1G4 Interpretation

(1) The following components of the NCC are non-mandatory and informative:
(a) Content identified as “explanatory information”.
(b) The “Introduction to this Part” information, located at the beginning of each Volume, Section or Part.
(2) Words in italics must be interpreted in accordance with—
(a) definitions provided in Schedule 21, unless the contrary intention appears; and
(b) additional definitions in State or Territory appendices, as appropriate.

(3) The NCC must be interpreted and applied in accordance with the following:

(a) A reference to a building is a reference to an entire building or part of a building (as the case requires).
(b) A reference to plumbing or drainage solution, or product in Volume Three is a reference to an entire installation, system or product, or part of an installation, system or product (as the case requires).
(c) A reference in a Performance Requirement to “the degree necessary” means—
 (i) that consideration of all the criteria referred to in the Performance Requirement will determine the outcome appropriate to the circumstances; and
 (ii) that in certain cases it may not be necessary to incorporate any specific measures to meet the relevant Performance Requirement.
(d) An “Application” statement is mandatory and is provided to specify where and when a requirement or provision applies.
(e) A “Limitation” statement is mandatory and is provided to specify where and when the application of a requirement or provision is limited to a certain circumstance.
(f) An “Exemption” statement is mandatory and is provided to specify where or when a requirement or provision does not need to be complied with.
(g) A “Note” is part of a provision or requirement and provides additional mandatory instructions.
(h) Figures in the NCC—
 (i) are used to illustrate specific issues referenced in the associated text; and
 (ii) are not to be construed as containing all design information that is required for that particular building element or situation.
(i) The defined symbols and abbreviations listed in Schedule 1.

(4) A reference to a building class is a reference to all the sub-classifications of that class.

(5) The following sub-classifications apply:

(a) Classes 1a and 1b are sub-classifications of Class 1.
(b) Classes 7a and 7b are sub-classifications of Class 7.
(c) Classes 9a, 9b and 9c are sub-classifications of Class 9.
(d) Classes 10a, 10b and 10c are sub-classifications of Class 10.

(6) A reference to a sub-classification is solely to that sub-classification.

Notes:
For Volume Three, if a word is not defined in Schedule 2, the meaning (if any) attributed to it under AS/NZS 3500.0 should be used unless the contrary intention appears.
provision is applicable to a specific class or classes of building, that reference to a building may be a reference to the whole building or part of the building depending on how the building is classified.

Whether a provision applies or not depends on the circumstances of the case and the circumstances in which the reference is made. For example, where a building has a single classification, a reference to a building in the NCC is understandably a reference to a whole building. However, where a building has parts of different classification, unless the contrary intention appears (i.e. there is a specific reference to the whole building), a reference to a building in the NCC is a reference to the relevant part of the building. This means that each part of the building must comply with the relevant provisions for its classification.

A number of the Performance Requirements of the NCC use the expression “to the degree necessary” or “appropriate to”. These expressions provide flexibility by allowing appropriate authorities to determine the degree of compliance necessary in a particular case. Therefore, any part of the NCC that uses these expressions should be referenced against the requirements of the appropriate authority. For example, an appropriate authority might judge that an item need not be installed, or a particular level of performance be achieved.

Application, Limitation, and Exemption statements are used to identify provisions that may or may not apply in certain situations, to varying degrees.

Classes 1a and 1b, 7a and 7b, 9a, 9b and 9c, and 10a, 10b and 10c are separate classifications. In the NCC, when the designation ‘a’, ‘b’ or ‘c’ is not applied, the reference is to all buildings of the general class. For example, ‘Class 9b’ refers only to Class 9b buildings, but ‘Class 9’ refers to Classes 9a, 9b and 9c.

Figures are used to explain the requirements of a particular clause. To ensure the context of the requirement is clearly understood, adjacent construction elements of the building that would normally be required in that particular situation are not always shown. Accordingly, aspects of figures that are not shown should not be interpreted as meaning these construction details are not required. Therefore a figure must not be used as an indication of the full construction requirements in a given situation, as the only available option, or a substitute for referencing appropriate construction requirements (in other sources) for a given clause.
Introduction to this Part
This Part explains the possible methods of demonstrating compliance with the NCC. It explains the various compliance pathways within the NCC and the appropriate steps that must be taken for each of these pathways.

Governing Requirements

A2G1 Compliance

(1) Compliance with the NCC is achieved by complying with—
 (a) the Governing Requirements of the NCC; and
 (b) the Performance Requirements.

(2) Performance Requirements are satisfied by one of the following, as shown in Figure A2G1:
 (a) Performance Solution.
 (b) Deemed-to-Satisfy Solution.
 (c) A combination of (a) and (b).

Figure A2G1: NCC compliance structure

A2G2 Performance Solution

(1) A Performance Solution is achieved by demonstrating—
 (a) compliance with all relevant Performance Requirements; or
 (b) the solution is at least equivalent to the Deemed-to-Satisfy Provisions.

(2) A Performance Solution must be shown to comply with the relevant Performance Requirements through one or a combination of the following Assessment Methods:
 (a) Evidence of suitability in accordance with Part A5 that shows the use of a material, product, plumbing and drainage product, form of construction or design meets the relevant Performance Requirements.
 (b) A Verification Method including the following:
 (i) The Verification Methods provided in the NCC.
 (ii) Other Verification Methods, accepted by the appropriate authority that show compliance with the relevant Performance Requirements.
(c) **Expert Judgement.**

(d) Comparison with the *Deemed-to-Satisfy Provisions*.

(3) Where a *Performance Requirement* is satisfied entirely by a *Performance Solution*, in order to comply with (1) the following method must be used to determine the *Performance Requirement* or *Performance Requirements* relevant to the *Performance Solution*:

(a) Identify the relevant *Performance Requirements* from the Section or Part to which the *Performance Solution* applies.

(b) Identify *Performance Requirements* from other Sections or Parts that are relevant to any aspects of the *Performance Solution* proposed or that are affected by the application of the *Performance Solution*.

(4) Where a *Performance Requirement* is proposed to be satisfied by a *Performance Solution*, the following steps must be undertaken:

(a) Prepare a *performance-based design brief* in consultation with relevant stakeholders.

(b) Carry out analysis, using one or more of the Assessment Methods listed in (2), as proposed by the *performance-based design brief*.

(c) Evaluate results from (4)(b) against the acceptance criteria in the *performance-based design brief*.

(d) Prepare a final report that includes—

 (i) all *Performance Requirements* and/or *Deemed-to-Satisfy Provisions* identified through A2G2(3) or A2G4(3) as applicable; and

 (ii) identification of all *Assessment Methods* used; and

 (iii) details of steps (4)(a) to (4)(c); and

 (iv) confirmation that the *Performance Requirement* has been met; and

 (v) details of conditions or limitations, if any exist, regarding the *Performance Solution*.

A2G3 Deemed-to-Satisfy Solution

[2019: A2.3]

(1) A solution that complies with the *Deemed-to-Satisfy Provisions* is deemed to have met the *Performance Requirements*.

(2) A *Deemed-to-Satisfy Solution* can show compliance with the *Deemed-to-Satisfy Provisions* through one or more of the following *Assessment Methods*:

 (a) Evidence of suitability in accordance with Part A5 that shows the use of a material, product, *plumbing* and *drainage product*, form of construction or design meets a *Deemed-to-Satisfy Provision*.

 (b) *Expert Judgement*.

A2G4 A combination of solutions

[2019: A2.4]

(1) *Performance Requirements* may be satisfied by using a combination of *Performance Solutions* and *Deemed-to-Satisfy Solutions*.

(2) When using a combination of solutions, compliance can be shown through the following, as appropriate:

 (a) A2G2 for assessment against the relevant *Performance Requirements*.

 (b) A2G3 for assessment against the relevant *Deemed-to-Satisfy Provisions*.

(3) Where a *Performance Requirement* is satisfied by a *Performance Solution* in combination with a *Deemed-to-Satisfy Solution*, in order to comply with (1), the following method must be used to determine the *Performance Requirement* or *Performance Requirements* relevant to the *Performance Solution*:

 (a) Identify the relevant *Deemed-to-Satisfy Provisions* of each Section or Part that are to be the subject of the *Performance Solution*.

 (b) Identify the *Performance Requirements* from the same Sections or Parts that are relevant to the identified...
Deemed-to-Satisfy Provisions.

(c) Identify Performance Requirements from other Sections or Parts that are relevant to any aspects of any Performance Solution proposed or that are affected by the application of the Deemed-to-Satisfy Provisions that are the subject of the Performance Solution.

Explanatory Information:

To comply with the NCC, a solution must achieve compliance with the Governing Requirements and the Performance Requirements. The Governing Requirements contain requirements about how the Performance Requirements must be met.

Performance Requirements outline the minimum necessary standards different buildings or building elements must attain. The Performance Requirements are the only NCC technical provisions that must be satisfied.

In some instances, State and Territory variations and additions may also be applicable to certain Performance Requirements.

A solution may be partly a Performance Solution and partly a Deemed-to-Satisfy Solution. However, no matter what method is chosen, building proponents need to always meet the Performance Requirements of the NCC.

A2G2(2)(b)(ii) provides for the use of Verification Methods that are not listed in the NCC. A Verification Method may include—

- a calculation, using analytical methods or mathematical models; or
- a test, using a technical procedure, either on-site or in a laboratory, to directly measure the extent to which the Performance Requirements have been met; or
- an inspection (and inspection report); or
- any other acceptable form of certification.

Any Verification Method used must be acceptable to the appropriate authority.

A Performance Solution must comply with all applicable Performance Requirements of the NCC. A Performance Solution provides a tailored solution to meet the intended objective of the Performance Requirements. A Performance Solution must comply with all relevant Performance Requirements and must be verified using one or a combination of the following Assessment Methods:

- Evidence of suitability.
- Verification Method.
- Expert Judgement.
- Comparison with the Deemed-to-Satisfy Provisions.

For example, building proponents who wish to know what has to be done to satisfy the fire safety Performance Requirements for a particular building can either follow the Deemed-to-Satisfy Provisions or develop a Performance Solution. Guidance on how to develop Performance Solutions can be found on the ABCB website at: www.abcb.gov.au.

The ABCB Resource Library contains information on the development of Performance Solutions for both building and plumbing.

A Deemed-to-Satisfy Solution is achieved by following all appropriate Deemed-to-Satisfy Provisions in the NCC. The Deemed-to-Satisfy Provisions are prescriptive (i.e. like a recipe book, they tell you how, what and in which location things must be done). They include materials, components, design factors, and construction methods that, if used, are deemed to meet the Performance Requirements, hence the term “Deemed-to-Satisfy”.

A Deemed-to-Satisfy Solution may be verified using one or a combination of the following Assessment Methods:

- Evidence of suitability.
- Expert Judgement.

Some Performance Requirements are without Deemed-to-Satisfy Solutions. Compliance with these Performance Requirements must be achieved by using a Performance Solution.

When designing a building or plumbing or drainage system, both Performance Solutions and Deemed-to-Satisfy Solutions can be used to achieve compliance with Performance Requirements. A combination of solutions may be used to satisfy a single Performance Requirement. This may include occasions where a specific Performance Requirement covers a number of elements of a building or plumbing or drainage system.

No NCC provision can be considered in isolation. Any departure from the Deemed-to-Satisfy Provisions for a
Performance Solution needs to be assessed against the relevant Performance Requirements within the relevant NCC Section or Part. Additionally, the proposed Performance Solution may also impact on other Performance Requirements in other Sections or Parts. Thus, these additional Performance Requirements need to be considered in relation to the subject Performance Solution. A2G2(3) and A2G4(3) set out the methods for determining which Performance Requirements are relevant.

It is important that a holistic approach is used when determining the appropriate Performance Requirements. More information on NCC compliance methods is located at www.abcb.gov.au.

A2G4(2)(a) references A2G2. Therefore, when using a combination of Performance Solutions and Deemed-to-Satisfy Solutions it is necessary to comply with A2G2(4) where a Performance Requirement is proposed to be satisfied by a Performance Solution.
Introduction to this Part

This Part explains applying the NCC in accordance with State or Territory legislation. The NCC has legal effect through references in relevant State or Territory building and plumbing legislation.

Although the NCC is a nationally consistent code, there are some situations where a State or Territory enforces a variation, addition or deletion to it. This Part also explains how these variations, additions and deletions apply.

A3G1 State and Territory compliance

(1) For application within a particular State or Territory, the Volumes of the NCC comprise inclusively of—
 (a) Sections A to J and associated schedules of Volume One; and
 (b) Sections A and H and associated schedules of Volume Two; and
 (c) Sections A to E and associated schedules of Volume Three.

(2) State and Territory variations, additions and deletions must be complied with in conjunction with the NCC.

(3) The NCC is subject to, and may be overridden by, State or Territory legislation.

(4) State and Territory variations, additions and deletions are contained in the following Schedules:
 (a) Schedule 3: Commonwealth of Australia.
 (b) Schedule 4: Australian Capital Territory.
 (c) Schedule 5: New South Wales.
 (d) Schedule 6: Northern Territory.
 (e) Schedule 7: Queensland.
 (f) Schedule 8: South Australia.
 (g) Schedule 9: Tasmania.
 (h) Schedule 10: Victoria.
 (i) Schedule 11: Western Australia.

(5) State and Territory variations and deletions are identified throughout the NCC.

Explanatory Information:

The NCC is given legal effect by building regulatory legislation in each State and Territory. This legislation consists of an Act of Parliament and subordinate legislation which empowers the regulation of certain aspects of building and plumbing, and contains the administrative provisions necessary to give effect to the legislation.

Although the NCC is a national code, in some instances it is necessary for a State or Territory to vary or apply additional requirements specific to their jurisdiction. A3G1(2) highlights that these variations, additions or deletions must be applied in conjunction with the NCC provisions. Typically, these variations, additions or deletions override the requirements contained within the NCC.

Any provision of the NCC may be overridden by, or subject to, State or Territory legislation. The NCC must therefore be read in conjunction with that legislation. Any queries on such matters should be referred to the State or Territory authority responsible for building and plumbing regulatory matters.

Where a requirement or provision of the NCC is subject to a State or Territory variation, addition, or deletion, a reference to the appropriate provision in the applicable State or Territory schedule is included with that requirement or provision.
Introduction to this Part
This Part explains how documents referenced in the NCC are adopted and applied. The NCC itself does not contain details of every design and construction requirement for a building or plumbing or drainage system. As such, the NCC calls upon or “references” other documents with this information. These are called NCC referenced documents. Examples of such documents are Australian Standards, ABCB protocols, ABCB standards and other publications.

There are multiple types of referenced documents. A primary referenced document is one referenced in Schedule 32 of the NCC. A secondary referenced document is one referenced in a primary referenced document. Other referenced documents are referenced by secondary and subsequently referenced documents.

A4G1 Referenced documents

(1) A reference in the NCC to a document refers to the edition or issues and any amendment listed in Schedule 32.

(2) A document referenced in the NCC is only applicable in the context in which the document is quoted.

TAS A4G1(3)

(3) Where a new edition, issue or amendment of a primary referenced document is not listed in Schedule 32, the new edition, issue or amendment is not referenced for the purpose of the NCC.

(4) Any document referenced in a primary referenced document is known as a secondary referenced document.

(5) A reference in a primary referenced document to a secondary or other referenced document is a reference to the document as it existed at the time of publication of the primary referenced document.

Applications:
A4G1 applies to documents referenced in the ABCB Housing Provisions in the same way as for documents referenced within any other part of the NCC.

Exemptions:
If the secondary or other referenced document is also a primary referenced document, A4G1(5) does not apply.

A4G2 Differences between referenced documents and the NCC

The NCC overrules any difference between the NCC (including the ABCB Housing Provisions) and a primary referenced document, including any secondary referenced document.

Applications:
A4G2 applies to documents referenced in the ABCB Housing Provisions in the same way as for other documents referenced by Volumes One, Two or Three of the NCC.
A4G3 Adoption of referenced documents

[2019: A4.2]

The NCC does not require compliance with requirements in relation to the following matters where they are prescribed in a referenced document:

(a) The rights, responsibilities or obligations between the manufacturer, supplier or purchaser.
(b) The responsibilities of any tradesperson or other building operative, architect, engineer, authority, or other person or body.
(c) The submission for approval of any material, building component, form or method of construction, to any person, authority or body other than those empowered under State or Territory legislation to give that approval.
(d) The submission of a material, product, form of construction or design to any person, authority or body for opinion.
(e) Any departure from the NCC, rule, specification or provision at the sole discretion of the manufacturer or purchaser, or by arrangement or agreement between the manufacturer and purchaser.

Applications:

A4G3 applies to documents referenced in the ABCB Housing Provisions in the same way as for documents referenced within Volumes One, Two or Three of the NCC.

Explanatory Information:

Schedule 32 is only mandatory to Deemed-to-Satisfy Provisions, Specifications, Verification Method and Schedule 32. However, referenced documents are only applicable to the NCC provision that references the document.

A proponent undertaking a Performance Solution can use any element or edition of any document, if they help satisfy the Performance Requirements. They do not need to use the documents listed in Schedule 32.

Schedule 32 lists the specific edition of the Standard or other document adopted, including any amendments considered appropriate for Schedule 32, the Deemed-to-Satisfy Provisions, Specifications or Verification Methods. Other editions of (or amendments to) the referenced document are not adopted and have no standing under the NCC.

A primary referenced document may refer to a secondary referenced document. A4G1(5) stipulates that the secondary referenced document is the edition of the document that existed at the time of publication of the primary referenced document. When another edition of (or amendment to) a secondary referenced document is released, subject to the exemption to A4G1, that edition (or amendment) is not adopted for the purposes of the primary referenced document.

A4G2 means that contractual matters or clauses defining responsibilities of various parties, and matters not appropriate for adoption in the NCC are not included when a document is called up in the NCC.
Introduction to this Part

This Part explains the evidence needed to show that the NCC requirements are met and the solution is “fit for purpose”. It covers the use of materials, products, forms of construction and designs. It details separate requirements for the BCA and PCA.

Examples of evidence to be prepared and retained include certificates, reports, calculations and any other documents or information showing compliance with the NCC requirements.

Governing Requirements

A5G1 Suitability

[2019: A5.0]

(1) A building and plumbing or drainage installation must be constructed using materials, products, plumbing products, forms of construction and designs fit for their intended purpose to achieve the relevant requirements of the NCC.

(2) For the purposes of (1), a material, product, plumbing product, form of construction or design is fit for purpose if it is—

(a) supported by evidence of suitability in accordance with—

(i) A5G2; and

(ii) A5G3 or A5G4 as appropriate; and

(b) constructed or installed in an appropriate manner.

Explanatory Information:

A5G1 relates to the quality of work and materials needed to construct a building to meet NCC requirements. This means that—

• all people involved with construction must work skilfully in accordance with good trade practice; and

• all materials must be of a quality to fulfil their function/s within the building.

A5G1 only applies to matters normally covered by the NCC.

While A5G1 outlines quality of work and material demands, sometimes additional conditions may be required by—

• other Commonwealth, State or Territory legislation; and

• contracts that include either specific quality requirements, or requirements for specific materials and the like.

Explanatory Information: Example

Permit authorities would ordinarily not apply A5G1 to such matters as—

• plastering — other than for fire rating, waterproofing of wet areas, and sound insulation; or

• painting — other than that required for weatherproofing an external wall.

When determining which form of evidence will be used, it is important to consider the appropriateness of the evidence, as some forms of evidence may be more suitable to materials and products and others to designs and forms of construction. The requirement to consider appropriateness of the evidence is specified in A5G2(1).
A5G2 Evidence of suitability — Volumes One, Two and Three

[2019: A5.1]

(1) The form of evidence used must be appropriate to the use of the material, product, plumbing product, form of construction or design to which it relates.

(2) Any copy of documentary evidence submitted must be a complete copy of the original certificate, report or document.

Explanatory Information:
For further guidance, refer to the ABCB Handbook for Evidence of Suitability.
All copies of documents provided as evidence must be unabridged copies of the originals. No part can be left incomplete.

A5G3 Evidence of suitability — Volumes One and Two (BCA)

[2019: A5.2]

(1) Subject to A5G5, A5G6 and A5G7, evidence to support that the use of a material, product, form of construction or design meets a Performance Requirement or a Deemed-to-Satisfy Provision may be in the form of any one, or any combination of the following:

(a) A current CodeMark Australia or CodeMark Certificate of Conformity.

(b) A current Certificate of Accreditation.

(c) A current certificate, other than a certificate described in (a) and (b), issued by a certification body stating that the properties and performance of a material, product, form of construction or design fulfil specific requirements of the BCA.

(d) A report issued by an Accredited Testing Laboratory that—

(i) demonstrates that a material, product or form of construction fulfils specific requirements of the BCA; and

(ii) sets out the tests the material, product or form of construction has been subjected to and the results of those tests and any other relevant information that has been relied upon to demonstrate it fulfils specific requirements of the BCA.

(e) A certificate or report from a professional engineer or other appropriately qualified person that—

(i) certifies that a material, product, form of construction or design fulfils specific requirements of the BCA; and

(ii) sets out the basis on which it is given and the extent to which relevant standards, specifications, rules, codes of practice or other publications have been relied upon to demonstrate it fulfils specific requirements of the BCA.

(f) Another form of documentary evidence, such as but not limited to a Product Technical Statement, that—

(i) demonstrates that a material, product, form of construction or design fulfils specific requirements of the BCA; and

(ii) sets out the basis on which it is given and the extent to which relevant standards, specifications, rules, codes of practice or other publications have been relied upon to demonstrate it fulfils specific requirements of the BCA.

(2) Evidence to support that a calculation method complies with an ABCB protocol may be in the form of any one, or any combination of the following:

(a) A certificate from a professional engineer or other appropriately qualified person that—

(i) certifies that the calculation method complies with a relevant ABCB protocol; and

(ii) sets out the basis on which it is given and the extent to which relevant standards, specifications, rules, codes of practice or other publications have been relied upon.

(b) Another form of documentary evidence that correctly describes how the calculation method complies with a relevant ABCB protocol.
Applications:
A5G3 is only applicable to NCC Volumes One and Two (BCA).

Explanatory Information:
A5G3 represents the minimum level of documentary evidence needed to show that a material, product, form of construction or design meets the relevant NCC requirements. The evidence can be required by:

- an appropriate authority;
- a party to a construction contract; or
- a person certifying compliance with the NCC.

If a building proponent does not produce exactly what is required, the evidence may be rejected.

It should be noted that design may refer to engineering design, architectural design as well as product and material design.

A5G3(1)(f) allows for the use of alternative forms of documentary evidence to those included in A5G3(1)(a) to (e), as long as they comply with certain specified conditions.

An example of this arises when an authority carries out an inspection of a building site. The inspection alone would not be acceptable as evidence. However, if the authority compiled a written report detailing findings and conclusions from the inspection, then it may comply with the requirements of A5G3(1)(f).

A Product Technical Statement detailing the characteristics and merits of a particular product or system is also an example of another form of documentary evidence.

There is significant reliance by industry on the use of calculation methods, including software programs, for demonstrating compliance with the NCC. While there is no formal recognition of specific methods, A5G3(2) allows suitable evidence to be submitted to demonstrate that a calculation method (including a software program) complies with a relevant ABCB protocol that establishes the characteristics of a suitable calculation method.

Current documentary evidence, such as a certificate or report, containing provision references relating to NCC 2019 remains valid despite amended provision references in NCC 2022. Documentary evidence prepared after the NCC 2022 adoption date is to reflect NCC 2022 provision references.

If under a Deemed-to-Satisfy Provision a building element is required to have an FRL, then A5G3 may be used to provide evidence to show that the FRL has been determined in accordance with Specification 1 and 2.

In the case of a test report from an Accredited Testing Laboratory, the report may be either—

- the test report referred to in clause 2.16.2 of AS 1530.4 (also referred to as a full test report); or
- the regulatory information report referred to in clause 2.16.3 of AS 1530.4 (also referred to as a short-form report).

In both cases the report must be an unabridged copy of the original report. A test certificate referred to in clause 2.16.4 of AS 1530.4 on its own is not suitable for showing compliance with the NCC.

If a proposal uses a Deemed-to-Satisfy Provision that requires a building element to have fire hazard properties, then A5G3 may be used to provide evidence to support the proposal and show that the fire hazard properties have been determined in accordance with A5G6.

Refer to the guidance provided in the Guide to Volume One for further information on fire hazard properties which includes—

- Flammability Index; and
- Spread-of-Flame Index; and
- Smoke-Developed Index; and
- a material’s group number; and
- smoke growth rate index.

The Deemed-to-Satisfy Provisions of the BCA contain a number of provisions requiring a ceiling to have a resistance to the incipient spread of fire to the space above itself. A5G7 sets out the method of determining the incipient spread of fire. The method is based on the method of determining the FRL of a building element and use of the Standard Fire Test.
Evidence of suitability — Volume Three (PCA)

(1) Any product that is intended for use in contact with drinking water must comply with the relevant requirements of AS/NZS 4020, verified in the form of either—

(a) A test report provided by an certification body or Accredited Testing Laboratory, in accordance with AS/NZS 4020; or

(b) A WaterMark licence issued in accordance with (32), if it includes compliance with AS/NZS 4020.

(2) Any copper alloy product that is intended for use in contact with drinking water must have a weighted average lead content of no more than 0.25% verified in the form of either—

(a) a test report provided by an Accredited Testing Laboratory, in accordance with NSF/ANSI 372; or

(b) a WaterMark licence issued in accordance with (3), if it includes compliance with NSF/ANSI 372.

(3) A product of a type listed on the WaterMark Schedule of Products is deemed to be fit for its intended purpose if it has a WaterMark Licence issued in accordance with the WaterMark Scheme Rules.

(4) A product of a type listed on the Watermark Schedule of Excluded Products requires evidence of suitability in the form of—

(a) a current certificate issued by a certification body stating that the properties and performance of a product can meet the requirements of the PCA; or

(b) a report issued by an Accredited Testing Laboratory that—

(i) demonstrates that the product complies with the relevant requirements of the PCA; and

(ii) sets out the tests the product has been submitted to and the results of those tests and any other relevant information that has been relied upon to demonstrate suitability for use in a plumbing or drainage installation.

(5) Any product that is not covered by (32) or (4) must be subjected to a risk assessment in accordance with the WaterMark Scheme Rules.

(6) Evidence to support that a design or system meets the relevant PCA Performance Requirements must be in the form of any one or any combination of the following:

(a) The design or system complies with a Deemed-to-Satisfy Provision.

(b) The design or system is a Performance Solution from a professional engineer or a recognised expert that—

(i) certifies that the design or system complies with the relevant requirements of the PCA; and

(ii) sets out the basis on which it is given and the extent to which relevant standards, specifications, rules, codes of practice or other publications have been relied upon.

(c) Any other form of documentary evidence that—

(i) demonstrates that a design or system complies with the relevant requirements of the PCA; and

(ii) sets out the basis on which it is given and the extent to which relevant standards, specifications, rules, codes of practice or other publications have been relied upon.

Applications:

A5G4 is only applicable to NCC Volume Three (PCA).
Explanatory Information:

A5G4(1) requires any product intended for use in contact with drinking water to comply with AS/NZS 4020. Compliance is achieved by passing the relevant tests set out in the Standard.

Evidence of compliance must then be provided in accordance with A5G4(1), under which there are two options. The first, at A5G4(1)(a), recognises test reports and certificates that cover compliance with AS/NZS 4020 only. The second, at A5G4(1)(b), recognises WaterMark Licences where compliance with AS/NZS 4020 is a requirement of the relevant product Standard or WaterMark Technical Specification.

For products that are of a type listed on the WaterMark Schedule of Products, A5G4(2) requires that these products have a WaterMark Licence. A WaterMark Licence reflects that the product has been certified and authorised in accordance with the WaterMark Scheme Rules.

For products that are not subject to WaterMark certification (i.e. excluded products), evidence that can be used to support that the product is fit for its intended purpose is provided in A5G4(3). This may include demonstrating compliance with a product specification referenced in the WaterMark Schedule of Excluded Products, where one is available.

A5G4(4) provides that any product that is not listed on the WaterMark Schedule of Products or the WaterMark Schedule of Excluded Products must be subjected to a risk assessment in accordance with the WaterMark Scheme Rules. The risk assessment will determine whether the product in question requires certification and authorisation, or if it should be listed as an “excluded product”. This in turn will determine the form of evidence of suitability applicable to the product.

Applications:

Products captured by A5G4(2) include:

(a) Copper alloy fittings.
(b) Stainless-steel braided hoses.
(c) Valves (such as valves for isolation, backflow prevention, alteration of pressure and temperature).
(d) Taps and mixers.
(e) Water meters.
(f) Pumps (for use with cold and heated water services).
(g) Water heaters.
(h) Residential water filtration equipment.
(i) Water dispensers (such as boiling and cooling units, drinking fountains and bottle fillers).

Exemptions:

(1) Products that are used exclusively for non-drinking uses such as manufacturing, industrial processing, irrigation or any other uses where water is not anticipated to be used for human consumption are excluded from the requirements of A5G4(2).

(2) Products excluded by A5G4(2) include:

(i) Shower heads for bathing and emergency showers, eye wash and/or face wash equipment.
(ii) Pumps used for irrigation, fire-fighting or other non-drinking water purposes.
(iii) Fire-fighting water services and equipment including residential fire sprinklers.
(iv) Appliances, including washing machines and dishwashers.
(v) Commercial boilers associated with heating, ventilation and air-conditioning systems.
(vi) Sanitary fixtures (such as toilets, cistern inlet valves, bidets, urinals.
(vii) Non-drinking water systems (such as recycled water systems).

Explanatory Information: What is WaterMark?

The WaterMark Certification Scheme is a mandatory certification scheme for plumbing and drainage products to ensure that these products are fit for purpose and appropriately authorised for use in a plumbing or drainage system.

The PCA, through Part A5, requires certain plumbing and drainage products to be certified and authorised for use in a plumbing or drainage system. These products are certified through the WaterMark Certification Scheme and listed on
the WaterMark Product Database.

The WaterMark Certification Scheme is governed by the WaterMark Scheme Rules, which are available for download from the ABCB website at: www.abcb.gov.au. These rules set out the requirements for risk assessments, evaluation, certification, and the drafting of WaterMark Technical Specifications.

When a product is listed on the WaterMark Schedule of Products then, for it to be certified and authorised, the product must—

- be tested by an Accredited Testing Laboratory; and
- comply with an approved product specification (either a relevant existing product Standard or a WaterMark Technical Specification); and
- be manufactured in accordance with an approved Quality Assurance Program; and
- carry a scope of use.

Products that comply fully with the applicable requirements of the WaterMark Certification Scheme are then eligible to be certified by a WaterMark Conformity Assessment Body and listed on the WaterMark Product Database. Certified products are identifiable by the WaterMark certification trade mark, shown in Figure A5G4 below, that must be displayed on the product upon granting of a WaterMark Licence.

Figure A5G4 (explanatory): WaterMark Certification Scheme Trademarks

A5G5 Fire-resistance of building elements

[2019: A5.4]

Where a Deemed-to-Satisfy Provision requires a building element to have an FRL, it must be determined in accordance with Specifications 1 and 2.

A5G6 Fire hazard properties

[2019: A5.5]

Where a Deemed-to-Satisfy Provision requires a building component or assembly to have a fire hazard property it must be determined as follows:

(a) For average specific extinction area, critical radiant flux and Flammability Index, as defined in Specifications 1 and 2.

(b) For Smoke-Developed Index and Spread-of-Flame Index, in accordance with Specification 3.

(c) For a material's group number or smoke growth rate index (SMOGRA$_{RC}$), in accordance with S7C4(2).

A5G7 Resistance to the incipient spread of fire

[2019: A5.6]

A ceiling is deemed to have a resistance to the incipient spread of fire to the space above itself if—

(a) it is identical with a prototype that has been submitted to the Standard Fire Test and the resistance to the incipient spread of fire achieved by the prototype is confirmed in a report from an Accredited Testing Laboratory that—

(i) describes the method and conditions of the test and form of construction of the tested prototype in full; and
(ii) certifies that the application of restraint to the prototype complies with the Standard Fire Test; or

(b) it differs in only a minor degree from a prototype tested under (a) and the resistance to the incipient spread of fire attributed to the ceiling is confirmed in a report from an Accredited Testing Laboratory that—

(i) certifies that the ceiling is capable of achieving the resistance to the incipient spread of fire despite the minor departures from the tested prototype; and

(ii) describes the materials, construction and conditions of restraint that are necessary to achieve the resistance to the incipient spread of fire.

A5G8 Labelling of Aluminium Composite Panels

An Aluminium Composite Panel must be labelled in accordance with SA TS 5344.
Introduction to this Part

The NCC groups buildings and structures by the purpose for which they are designed, constructed or adapted to be used, rather than by the function or use they are put to, assigning each type of building or structure with a classification. This Part explains how each building classification is defined and used in the NCC.

The building classifications are labelled “Class 1” through to “Class 10”. Some classifications also have sub-classifications, referred to by a letter after the number (e.g. Class 1a).

The technical building requirements for Class 2 to 9 buildings are mostly covered by Volume One of the NCC and those for Class 1 and 10 are mostly covered by Volume Two of the NCC. Volume Three of the NCC covers plumbing and drainage requirements for all building classifications.

A building may have parts that have been designed, constructed or adapted for different purposes. In most cases, each of these parts is a separate classification. A building (or part of a building) may also have more than one such purpose and may be assigned more than one classification.

A6G1 Determining a building classification

(1) The classification of a building or part of a building is determined by the purpose for which it is designed, constructed or adapted to be used.

(2) Each part of a building must be classified according to its purpose and comply with all the appropriate requirements for its classification.

(3) A room that contains a mechanical, thermal or electrical facility or the like that serves the building must have the same classification as the major part or principal use of the building or fire compartment in which it is situated.

(4) Unless another classification is more suitable an occupiable outdoor area must have the same classification as the part of the building to which it is associated.

Exemptions:

(1) For A6G1(1) where a part of a building has been designed, constructed or adapted for a different purpose and is less than 10% of the floor area of the storey it is situated on, the classification of the other part of the storey may apply to the whole storey.

(2) A6G1(3) does not apply to an electricity network substation.

Limitations:

Exemption (1) does not apply where the minor use of a building is a laboratory or a Class 2, 3, or 9b early childhood centre part of a building.

Explanatory Information:

Classification is a process for understanding risks in a building or part, according to its use. It must be correctly undertaken to achieve NCC aims as appropriate to each building in each circumstance.

It is possible for a single building to have parts with different classifications. Part of a building can also have more than one classification. Where there is any conflict between what requirements the part should comply with, the more stringent requirement applies.

Where it is unclear which classification should apply, appropriate authorities have the discretion to decide. They base their decision on an assessment of the building proposal.
They will look at what classification the building most closely resembles. They will also take into account the likely fire load, plus, the likely consequences of any risks to the safety, health and amenity of people using the building.

Appropriate authorities will also look at any relevant court decisions or determinations of the State or Territory body responsible for considering appeals on building classification matters.

It should be noted that appeals body determinations and, in some States and Territories, certain court decisions are usually not precedent creating. Such decisions are determined on a case-by-case basis.

It should also be noted that State and Territory authorities responsible for building regulatory matters may have issued advice, interpretations or guidelines to assist practitioners in applying the correct classification to a building or part. Advice on such matters should be sought from the relevant authority.

Under Exemption (1) to A6G1, if 10% or less of the floor area of a storey is used for a purpose which could be classified differently to the remainder of that storey, that part may be classified as being the same as the remainder. Laboratories and sole-occupancy units in Class 2, 3 or 4 parts are excluded from this concession (see Limitation to A6G1). The reason is that laboratories are considered to have a high fire hazard potential and classifying them with the remainder of the building could, in a majority of cases, endanger occupants of the other parts of the building which have a lower fire hazard potential. Also, the intent is not to allow sole-occupancy units in Class 2, 3 or 4 parts to be regarded as another Class such as Class 6 and then not have any fire or sound insulation between the units and any other classification which may have a high fire load and could endanger the occupants of the Class 2, 3 or 4 part.

If Exemption (1) to A6G1 is used, it should be remembered that it will still be necessary to use the occupant numbers in Volume One Table D2D18 for the particular use of the area. Likewise, the lighting and equipment levels, people occupancy and load profiles for the area of minor use for the purposes of Volume One Section J must be in accordance with the use of the area.

If the storey has a very large floor area, the 10% or less concession area may also be large, even though the rest of the building is classifiable as a building which ordinarily has a lower risk potential. An example of the application of this area concession could be as follows:

- If a single storey factory has an office that takes up 8% of the whole storey’s floor area, the entire building (including the office) can be classified as being Class 8.
- However, if that office area takes up 12% of the storey’s floor area, that area must be classified as Class 5, and the remainder of the building as Class 8.

Under A6G1(3) a plant room, machinery room, lift motor room or boiler room, have the same classification as the part of the building they are in. These kinds of rooms do not need to be ancillary or subordinate to the part of the building they are in, that is, the 10% criterion is not applicable.

There are specific provisions for these kinds of rooms. For example, Volume One Section C requires some of them to be fire separated from the remainder of the building (e.g. see C3D14 with regard to elements of the electricity supply system).

A6G2 Class 1 buildings [2019: A6.1]

(1) A Class 1 building is a dwelling.

(2) Class 1 includes the following sub-classifications:

(a) Class 1a is one or more buildings, which together form a single dwelling including the following:

 (i) A detached house.

 (ii) One of a group of two or more attached dwellings, each being a building, separated by a fire-resisting wall, including a row house, terrace house, town house or villa unit.

(b) Class 1b is one or more buildings which together constitute—

 (i) a boarding house, guest house, hostel or the like that—

 (A) would ordinarily accommodate not more than 12 people; and

 (B) have a total area of all floors not more than 300 m² (measured over the enclosing walls of the building or buildings); or

 (ii) four or more single dwellings located on one allotment and used for short-term holiday accommodation.

Figure A6G2a: Identification of Class 1 buildings

- External wall
- Separating wall between Class 1 buildings
- Common wall between Class 1 and Class 2 buildings
- Class 1 single dwelling (may be one or more storeys)
- Class 2 dwelling

Elevation

Figure A6G2b: Typical Class 1 building configurations

(a) 3 Class 1 buildings on 3 separate allotments

(b) 3 Class 1 buildings on 2 separate allotments

Plan view
Figure A6G2c: Domestic allotment — classification of buildings and structures

![Diagram showing classification of buildings and structures](image)

Limitations:
For A6G2, a Class 1 building cannot be located above or below another dwelling or another Class of building, other than a private garage.

Explanatory Information:
Class 1 buildings are covered in Volumes Two and Three of the NCC. Class 1 buildings are not located above or below another dwelling, or another class of building other than a private garage.

A sole-occupancy unit used for residential purposes located over another sole-occupancy unit used for residential purposes will always be a Class 2 or Class 3 building (depending on the circumstances). It cannot be a Class 1 building.

A single Class 1 dwelling can be made up of more than one building. For example, it may include what is ordinarily called a house, plus one or more habitable ‘outbuildings’ such as sleepouts. Note that a habitable building such as a sleepout cannot be classified as a Class 10 building.

The height or number of storeys of a Class 1 building makes no difference to its classification.

Class 1b buildings used for short-term holiday accommodation include cabins in caravan parks, tourist parks, farm stay, holiday resorts and similar tourist accommodation. This accommodation itself is typically rented out on a commercial basis for short periods and generally does not require the signing of a lease agreement. Short-term accommodation can also be provided in a boarding house, guest house, hostel, bed and breakfast accommodation or the like.

Unlike a Class 1b building described in A6G2(2)(a), a Class 1b building described in A6G2(2)(b) does not have any floor area limitation. Therefore, if 4 or more single dwellings are located on the one allotment and used for short-term holiday accommodation, each single dwelling would be classified as a Class 1b building regardless of the floor area of each dwelling or the combined floor area of all of the dwellings.

See also Volume One D4D2(3) which contains an explanation of what is considered be “one allotment”.

The Class 1b classification can attract concessions applicable to Class 3 buildings. These concessions allow people to rent out rooms in a house, or run a bed and breakfast, without having to comply with the more stringent Class 3 requirements. The reasoning is that the smaller size of the building and its lower number of occupants represents reduced fire risks.

Apart from their use, the primary difference between Class 1a and Class 1b buildings is that the latter is required to have a greater number of smoke alarms and in some circumstances, access and features for people with a disability.
A6G3 Class 2 buildings

(1) A Class 2 building is a building containing two or more sole-occupancy units.

(2) Each sole-occupancy unit in a Class 2 building must be a separate dwelling.

Explanatory Information:
A Class 2 building is one that includes more than one dwelling, each of which is generally solely occupied by one or more people to the exclusion of others.

Such buildings must not be otherwise classified as a Class 1 or Class 3 building or Class 4 part. See explanatory Figure A6G3a for a typical configuration of Class 1 and Class 2 buildings.

Where a sole-occupancy residential unit is located above another sole-occupancy residential unit, the building containing the units can be either a Class 2 or a Class 3 building, depending on the other circumstances of the building proposal.

Class 2 buildings can be single storey attached dwellings. Where there is any common space below such dwellings, they are Class 2 (and cannot be Class 1) irrespective of whether the space below is a storey or not (see explanatory Figure A6G3b).

Class 2 buildings can be attached to buildings of another Class. The attached Class 2 buildings need not be attached to one another, and need not be more than a single storey.

When two or more dwellings are attached to another Class, they cannot be Class 4 parts, as any building can only contain one Class 4 dwelling.

Figure A6G3a (explanatory): Section showing a typical configuration of Class 1 and Class 2 buildings (with non-combustible roof coverings)
A6G4 Class 3 buildings

[2019: A6.3]

(1) A Class 3 building is a residential building providing long-term or transient accommodation for a number of unrelated persons.

(2) Class 3 buildings include the following:
 (a) A boarding house, guest house, hostel, lodging house or backpacker accommodation.
 (b) A residential part of a hotel or motel.
 (c) A residential part of a school.
 (d) Accommodation for the aged, children, or people with disability.
 (e) A residential part of a health-care building which accommodates members of staff.
 (f) A residential part of a detention centre.
 (g) A residential care building.

Limitations:
For A6G4, a Class 3 building is not a Class 1 or 2 building but may be a mixture of Class 3 and another Class.

Explanatory Information:
Class 3 buildings provide accommodation for unrelated people. The length of stay is unimportant.
Some exceptions to this classification include: certain bed and breakfast accommodation, boarding houses, guest houses, hostels, or lodging houses and the like which fall within the concession provided for Class 1b buildings.
Also, any sized building can be classified as Class 1 or Class 2 if it is used to house any number of unrelated people who jointly own or rent it, or share it on a non-rental basis with an owner or tenant.
It is not unusual for a manager’s, owner’s or caretaker’s dwelling attached to a Class 3 building to be thought of as a Class 4 part of the Class 3 building. However, a Class 4 part of a building can only be part of a Class 5-9 building.
Accordingly, such dwellings are either classified as Class 1, Class 2 or Class 3, depending on the circumstances of the building proposal. However, a building could be a mixture of Class 3 and another Class.
Class 3 buildings include—

- the residential parts of hotels and motels; and
• hotel or motel caretakers’, managers’ or owners’ flats, noting that under certain circumstances such dwellings could be Class 1, Class 2 or Class 3 buildings; and
• dormitory accommodation, in schools or elsewhere, noting that a dormitory is generally (but not always) considered to be a sole-occupancy unit; and
• bed and breakfast accommodation, a boarding house, guest house, hostel, or lodging house; and
• backpackers’ accommodation; and
• a building which houses elderly people or other people who require special care. (In some States or Territories it is not acceptable for a Class 1b building to be used to house elderly people or other people who require special care - it is recommended the local building regulatory body be consulted.); and
• workers’ quarters, including shearers’ or fruit pickers’ accommodation, or hotel workers’ accommodation.

Class 4 buildings

Class 4 is a dwelling in a Class 5, 6, 7, 8 or 9 building if it is the only dwelling in the building.

Explanatory Information:
Class 4 classification applies to some types of accommodation located within a Class 5-9 building. The most common include a caretaker’s flat within a building; and accommodation over or otherwise connected to a shop.

A Class 4 part cannot be located within a Class 1, Class 2 or Class 3 building. There can only be one Class 4 dwelling in a building. If there are two or more dwellings, they are Class 1, Class 2, or possibly Class 3. These Class 1, Class 2 or Class 3 parts need not be attached to one another, nor be more than a single storey.

Where a Class 4 part of a building is rented out for accommodation purposes, it retains its Class 4 classification. However, if any other part of the principal building is used for accommodation, for example, the attached shop is converted into an additional flat, both flats become classifiable as Class 2 or, depending on their use, possibly Class 3.

Class 5 buildings

A Class 5 building is an office building used for professional or commercial purposes.

Explanatory Information:
Class 5 buildings include professional chambers or suites, lawyers’ offices, government offices, advertising agencies and accountants’ offices.

NSW A6G7
SA A6G7

Class 6 buildings

(1) A Class 6 building is a shop or other building used for the sale of goods by retail or the supply of services direct to the public.

(2) Class 6 buildings include the following:
 (a) an eating room, cafe, restaurant, milk or soft-drink bar.
 (b) a dining room, bar area that is not an assembly building, shop or kiosk part of a hotel or motel.
 (c) a hairdresser’s or barber’s shop, public laundry, or undertaker’s establishment.
 (d) market or sale room, showroom, or service station.
Explanatory Information:
A Class 6 building is a building where goods or services are directly sold or supplied to the public. Examples of a Class 6 building may include—

- a place where food or drink may be purchased such as a café or restaurant; or
- a dining room, bar area that is not an assembly building, shop or kiosk part of a hotel or motel; or
- a hairdresser’s or barber’s shop, public laundry, veterinarian; or
- supermarket or sale room, florist, showroom, or service station.

Service stations are Class 6 buildings. These are outlets used for the servicing of cars and the selling of fuel or other goods. The expression ‘service station’ is not intended to cover buildings where panel beating, auto electrical, muffler replacement, tyre replacement and the like are solely carried out. Such buildings should be classified as Class 6, Class 7 or Class 8 buildings as the appropriate authority sees fit.

A6G8 Class 7 buildings

1. A Class 7 building is a storage-type building.
2. Class 7 includes the following sub-classifications:
 a. Class 7a — a carpark.
 b. Class 7b — a building that is used for storage, or display of goods or produce for sale by wholesale.

Explanatory Information:
There are three basic types of Class 7 building. The first is a carpark as defined in the NCC. The second is a building used for storage, often referred to as a ‘warehouse’. The third is a building used for the display of goods or produce for sale by wholesale. ‘Wholesale’ means sale to people in the trades or in the business of ‘on-selling’ goods and services to another party (including the public).

A6G9 Class 8 buildings

1. A Class 8 building is a process-type building.
2. Class 8 buildings include the following:
 a. A laboratory.
 b. A building in which the production, assembling, altering, repairing, packing, finishing, or cleaning of goods or produce for sale takes place.

Explanatory Information:
The most common way to describe a Class 8 building is as a ‘factory’. However, this can give a simplistic impression of the types of building which can fall within this classification.

For example—
- some laboratories, despite their often small size, have been included as Class 8 buildings principally because of their high fire hazard; and
- buildings used for altering or repairing (except service stations, which are specifically included in A6G7 as Class 6 buildings); and
- potteries; and
- food manufacturers (but not restaurants, which are specifically included in A6G7 as Class 6 buildings); and
- buildings used for the packing or processing of produce, such as a farm or horticultural building.
A6G10 Class 9 buildings

[2019: A6.9]

(1) A Class 9 building is a building of a public nature.

(2) Class 9 includes the following sub-classifications:

(a) Class 9a — a *health-care building* including any parts of the building set aside as laboratories, and includes a *health-care building* used as a *residential care building*.

(b) Class 9b — an *assembly building* including a trade workshop or laboratory in a primary or secondary *school*.

(c) Class 9c — a *residential care building*.

Exemptions:
A6G10(2)(b) excludes any parts of the building that are of another Class.

Explanatory Information:
Class 9a buildings are *health-care buildings*, including day-care surgeries or procedure units and the like. See definition of *health-care building*. Laboratories that are part of a Class 9a building are Class 9a, despite the general classification of laboratories as Class 8 buildings.

These buildings can include—

- Class 9b buildings are *assembly buildings*.
- theatres, cinemas and halls, churches, schools, early childhood centres, kindergartens, preschools and childminding centres; and
- indoor cricket, tennis, basketball centres and sport stadiums; and
- nightclubs, discotheques, bar areas providing live entertainment and/or containing a dance floor, public halls, dance halls and other places of entertainment; and
- snooker halls; and
- bus and railway stations.

Regarding the Exemption to A6G10(2)(b), a building could be a mixture of Class 9b and another Class, or a Class 9b building could contain parts that are of another Class, but be taken as a Class 9b building because of A6G1 Exemption (1).

Class 9c buildings are *residential care buildings* that may contain residents who have various care level needs.

The Class 9c classification recognises that many residents progress through a continuum of care needs from low to high. Many older people enter residential care with low care needs (typically Class 3 facilities) but, as they age, require higher levels of care. In the past, such progression often necessitated the transfer of a hostel resident (Class 3) to a nursing home (Class 9a). This frequently had negative consequences for the health and well-being of the resident, for whom the hostel accommodation was home. It also led, at times, to the separation of couples with differing care needs.

Building designers should note that Class 3 buildings include hostels for the accommodation of the aged, and Class 9a buildings include nursing homes. It is important to be aware, however, that construction of Class 3 or 9a buildings may restrict the options available to the operators of a facility in relation to the profile of the residents they wish to accommodate. Where the potential exists for residents of varying care needs to be accommodated, consideration of the Class 9c provisions may be appropriate. The Class 9c classification allows for any mix of low and high care residents and is intended to allow the mix to change as the residents’ care needs change over time, without the need to obtain any further consent or approval from the *appropriate authority*.

Multi-care level facilities are for residents who may require the full range of care services outlined by the Aged Care Act. Hence, it is not intended to restrict the resident type and provides maximum flexibility for service providers, residents and the community.

The NCC provisions for Class 9c buildings are based on minimal on duty on-site staff being available at any time. However, it is recognised that the staff numbers vary throughout the course of any one day, due to the care needs of the residents and the functioning of the facility. It is also recognised that the specific care needs of the residents may result in a greater minimum number of staff.
(1) A Class 10 building is a non-habitable building or structure.

(2) Class 10 includes the following sub-classifications:
 - Class 10a is a non-habitable building including a *private garage*, carport, shed or the like.
 - Class 10b is a structure that is a fence, mast, antenna, retaining wall or free-standing wall or *swimming pool* or the like.
 - Class 10c is a *private bushfire shelter*.

Explanatory Information:
Class 10a buildings are non-habitable buildings. See Figure A6G11 for an indication of some Class 10 building configurations.

Class 10b structures are non-habitable structures. There is no requirement for Class 10 buildings to be appurtenant to a building of any other Class, for example, a small shed standing on its own on an allotment and a toilet block in a park.

A habitable ‘outbuilding’ which is appurtenant to another building is generally part of that building. Again, habitable ‘outbuildings’ cannot be classified as Class 10 buildings.

Typical outbuilding classifications include the following:
- A sleepout on the same allotment as a Class 1 building is part of the Class 1 building.
- A detached entertainment room on the same allotment as a Class 1 building, perhaps associated with a *swimming pool*, is part of the Class 1 building.
- A small toolshed, used for trade-related hobbies for non-commercial purposes or home repairs, on the same allotment as a Class 1 building, would be classified as a Class 10 building.

Provisions relating to Class 10c structures are only intended to address *private bushfire shelter* associated with a single Class 1a dwelling. These provisions are contained in Volume Two of the NCC.

Some States or Territories may exempt some Class 10 buildings or structures (often on the basis of height or size) from the need to have a building permit. Queries on this matter should be referred to the State or Territory body responsible for regulatory matters.
Multiple classifications

A building (or part of a building) may be designed, constructed or adapted for multiple purposes and have more than one classification.

Applications:
For A6G12, a building (or part of a building) must comply with all the relevant requirements that apply to each of the classifications for that building (or part of a building).

Explanatory Information: Difficult classifications — Class 2 or Class 3?

There is a fine line between a Class 2 building containing apartments or flats and a Class 3 motel building with units containing bathroom, laundry and cooking facilities, which may both be made available for short term holiday rental.

When does a Class 3 motel unit become a Class 2 holiday flat and vice versa?

In general, an assessment will be based on the most likely use of the building by appropriate authorities.

Class 3 buildings, where the occupants are generally unfamiliar with the building and have minimum control over the safety of the building, represent a higher risk level and therefore require higher safety levels. In a case where the classification is unclear, a decision should be made according to the perceived risks inherent in the use of the building.

Explanatory Information: Difficult classifications — Class 6 or Class 7?

Class 7 buildings include those used to sell goods on the wholesale market, whereas Class 6 buildings are used to sell goods to the public.

Some establishments claim to sell goods to both the wholesale and retail markets. As a rule, however, if the general public has access to the building, it is considered a ‘shop’, and therefore a Class 6 building.

Explanatory Information: Difficult classifications — Hotel bars: Class 6 or 9b?

As can be seen from the definition of a Class 6 building, it includes a hotel bar which is not an assembly building. The bar includes the bar area and associated standing and seating areas. This clarifies that the bar extends beyond the serving area to include standing and sitting areas where patrons may drink alcohol or other beverages and consume food. The exclusion of an assembly building means that a bar providing live entertainment or containing a dance floor is not considered to be Class 6, it must be considered as Class 9b. However, when that use is minor compared with the remainder of the bar, such as a piano bar or the like where patrons only listen to music and there is no dance floor, the appropriate authority should exercise judgement on the predominant use and therefore the appropriate classification of the bar.

A Class 9b building is an assembly building which is defined to include a building where people may assemble for entertainment, recreational or sporting purposes.

A building may have more than one classification (see A6G12).

Explanatory Information: Buildings used for farming purposes

Buildings used for farming-type purposes are often very diverse in nature, occupancy, use and size. In some States or Territories, appropriate authorities may classify farm buildings as Class 10a, which covers non-habitable buildings. They would only make this decision if a classification of Class 7 or Class 8 would not be more appropriate.

When making their decision they consider the building’s size, purpose, operations and the extent to which people are employed in the building. For example, it may be appropriate to classify a shed which is used to store a tractor as a Class 10a building.

The NCC has definitions of farm building and farm shed which are certain Class 7 and 8 buildings used for farming
purposes. Concessions to specific Deemed-to-Satisfy Provisions apply to farm buildings and farm sheds in recognition of their often low risk features, and it is recommended that reference is made to the definitions of farm building and farm shed for further guidance which may assist determination of an appropriate NCC classification.

For example, if people are likely to be employed to stack materials/produce in a storage building or remove materials/produce from a storage building then a classification of Class 7b may be appropriate. Depending upon whether the criteria in the definition of farm shed or farm building have been met, the associated Deemed-to-Satisfy Provisions in NCC Volume One Part I3 may apply.

Similarly if people are likely to be employed to pack or process materials/produce within a building, or employed to feed, clean or collect produce from animals or plants within a building then a classification of Class 8 may be appropriate. Depending upon whether the criteria in the definition of farm shed or farm building have been met, the associated Deemed-to-Satisfy Provisions in NCC Volume One Part I3 may apply.

However identification of low fire load, low occupant risk and low risk of fire spread should not be used as justification for choosing a less stringent building classification for a building under the Deemed-to-Satisfy Provisions. For example, if the intended use of a building is to grow or store a large amount of tomatoes, such as a large greenhouse, and there is likely to be only one to two persons in the building at any time, it is considered inappropriate to classify the building as a Class 10a under the Deemed-to-Satisfy Provisions and a classification of Class 7 or Class 8 would be more appropriate.

The Deemed-to-Satisfy Provisions for a Class 7 or Class 8 farm building or farm shed do not prevent the ability to consider or develop a Performance Solution for a particular building where the requirements may not be considered appropriate or are viewed as too stringent. Similarly if a Class 7 or 8 building used for farming purposes does not meet all the criteria to be considered a farm building or farm shed under the Deemed-to-Satisfy Provisions, this would not limit the ability to develop a Performance Solution which could contain features similar to those allowed under the Deemed-to-Satisfy Provisions for farm buildings or farm sheds.

For example, if a Class 8 commercial poultry building meets all the criteria to be considered a farm building under the Deemed-to-Satisfy Provisions other than the maximum floor area criteria, a Performance Solution could be developed to demonstrate that the concessions for a farm building under the Deemed-to-Satisfy Provisions are appropriate.

In regards to a farm building or farm shed where the purpose of the building is to park farm vehicles when not in use, as well as perhaps clean or polish the vehicle(s), it may be appropriate that this type of building is classified as a Class 7a.

However, a number of farm buildings and farm sheds are often not only used for the storage of farm vehicles, but to store supplies such as fuel, grain or hay. A Class 7a classification may still be appropriate where the majority of the shed’s space is intended to be designated for the parking of vehicles. However, it may be more appropriate to classify some types of buildings as Class 7b, rather than Class 7a where a mixed use shed is intended.

Under A6G12 each part of a building (including the entire building) may have more than one classification. This means, for example, that it is permissible to classify part of a building as a Class 6/7 building, or a Class 5/6 building, or whatever is appropriate.

It is expected that this approach may be taken by a builder who is uncertain of what the precise use of a building will be after its sale, or to maximise the flexibility of the building’s use.

Under the Application to A6G12, where a building has more than one classification the more stringent Class requirements will apply.
Introduction to this Part

This Part explains how multiple buildings can be considered as a united building. Where adjacent buildings are joined through openings in walls, they need not meet additional requirements if they jointly comply with the NCC as a single building.

Governing Requirements

A7G1 United buildings

Buildings are deemed united when two or more buildings adjoining each other are connected and used as one building.

Applications:

(1) For A7G1, two or more buildings are a united building if they are connected through openings in the walls dividing them and together comply with all the requirements of the NCC as though they are a single building.

(2) A7G1 only applies to Class 2 to 9 buildings.

A7G2 Alterations in a united building

If, after alterations or any other building work, two or more of the buildings in A7G1 cease to be connected through openings in the dividing walls, each of those buildings not now connected must comply with all the requirements for a single building.

Explanatory Information:

It is not unusual for authorities to receive plans proposing the connecting of two or more buildings. Connecting buildings could be achieved by breaking openings through walls, or by joining the buildings by a tunnel, bridge or covered walkway. When connected, if the buildings jointly comply with all the requirements of the NCC applying as if they were a single building, they become a united building.

United buildings are not required to comply with additional NCC provisions. For example, any new openings do not require any form of fire protection not required of a single building.

Note, however, an external wall, which as a result of an interconnection becomes an internal wall, must comply with the requirements for an internal wall.

Interconnected buildings that do not jointly comply with all the requirements applicable to a single building, remain as separate buildings.

This raises the possible need for fire doors, or other forms of protection to be fitted to connecting openings.

Explanatory Information: Multiple allotments or ownership

The NCC does not concern itself with actually prohibiting or permitting the uniting of buildings in separate ownership or on separate allotments. Such matters are dealt with by the relevant local bodies.

Explanatory Information: Example of connection by bridge

In this example, Building A is connected to Building B by bridge C. There are four different options for designing such a proposal.
The first is a united building:
A, B and C are considered as a single structure and comply with the NCC.

The second is three separate buildings:
A, B and C are a fire-source feature to each of the others, and are separated by fire walls with the openings protected at the points of connection. In this case, C may require independent support and separate egress to a road or open space, that is not through Buildings A or B. In this case, attention should also be paid to the length of the bridge, as regards distance of travel to an exit.

The third option is the bridge as a portion of Building A:
In this option, A and C are one building, meeting all requirements of the NCC as a single or united building. B is a separate building, with suitable fire separation, including fire-doors at the point of interconnection. Bridge C could be supported off Building A, but not off Building B.

The fourth option is having the bridge as a portion of Building B
In this option, B and C are one building, meeting all requirements of the NCC as a single or united building. A is a separate building, with suitable fire separation, including fire doors at the point of interconnection. Bridge C could be supported off Building B, but not off Building A.

In some cases, C will link A and B across a public road, including laneways and the like. Special approvals may be required from various appropriate authorities. However, in such cases—

- if C is supported by means other than off A and B, such support will generally only be permitted if there is no obstruction of the public road; and
- care will need to be taken in calculating the distance of travel to an exit if travel is required to be over C and the road is wide; and
- fire-separation may be necessary at each end of the bridge.
- If the last stipulation is the case, the following matters need consideration:
 - The bridge would probably need to be of fire-rated construction because combustible construction could provide a ready path for the transfer of fire, and non-combustible construction could, in a major fire, distort and collapse onto the road.
 - The designer needs to take care that the bridge does not negate the fire separation between the storeys of the building.
Introduction to this Part

This Part includes the quantified metrics that must be used to interpret the fire safety Performance Requirements listed in A8G1 that are not quantified or say to the degree necessary. The degree necessary is the degree that achieves the requirements of this part.

Governing Requirements

A8G1 Application of Part

(1) A8G2 of this Part applies to the interpretation of Performance Requirements C1P1, C1P2, C1P3, C1P4, C1P5, C1P6, C1P7, C1P8, C1P9, D1P4, D1P5, D1P6, D1P7, E1P1, E1P2, E1P3, E1P4, E1P6, E2P1, E2P2, E3P2, E4P1, E4P2, E4P3, G4P1, G4P2, G4P3, and G4P4.

(2) A8G3 of this Part applies to the interpretation of Performance Requirements C1P1, C1P2, C1P3, C1P8, C1P9, and E1P4.

(3) This Part does not apply where—

 (a) a Performance Solution is achieved by a demonstrating that the solution is at least equivalent to the Deemed-to-Satisfy Provisions in accordance with A2G2(1)(b); or

 (b) the Assessment Method used to assess a Performance Solution is shown to comply with the relevant Performance Requirements in accordance with A2G2(2)(d).

A8G2 Fire safety

As a result of a fire occurring within a building, the risk of exposure of occupants to untenable conditions must not exceed the values provided in Table A8G2a and Table A8G2b, with consideration of—

 (a) hazards, building characteristics and occupant characteristics including—

 (i) function or use of the building; and

 (ii) fire load; and

 (iii) potential fire intensity; and

 (iv) height of the building; and

 (v) number of storeys; and

 (vi) location in alpine areas; and

 (vii) proximity to other property; and

 (viii) size of any fire compartment/floor area; and

 (ix) other elements providing structural support; and

 (x) number, mobility and other occupant characteristics; and

 (xi) travel distance; and

 (xii) exit above and below ground; and

 (b) prevention/intervention measures against hazards as applicable including—

 (i) control of linings, materials and assemblies to maintain tenable conditions for evacuation; and

 (ii) occupant intervention using firefighting equipment (fire hose reels and fire extinguishers); and
(iii) **automatic fire suppression; and**

(iv) **fire brigade intervention**, including—

(A) **fire brigade access; and**

(B) **fire hydrants; and**

(C) **fire control centres; and**

(D) **automatic notification of fire brigade; and**

(E) **emergency lifts; and**

(c) **means of managing the consequences**, including—

(i) **maintaining building structural stability; and**

(ii) **avoiding spread of fire to exits; and**

(iii) **protection from spread of fire and smoke to allow for orderly evacuation as appropriate or as part of defend in place strategies or provisions of temporary refuges for occupants requiring assistance to evacuate; and**

(iv) **behaviour of concrete external walls in fire; and**

(v) **barrier protection from high hazard service equipment; and**

(vi) **protection of emergency equipment; and**

(vii) **fire protection of openings and penetrations; and**

(viii) **provision of exits; and**

(ix) **construction of exits; and**

(x) **provision of fire isolated exits; and**

(xi) **provisions for paths of travel to, through and from exits; and**

(xii) **evacuation lifts; and**

(xiii) **automatic warning for sleeping occupants; and**

(xiv) **safe evacuation routes; options for consideration include one or more of the following if necessary:**

(A) **smoke detection; and**

(B) **smoke management systems; and**

(C) **automatic suppression; and**

(xv) **visibility in an emergency including emergency lighting; and**

(xvi) **identification of exits including exit signage; and**

(xvii) **emergency warning and intercom systems.**

Table A8G2a: **Allowable individual risk of exposure to untenable conditions**

<table>
<thead>
<tr>
<th>Building Class Group</th>
<th>Individual risk per annum (lower tolerable limit)</th>
<th>Individual risk per annum (upper tolerable limit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential/care (building classification 2, 3, 4, 9a or 9c)</td>
<td>(5.0 \times 10^{-6})</td>
<td>(5.0 \times 10^{-4})</td>
</tr>
<tr>
<td>Other classes (building classification 5, 6, 7a, 7b, or 9b)</td>
<td>(1.0 \times 10^{-6})</td>
<td>(1.0 \times 10^{-4})</td>
</tr>
</tbody>
</table>

Table A8G2b: **Allowable societal risk of exposure to untenable conditions**

<table>
<thead>
<tr>
<th>Number of people exposed to untenable conditions</th>
<th>Societal risk per annum (lower tolerable limit)</th>
<th>Societal risk per annum (upper tolerable limit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 5)</td>
<td>(8.9 \times 10^{-7})</td>
<td>(8.9 \times 10^{-5})</td>
</tr>
<tr>
<td>(\geq 10)</td>
<td>(3.2 \times 10^{-7})</td>
<td>(3.2 \times 10^{-5})</td>
</tr>
<tr>
<td>(\geq 20)</td>
<td>(1.1 \times 10^{-7})</td>
<td>(1.1 \times 10^{-5})</td>
</tr>
</tbody>
</table>
Explanatory Information:
If the lower tolerable limits (individual and societal) are not exceeded by the proposed Performance Solution the individual and societal risk criteria can be considered to be satisfied.
If the upper tolerable limits (individual or societal) are exceeded by the proposed Performance Solution the individual or societal risk criteria have not been satisfied and modifications to the proposed solution will be required.
If the individual and/or societal risks presented by the proposed Performance Solution lie between the lower and upper allowable risks the proposed Performance Solution can be considered to be satisfactory if it can be demonstrated that the individual and/or societal risk presented by the Performance Solution is less than or equal to that presented by a similar Deemed-to-Satisfy compliant reference building that is considered to represent a tolerable risk.

A8G3 Spread of fire

(1) A building must avoid the spread of fire between buildings such that:
 (a) the probability of a reportable fire in a building causing heat fluxes greater than the values listed Table A8G3a must not exceed 0.001 at the stated distance from the boundary on an adjacent allotment or at the distances between buildings on the same allotment, and
 (b) the probability of a building not being able to withstand the heat flux in Table A8G3a for a period of 30 minutes must not exceed 0.01; and
 (c) the probability that the external façade of a building cannot withstand the following exposures from reportable fires must not exceed 0.001:
 (i) Flames venting through an opening from an enclosure fire within the building,
 (ii) Burning items adjacent to the structure such as a vehicle, waste bin, or collection of combustible rubbish depending on the use and access to adjacent areas.
 (iii) A fire occurring on a balcony.

(2) A building must avoid the spread of fire within the building such that when a reportable fire occurs, the probability of fire spread does not exceed—
 (a) 0.01 to spread outside of a sole-occupancy unit for Class 2, 3 and 4 buildings; and
 (b) 0.01 to spread between storeys; and
 (c) the values in Table A8G3b.

Table A8G3a: Maximum heat flux

<table>
<thead>
<tr>
<th>Maximum heat flux (kW/m²)</th>
<th>Distance from Boundary (m)</th>
<th>Distance between buildings on the same allotment (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>
Table A8G3b: Fire spread limits to manage fire spread

<table>
<thead>
<tr>
<th>Building Classification</th>
<th>Floor area</th>
<th>Volume</th>
<th>Maximum probability of spread beyond specified floor area and volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>5, 9b</td>
<td>3000m²</td>
<td>18000m³</td>
<td>0.01</td>
</tr>
<tr>
<td>6, 7, 8, 9a, 9c</td>
<td>2000m²</td>
<td>12000m³</td>
<td>0.01</td>
</tr>
<tr>
<td>5-9</td>
<td>18000m²</td>
<td>21000m³</td>
<td>0.001</td>
</tr>
<tr>
<td>9a patient care areas and 9c</td>
<td>1000m²</td>
<td>–</td>
<td>0.01</td>
</tr>
</tbody>
</table>
S1C1 Scope

This Specification sets out the procedures for determining the FRL of building elements.

S1C2 Rating

A building element meets the requirements of this Specification if—

(a) it is listed in, and complies with Tables S1C2a to S1C2n of this Specification; or

(b) it is identical with a prototype that has been submitted to the Standard Fire Test, or an equivalent or more severe test, and the FRL achieved by the prototype without the assistance of an active fire suppression system is confirmed in a report from an Accredited Testing Laboratory which—

(i) describes the method and conditions of the test and the form of construction of the tested prototype in full; and

(ii) certifies that the application of restraint to the prototype complied with the Standard Fire Test; or

(c) it differs in only a minor degree from a prototype tested under (b) and the FRL attributed to the building element is confirmed in a report from an Accredited Testing Laboratory which—

(i) certifies that the building element is capable of achieving the FRL despite the minor departures from the tested prototype; and

(ii) describes the materials, construction and conditions of restraint which are necessary to achieve the FRL; or

(d) it is designed to achieve the FRL in accordance with—

(i) AS/NZS 2327, AS 4100 and AS/NZS 4600 if it is a steel or composite structure; or

(ii) AS 3600 if it is a concrete structure; or

(iii) AS 1720.4 if it is a timber element other than fire-protected timber; or

(iv) AS 3700 if it is a masonry structure; or

(e) the FRL is determined by calculation based on the performance of a prototype in the Standard Fire Test and confirmed in a report in accordance with S1C3; or

(f) for fire-protected timber, it complies with Specification 10 where applicable.

Table S1C2a: FRLs Deemed to be achieved by walls — masonry

<table>
<thead>
<tr>
<th>Masonry type</th>
<th>Minimum thickness (mm) of principal material for FRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60/60/60</td>
</tr>
<tr>
<td>Ashlar</td>
<td>-</td>
</tr>
<tr>
<td>Calcium silicate</td>
<td>-</td>
</tr>
<tr>
<td>See clause S1C2(d)(iv)</td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td>-</td>
</tr>
<tr>
<td>Fired Clay</td>
<td>-</td>
</tr>
</tbody>
</table>

Table Notes:
For the purposes of this table, each element must meet the requirements of Specification 2.
Table S1C2b: FRLs Deemed to be achieved by walls — concrete

<table>
<thead>
<tr>
<th>Concrete type</th>
<th>Minimum thickness (mm) of principal material for FRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60/60/60</td>
</tr>
<tr>
<td>No fines</td>
<td>-</td>
</tr>
<tr>
<td>Prestressed</td>
<td>See clause S1C2(d)(iv)</td>
</tr>
<tr>
<td>Reinforced</td>
<td>-</td>
</tr>
</tbody>
</table>

Table Notes:
For the purposes of this table, each element must meet the requirements of Specification 2.

Table S1C2c: FRLs Deemed to be achieved by walls — gypsum

<table>
<thead>
<tr>
<th>Gypsum type</th>
<th>Minimum thickness (mm) of principal material for FRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60/60/60</td>
</tr>
<tr>
<td>Solid gypsum blocks</td>
<td>75</td>
</tr>
<tr>
<td>Gypsum — perlite or Gypsum vermiculite-plaster on metal lath and channel (non-loadbearing walls only)</td>
<td>50</td>
</tr>
</tbody>
</table>

Table Notes:
For the purposes of this table, each element must meet the requirements of Specification 2.

Table S1C2d: FRLs Deemed to be achieved by concrete columns

<table>
<thead>
<tr>
<th>Column type</th>
<th>Minimum thickness (mm) of principal material for FRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60/60/60</td>
</tr>
<tr>
<td>Prestressed</td>
<td>See clause S1C2(d)(ii)</td>
</tr>
<tr>
<td>Reinforced</td>
<td>-</td>
</tr>
</tbody>
</table>

Table Notes:
For the purposes of this table, each element must meet the requirements of Specification 2.

Table S1C2e: FRLs Deemed to be achieved by hot-rolled steel columns (including a fabricated column) exposed on no more than 3 sides

<table>
<thead>
<tr>
<th>Fire protection</th>
<th>Minimum thickness (mm) of principal material for FRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60/60/60</td>
</tr>
<tr>
<td>Concrete Cast in-situ — loadbearing</td>
<td>25</td>
</tr>
<tr>
<td>Concrete Cast in-situ — non-loadbearing unplastered</td>
<td>25</td>
</tr>
<tr>
<td>Concrete Cast in-situ — non-loadbearing plastered 13 mm</td>
<td>25</td>
</tr>
<tr>
<td>Gypsum Cast in-situ</td>
<td>-</td>
</tr>
<tr>
<td>Gypsum — perlite or Gypsum-vermiculite plaster— sprayed to</td>
<td>20</td>
</tr>
</tbody>
</table>
Governing requirements

Table Notes:

For the purposes of this table, each element must meet the requirements of Specification 2.

Table S1C2f:

FRLs Deemed to be achieved by hot-rolled steel columns (including a fabricated column) exposed on no more than 3 sides and with column spaces filled

<table>
<thead>
<tr>
<th>Fire protection</th>
<th>Minimum thickness (mm) of principal material for FRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60/60/60</td>
</tr>
<tr>
<td>Gypsum — perlite or</td>
<td>20</td>
</tr>
<tr>
<td>Gypsum-vermiculite plaster— sprayed on</td>
<td></td>
</tr>
<tr>
<td>metal lath</td>
<td></td>
</tr>
<tr>
<td>Solid calcium-silicate masonry</td>
<td>50</td>
</tr>
<tr>
<td>Solid clay masonry</td>
<td>50</td>
</tr>
<tr>
<td>Solid concrete masonry</td>
<td>50</td>
</tr>
<tr>
<td>Solid gypsum blocks</td>
<td>50</td>
</tr>
<tr>
<td>Hollow terracotta blocks — plastered 13 mm</td>
<td>50</td>
</tr>
</tbody>
</table>

Table Notes:

For the purposes of this table, each element must meet the requirements of Specification 2.

Table S1C2g:

FRLs Deemed to be achieved by hot-rolled steel columns (including a fabricated column) exposed on no more than 3 sides and with column spaces unfilled

<table>
<thead>
<tr>
<th>Fire protection</th>
<th>Minimum thickness (mm) of principal material for FRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60/60/60</td>
</tr>
<tr>
<td>Solid calcium-silicate masonry</td>
<td>50</td>
</tr>
<tr>
<td>Solid clay masonry</td>
<td>50</td>
</tr>
<tr>
<td>Solid concrete masonry</td>
<td>50</td>
</tr>
<tr>
<td>Solid gypsum blocks</td>
<td>50</td>
</tr>
<tr>
<td>Hollow terracotta blocks — plastered 13 mm</td>
<td>50</td>
</tr>
</tbody>
</table>

Table Notes:

For the purposes of this table, each element must meet the requirements of Specification 2.

Table S1C2h:

FRLs Deemed to be achieved by hot-rolled steel columns (including a fabricated column) exposed on no more than 4 sides

<table>
<thead>
<tr>
<th>Fire protection</th>
<th>Minimum thickness (mm) of principal material for FRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60/—/—</td>
</tr>
<tr>
<td>Concrete Cast in-situ — loadbearing</td>
<td>25</td>
</tr>
<tr>
<td>Concrete Cast in-situ — non-loadbearing unplastered</td>
<td>35</td>
</tr>
<tr>
<td>Concrete Cast in-situ — non-loadbearing plastered 13 mm</td>
<td>25</td>
</tr>
<tr>
<td>Gypsum Cast in-situ</td>
<td>-</td>
</tr>
<tr>
<td>Gypsum — perlite or</td>
<td>25</td>
</tr>
<tr>
<td>Gypsum-vermiculite plaster —</td>
<td></td>
</tr>
</tbody>
</table>
Table Notes:
For the purposes of this table, each element must meet the requirements of Specification 2.

Table S1C2i: FRLs Deemed to be achieved by hot-rolled steel columns (including a fabricated column) exposed on no more than 4 sides and with column spaces filled

<table>
<thead>
<tr>
<th>Fire protection</th>
<th>Minimum thickness (mm) of principal material for FRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60/–/–</td>
</tr>
<tr>
<td>Gypsum — perlite or Gypsum-vermiculite plaster — sprayed on metal lath</td>
<td>20</td>
</tr>
</tbody>
</table>

Table S1C2j: FRLs Deemed to be achieved by hot-rolled steel columns (including a fabricated column) exposed on no more than 4 sides and with column spaces unfilled

<table>
<thead>
<tr>
<th>Fire protection</th>
<th>Minimum thickness (mm) of principal material for FRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60/–/–</td>
</tr>
<tr>
<td>Solid calcium-silicate masonry</td>
<td>50</td>
</tr>
<tr>
<td>Solid clay masonry</td>
<td>50</td>
</tr>
<tr>
<td>Solid concrete masonry</td>
<td>50</td>
</tr>
<tr>
<td>Solid gypsum blocks</td>
<td>50</td>
</tr>
<tr>
<td>Hollow terracotta blocks — plastered 13 mm</td>
<td>50</td>
</tr>
</tbody>
</table>

Table S1C2k: FRLs Deemed to be achieved by concrete beams

<table>
<thead>
<tr>
<th>Concrete type</th>
<th>Minimum thickness (mm) of principal material for FRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60/–/–</td>
</tr>
<tr>
<td>Prestressed</td>
<td>See clause S1C2(d)(ii)</td>
</tr>
<tr>
<td>Reinforced</td>
<td></td>
</tr>
</tbody>
</table>

Table S1C2l: FRLs Deemed to be achieved by hot-rolled steel beams (including an open-web joist, girder, truss, etc.) exposed on no more than 3 sides

Fire protection	Minimum thickness (mm) of principal material for FRLs				
	60/–/–	90/–/–	120/–/–	180/–/–	240/–/–
Concrete — cast in-situ	25	30	40	50	65
Gypsum — perlite or Gypsum-vermiculite plaster —	20	25	35	50	55
S1C2

Public Comment Draft

Governing requirements

Table S1C2m: FRLs Deemed to be achieved by hot-rolled steel beams (including an open-web joist, girder, truss, etc.) exposed on 4 sides

<table>
<thead>
<tr>
<th>Fire protection</th>
<th>Minimum thickness (mm) of principal material for FRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60/–/–</td>
</tr>
<tr>
<td>Gypsum — perlite or Gypsum-vermiculite plaster — sprayed on metal lath</td>
<td>20</td>
</tr>
</tbody>
</table>

Table S1C2n: FRLs Deemed to be achieved by floor, roof or ceiling

<table>
<thead>
<tr>
<th>Floor, roof or ceiling type</th>
<th>Minimum thickness (mm) of principal material for FRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60/60/60</td>
</tr>
<tr>
<td>Prestressed</td>
<td>See Clause S1C2(d)(ii)</td>
</tr>
<tr>
<td>Reinforced</td>
<td></td>
</tr>
</tbody>
</table>

S1C3

FRLs determined by calculation

[2019: Sch. 5: 3]

If the FRL of a building element is determined by calculation based on a tested prototype—

(a) the building element may vary from the prototype in relation to—

(i) length and height if it is a wall; and

(ii) height if it is a column; and

(iii) span if it is a floor, roof or beam; and

(iv) conditions of support; and

(v) to a minor degree, cross-section and components; and

(b) the report must demonstrate by calculation that the building element would achieve the FRL if it is subjected to the regime of the *Standard Fire Test* in relation to—

(i) **structural adequacy** (including deflection); and

(ii) **integrity**; and

(iii) **insulation**; and

(c) the calculations must take into account—

(i) the temperature reached by the components of the prototype and their effects on strength and modulus of elasticity; and

(ii) appropriate features of the building element such as support, restraint, cross-sectional shape, length, height, span, slenderness ratio, reinforcement, ratio of surface area to mass per unit length, and fire protection; and

(iii) features of the prototype that influenced its performance in the *Standard Fire Test* although these features may not have been taken into account in the design for dead and live load; and

(iv) features of the conditions of test, the manner of support and the position of the prototype during the test, that might not be reproduced in the building element if it is exposed to fire; and

Fire protection

- Minimum thickness (mm) of principal material for FRLs:
 - 60/–/–
 - 90/–/–
 - 120/–/–
 - 180/–/–
 - 240/–/–

- **Gypsum — perlite or Gypsum-vermiculite plaster — sprayed on metal lath**
 - 20
 - 20
 - 25
 - 35
 - 45

- **Concrete — cast in-situ**
 - 25
 - 40
 - 45
 - 60
 - 90

- **Gypsum — perlite or Gypsum-vermiculite plaster — sprayed to contour**
 - 20
 - 30
 - 40
 - 55
 - 65

- **Gypsum — perlite or Gypsum-vermiculite plaster — sprayed on metal lath**
 - 20
 - 20
 - 35
 - 40
 - 50

Floor, roof or ceiling type

- Minimum thickness (mm) of principal material for FRLs:
 - 60/60/60
 - 90/90/90
 - 120/120/120
 - 180/180/180
 - 240/240/240

- **Prestressed**
 - See Clause S1C2(d)(ii)

- **Reinforced**
(v) the design load of the building element in comparison with the tested prototype.

S1C4 Interchangeable materials

[2019: Sch. 5: 4]

(1) Concrete and plaster — An FRL achieved with any material of Group A, B, C, D or E as an ingredient in concrete or plaster, applies equally when any other material of the same group is used in the same proportions:
 (a) Group A: any portland cement.
 (b) Group B: any lime.
 (c) Group C: any dense sand.
 (d) Group D: any dense calcareous aggregate, including any limestone or any calcareous gravel.
 (e) Group E: any dense siliceous aggregate, including any basalt, diorite, dolerite, granite, granodiorite or trachyte.

(2) Perlite and vermiculite — An FRL achieved with either gypsum-perlite plaster or gypsum-vermiculite plaster applies equally for each plaster.

S1C5 Columns covered with lightweight construction

[2019: Sch. 5: 5]

If the fire-resisting covering of a steel column is lightweight construction, the construction must comply with Volume One C2D9 and C4D17.

S1C6 Non-loadbearing elements

[2019: Sch. 5: 6]

If a non-loadbearing element is able to be used for a purpose where the Deemed-to-Satisfy Provisions prescribe an FRL for structural adequacy, integrity and insulation, that non-loadbearing element need not comply with the structural adequacy criteria.
S2C1 Scope

This Specification sets out the descriptions of elements referred to in Tables S1C2a to S1C2n of Specification 1.

S2C2 Mortar for masonry

Masonry units of ashlar, calcium silicate, concrete or fired clay (including terracotta blocks) must be laid in cement mortar or composition mortar complying with the relevant provisions of AS 3700.

S2C3 Gypsum blocks

Gypsum blocks must be laid in gypsum-sand mortar or lime mortar.

S2C4 Gypsum-sand mortar and plaster

Gypsum-sand mortar and gypsum-sand plaster must consist of either—

(a) not more than 3 parts by volume of sand to 1 part by volume of gypsum; or

(b) if lime putty is added, not more than 2.5 parts by volume of sand to 1 part by volume of gypsum and not more than 5% of lime putty by volume of the mixed ingredients.

S2C5 Gypsum-perlite and gypsum-vermiculite plaster

Gypsum-perlite or gypsum-vermiculite plaster must be applied—

(a) in either one or 2 coats each in the proportions of 1 m3 of perlite or vermiculite to 640 kg of gypsum if the required thickness of the plaster is not more than 25 mm; and

(b) in 2 coats if the required thickness is more than 25 mm, the first in the proportions of 1 m3 of perlite or vermiculite to 800 kg of gypsum and the second in the proportions of 1 m3 of perlite or vermiculite to 530 kg of gypsum.

S2C6 Plaster of cement and sand or cement, lime and sand

Plaster prescribed in Tables S1C2a to S1C2n—

(a) must consist of cement and sand or cement, lime and sand; and

(b) may be finished with gypsum, gypsum-sand, gypsum-perlite or gypsum-vermiculite plaster or with lime putty.
S2C7 Plaster reinforcement

[2019: Sch. 5 (Annex): 1.6]

If plaster used as fire protection on walls is more than 19 mm thick—

(a) it must be reinforced with expanded metal lath that—
 (i) has a mass per unit area of not less than 1.84 kg/m2; and
 (ii) has not fewer than 98 meshes per metre; and
 (iii) is protected against corrosion by galvanising or other suitable method; or

(b) it must be reinforced with 13 mm x 13 mm x 0.7 mm galvanised steel wire mesh securely fixed at a distance from the face of the wall of not less than $\frac{1}{3}$ of the total thickness of the plaster.

S2C8 Ashlar stone masonry

[2019: Sch. 5 (Annex): 2]

Ashlar masonry must not be used in a part of the building containing more than 2 storeys, and must not be of—

(a) aplite, granite, granodiorite, quartz dacite, quartz diorite, quartz porphyrite or quartz porphyry; or
(b) conglomerate, quartzite or sandstone; or
(c) chert or flint; or
(d) limestone or marble.

S2C9 Dimensions of masonry

[2019: Sch. 5 (Annex): 3]

The thicknesses of masonry of calcium-silicate, concrete and fired clay are calculated as set out in S2C10 to S2C12.

S2C10 Solid units

[2019: Sch. 5 (Annex): 3.1]

For masonry in which the amount of perforation or coring of the units does not exceed 25% by volume (based on the overall rectangular shape of the unit) the thickness of the wall must be calculated from the manufacturing dimensions of the units and the specified thickness of the joints between them as appropriate.

S2C11 Hollow units

[2019: Sch. 5 (Annex): 3.2]

For masonry in which the amount of perforation or coring of the units exceeds 25% by volume (based on the overall rectangular shape of the unit) the thickness of the wall must be calculated from the equivalent thicknesses of the units and the specified thickness of the joints between them as appropriate.

S2C12 Equivalent thickness

[2019: Sch. 5 (Annex): 3.3]

The equivalent thickness of a masonry unit is calculated by dividing the net volume by the area of one vertical face.
S2C13 Height-to-thickness ratio of certain walls

[2019: Sch. 5 (Annex): 5]

The ratio of height between lateral supports to overall thickness of a wall of ashlar, no-fines concrete, unreinforced concrete, solid gypsum blocks, gypsum-perlite or gypsum-vermiculite plaster on metal lath and channel, must not exceed—

(a) 20 for a loadbearing wall; or
(b) 27 for a non-loadbearing wall.

S2C14 Walls

[2019: Sch. 5 (Annex): 6.1]

If a wall of ashlar, solid gypsum blocks or concrete is plastered on both sides to an equal thickness, the thickness of the wall for the purposes of Tables S1C2a to S1C2n (but not for the purposes of S2C5) may be increased by the thickness of the plaster on one side.

S2C15 Columns

[2019: Sch. 5 (Annex): 6.2]

(1) Where Tables S1C2a to S1C2n indicate that column-protection is to be plastered, the tabulated thicknesses are those of the principal material.

(2) The thicknesses referred to in (1) do not include the thickness of plaster, which must be additional to the listed thickness of the material to which it is applied.

S2C16 Walls

[2019: Sch. 5 (Annex): 7.1]

In walls fabricated of gypsum-perlite or gypsum-vermiculite plaster on metal lath and channel—

(a) the lath must be securely wired to each side of 19 mm x 0.44 kg/m steel channels (used as studs) spaced at not more than 400 mm centres; and

(b) the gypsum-perlite or gypsum-vermiculite plaster must be applied symmetrically to each exposed side of the lath.

S2C17 Columns

[2019: Sch. 5 (Annex): 7.2]

(1) For the fire protection of steel columns with gypsum-perlite or gypsum-vermiculite on metal lath—

(a) the lath must be fixed at not more than 600 mm centres vertically to steel furring channels, and—

(i) if the plaster is to be 35 mm thick or more — at least 12 mm clear of the column; or

(ii) if the plaster is to be less than 35 mm thick — at least 6 mm clear of the column; or

(b) the plaster may be applied to self-furring lath with furring dimples to hold it not less than 10 mm clear of the column.

(2) For the purposes of (1), the thickness of the plaster must be measured from the back of the lath.

S2C18 Beams

[2019: Sch. 5 (Annex): 7.3]

For the fire protection of steel beams with gypsum-perlite or gypsum-vermiculite on metal lath—
Governing requirements

(a) the lath must be fixed at not more than 600 mm centres to steel furring channels and at least 20 mm clear of the steel; and
(b) the thickness of the plaster must be measured from the back of the lath.

S2C19 Columns

A column incorporated in or in contact on one or more sides with a wall of solid masonry or concrete at least 100 mm thick may be considered to be exposed to fire on no more than 3 sides.

S2C20 Beams

A beam, open-web joist, girder or truss in direct and continuous contact with a concrete slab or a hollow block floor or roof may be considered to be exposed to fire on no more than 3 sides.

S2C21 Filling of column spaces

1. The spaces between the fire-protective material and the steel (and any re-entrant parts of the column itself) must be filled solid with a fire-protective material like concrete, gypsum or grout.
2. The insides of hollow sections, including pipes, need not be filled.

S2C22 Hollow terracotta blocks

The proportion of cored holes or perforations in a hollow terracotta block (based on the overall rectangular volume of the unit) must not exceed the following:
(a) For blocks up to 75 mm thick — 35%.
(b) For blocks more than 75 mm but not more than 100 mm thick — 40%.
(c) For blocks more than 100 mm — 50%.

S2C23 Masonry

Masonry of calcium-silicate, fired clay and concrete for the protection of steel columns must have steel-wire or mesh reinforcement in every second course and lapped at the corners.

S2C24 Gypsum blocks and hollow terracotta blocks

Gypsum blocks and hollow terracotta blocks for the protection of steel columns must have steel-wire or mesh reinforcement in every course and lapped at corners.

S2C25 Structural concrete and poured gypsum

If a steel column or a steel beam is to be protected with structural concrete or poured gypsum, the concrete or gypsum must be reinforced with steel-wire mesh or steel-wire binding placed about 20 mm from its outer surface, and—
(a) for concrete or gypsum less than 50 mm thick, the steel wire must be—
 (i) at least 3.15 mm in diameter; and
 (ii) spaced at not more than 100 mm vertically; or
(b) for concrete or gypsum not less than 50 mm thick, the steel wire must be either—
 (i) of a diameter and spacing in accordance with (a); or
 (ii) at least 5 mm in diameter and spaced at not more than 150 mm vertically.

S2C26 Gypsum-perlite or gypsum-vermiculite plaster sprayed to contour

(1) If a steel column or steel beam is protected with either gypsum-perlite or gypsum-vermiculite plaster sprayed to contour and the construction falls within the limits of Tables S2C26a and S2C26b, the plaster must be reinforced with—
 (a) expanded metal lath complying with S2C7; or
 (b) galvanised steel wire mesh complying with S2C7.

(2) The reinforcement must be placed at a distance from the face of the plaster of at least 1/3 of the thickness of the plaster and must be securely fixed to the column or beam at intervals of not more than the relevant listing in Tables S2C26a and S2C26b.

(3) For the purposes of Tables S2C26a and S2C26b—
 (a) “vertical” includes a surface at not more than 10º to the vertical; and
 (b) “horizontal” includes a surface at not more than 10º to the horizontal; and
 (c) “underside” means the underside of any horizontal or non-vertical surface.

<table>
<thead>
<tr>
<th>Surface to be protected</th>
<th>Reinforcement required if smaller dimension of surface exceeds (mm)</th>
<th>Max spacing of fixings of the mesh to surface (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>Non-vertical</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Underside</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Upper side of a horizontal surface</td>
<td>Not required</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface to be protected</th>
<th>Reinforcement required if smaller dimensions of surface exceeds (mm)</th>
<th>Max spacing of fixings of the mesh to surface (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>Any size</td>
<td>450</td>
</tr>
<tr>
<td>Non-vertical</td>
<td>Any size</td>
<td>300</td>
</tr>
<tr>
<td>Underside</td>
<td>Any size</td>
<td>300</td>
</tr>
<tr>
<td>Upper side of a horizontal surface</td>
<td>Not required</td>
<td>N/A</td>
</tr>
</tbody>
</table>

S2C27 Measurement of thickness of column and beam protection

[2019: Sch. 5 (Annex): 12.1]

The thickness of the fire protection to steel columns and steel beams (other than fire protection of gypsum-perlite or gypsum-vermiculite plaster sprayed on metal lath or sprayed to contour) is to be measured from the face or edge of the
steel, from the face of a splice plate or from the outer part of a rivet or bolt, whichever is the closest to the outside of the fire-protective construction, except that—

(a) if the thickness of the fire protection is 40 mm or more, rivet heads may be disregarded; and

(b) if the thickness of the fire protection is 50 mm or more—
 (i) any part of a bolt (other than a high-tensile bolt) may be disregarded; and
 (ii) a column splice plate within 900 mm of the floor may encroach upon the fire protection by up to a ¼ of the thickness of the fire protection; and

(c) the flange of a column or beam may encroach by up to 12 mm upon the thickness of the fire protection at right angles to the web if—
 (i) the column or beam is intended to have an FRL of 240/240/240 or 240/–/–; and
 (ii) the flange projects 65 mm or more from the web; and
 (iii) the thickness of the edge of the flange (inclusive of any splice plate) is not more than 40 mm.
This Specification sets out the procedures for determining the fire hazard properties of assemblies tested to AS/NZS 1530.3.

The fire hazard properties of assemblies and their ability to screen their core materials as required under Specification 7 must be determined by testing in accordance with S3C3 to S3C6.

Tests must be carried out in accordance with—

(a) for the determination of the Spread-of-Flame Index and Smoke-Developed Index — AS/NZS 1530.3; and

(b) for the determination of the ability to prevent ignition and to screen its core material from free air — AS 1530.4.

Test specimens must incorporate—

(a) all types of joints; and

(b) all types of perforations, recesses or the like for pipes, light switches or other fittings, which are proposed to be used for the member or assembly of members in the building.

S3C5 does not apply to joints, perforations, recesses or the like that are larger than those in the proposed application and have already been tested in the particular form of construction concerned and found to comply with the conditions of the test.

A testing laboratory may carry out the test specified in S3C3(b) at pilot scale if a specimen (which must be not less than 900 mm x 900 mm) will adequately represent the proposed construction in the building, but the results of that test do not apply to construction larger than limits defined by the laboratory conducting the pilot examination.
Part B1 Structural provisions

Objectives

B1O1 Objective

Functional Statements

B1F1 Structure

B1F2 Glazing

Performance Requirements

B1P1 Structural reliability

B1P2 Structural resistance

B1P3 Glass installations at risk of human impact

B1P4 Buildings in flood areas

Verification Methods

B1V1 Structural reliability

B1V2 Structural robustness

Deemed-to-Satisfy Provisions

B1D1 Deemed-to-Satisfy Provisions

B1D2 Resistance to actions

B1D3 Determination of individual actions

B1D4 Determination of structural resistance of materials and forms of construction

B1D5 Structural software

B1D6 Construction of buildings in flood hazard areas

Specification 4 Design of buildings in cyclonic areas

S4C1 Scope

S4C2 Roof cladding
Part B1 Structural provisions

Introduction to this Part

This Part focusses on minimising risk of structural failure in buildings; structural requirements for buildings in flood hazard areas; and, minimising risk of injuries caused by people colliding with glass panels, windows and doors.

Objectives

B1O1 Objective

The Objective of this Part is to—

(a) safeguard people from injury caused by structural failure; and
(b) safeguard people from loss of amenity caused by structural behaviour; and
(c) protect other property from physical damage caused by structural failure; and
(d) safeguard people from injury that may be caused by failure of, or impact with, glazing.

Functional Statements

B1F1 Structure

A building or structure is to withstand the combination of loads and other actions to which it may be reasonably subjected.

B1F2 Glazing

(1) Glazing is to be installed in a building to avoid undue risk of injury to people.
(2) Glazing in a building should not cause injury to people due to its failure or people impacting with it because they did not see it.

Performance Requirements

B1P1 Structural reliability

(1) A building or structure, during construction and use, with appropriate degrees of reliability as specified in Table B1P1, must—

(a) perform adequately under all reasonably expected design actions; and
(b) withstand extreme or frequently repeated design actions; and
(c) be designed to sustain local damage, with the structural system as a whole remaining stable and not being damaged to an extent disproportionate to the original local damage; and
(d) avoid causing damage to other properties,
by resisting the actions to which it may reasonably expect to be subjected.

(2) The actions to be considered to satisfy (1) include but are not limited to—

(a) permanent actions (dead loads); and
(b) imposed actions (live loads arising from occupancy and use); and
(c) wind action; and
(d) earthquake action; and
(e) snow action; and
(f) liquid pressure action; and
(g) ground water action; and
(h) rainwater action (including ponding action); and
(i) earth pressure action; and
(j) differential movement; and
(k) time dependent effects (including creep and shrinkage); and
(l) thermal effects; and
(m) ground movement caused by—
 (i) swelling, shrinkage or freezing of the subsoil; and
 (ii) landslip or subsidence; and
 (iii) siteworks associated with the building or structure; and
(n) construction activity actions; and
(o) termite actions.

Table B1P1: Maximum acceptable annual probability of structural failure of buildings members and connection (1 in ...)

<table>
<thead>
<tr>
<th>Building parts, members and connections</th>
<th>Failure behaviour</th>
<th>Resistance paths</th>
<th>Structure Importance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substantive parts of a building or structure</td>
<td>Brittle or fatigue or sudden failure</td>
<td>N/A</td>
<td>14,000</td>
</tr>
<tr>
<td></td>
<td>Gradual ductile failure</td>
<td>N/A</td>
<td>9,000</td>
</tr>
<tr>
<td>Members and connections that provide primary building support</td>
<td>Connections or non-transient actions or brittle or fatigue or sudden failure</td>
<td>Single</td>
<td>3,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple</td>
<td>2,100</td>
</tr>
<tr>
<td></td>
<td>Members subject to transient actions with gradual ductile failure</td>
<td>Single</td>
<td>1,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple</td>
<td>1,000</td>
</tr>
<tr>
<td>Members and connections that do not provide primary building support</td>
<td>Connections or non-transient actions or brittle or fatigue or sudden failure</td>
<td>Single</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>Members subject to transient actions with gradual ductile failure</td>
<td>Single</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple</td>
<td>700</td>
</tr>
</tbody>
</table>
Table Notes:
1. The values in Table B1P1 are reliability-based, accounting for uncertainties in design parameters, but excluding accidents and gross human errors.
2. The values are maximum acceptable notional probabilities of failure, not target values.
3. Larger numbers in Table B1P1 represent more conservative (safer) designs than smaller numbers.
4. If the structural failure of buildings, structures, members or connections is sudden, without providing timely clear warning of impending catastrophic collapse and without sufficient time to evacuate, failure should be treated as brittle.
5. Serviceability considerations may dictate stringency greater than the requirements of Table B1P1.

Explanatory Information:
Because materials, structural behaviour and design actions are variable, practical designs must aim for target values of reliability, which must be more conservative (safer) than these values.

For example, an Importance Level 4 building with a maximum acceptable probability of failure of 1 in 400,000 is more conservative (safer) than an Importance Level 2 building with a maximum acceptable probability of failure of 1 in 7,000.

B1P2 Structural resistance

[2019: BP1.2]

The structural resistance of materials and forms of construction must be determined using five percentile characteristic material properties with appropriate allowance for—

(a) known construction activities; and
(b) type of material; and
(c) characteristics of the site; and
(d) the degree of accuracy inherent in the methods used to assess the structural behaviour; and
(e) action effects arising from the differential settlement of foundations, and from restrained dimensional changes due to temperature, moisture, shrinkage, creep and similar effects.

B1P3 Glass installations at risk of human impact

[2019: BP1.3]

Glass installations that are at risk of being subjected to human impact must have glazing that—

(a) if broken on impact, will break in a way that has a lower than 0.13% chance of penetrating adult skin; and
(b) resists a reasonably foreseeable 541 J human impact without breaking; and
(c) is protected or marked in a way that will reduce the likelihood of human impact visually distinct with—
(i) markings within the visual range of the occupants which achieve a 30% luminance contrast to both the floor and visual background, and of sizes no less than—
(A) in parts of a building required to be accessible, 75,000 mm² of glass marked per metre of width, for the full width of the installation; or
(B) in parts of a building not required to be accessible, 20,000 mm² of glass marked per metre of width; or
(ii) other measures which achieve an equivalent level of visual impact.
B1P4 Buildings in flood areas

[2019: BP1.4]

(1) A building in a flood area, must be designed and constructed, to the degree necessary, to resist flotation, collapse or significant permanent movement resulting from the action of hydrostatic, hydrodynamic, erosion and scour, wind and other actions during the defined flood event.

(2) The actions and requirements to be considered to satisfy (1) include but are not limited to—

(a) flood actions; and

(b) elevation requirements; and

(c) foundation and footing requirements; and

(d) requirements for enclosures below the flood hazard level; and

(e) requirements for structural connections; and

(f) material requirements; and

(g) requirements for utilities; and

(h) requirements for occupant egress.

Applications:

B1P4 only applies to—

(a) a Class 2 or 3 building or a Class 4 part of a building; and

(b) a Class 9a health-care building; and

(c) a Class 9c building.

Verification Methods

B1V1 Structural reliability

[2019: BV1]

(1) This Verification Method is applicable to components with a resistance coefficient of variation of at least 10% and not more than 40%.

(2) Where a component has a calculated resistance coefficient of variation of less than 10%, then a minimum value of 10% must be used.

(3) Compliance with B1P1 and B1P2 is verified for the design of a structural component for strength where—

(a) the capacity reduction factor ϕ satisfies $\phi \leq \text{Average}(\phi_G, \phi_Q, \phi_W, ...)$, where ϕ_G, ϕ_Q, ϕ_W, ... are capacity reduction factors for all relevant actions and must contain at least permanent (G), imposed (Q) and wind (W) actions; and

(b) the capacity reduction factors ϕ_G, ϕ_Q, ϕ_W, ... are calculated for target reliability indices for permanent action β^{TG}, for imposed action β^{TQ}, for wind action β^{TW}, ... in accordance with the equation:

$$\beta = \ln \left[\left(\frac{R}{S} \right) \sqrt{\frac{\text{CS}}{\text{CR}}} \right] / \sqrt{\ln(\text{CR}.\text{CS})}$$

where—

$$\left(\frac{R}{S} \right) = \left(\frac{\gamma}{\bar{\gamma}} \right) \left(\frac{R}{R_N} \right)$$

(i) and
where—

(ii) \[CR = 1 + V_R^2 \]

\[CS = 1 + V_S^2, \]

where—

(A) \[\frac{R}{RN} \] = ratio of mean resistance to nominal; and

(B) \[\frac{S}{SN} \] = ratio of mean action to nominal; and

(C) \[CS \] = correction factor for action; and

(D) \[CR \] = correction factor for resistance; and

(E) \[VS \] = coefficient of variation of the appropriate action as given in Table B1V1a; and

(F) \[VR \] = coefficient of variation of the resistance; and

(G) \[\gamma \] = appropriate load factor for the action as given in AS/NZS 1170.0; and

(H) \[\phi \] = capacity factor for the appropriate action; and

(c) the annual target reliability indices \(\beta_{TG}, \beta_{TQ}, \beta_{TW}, ... \) are established as follows:

(i) For situations where it is appropriate to compare an equivalent Deemed-to-Satisfy product, a resistance model must be established for the equivalent Deemed-to-Satisfy product and \(\beta_{TG}, \beta_{TQ}, \beta_{TW}, ... \) must be calculated for the equivalent Deemed-to-Satisfy product in accordance with the equation given at (b).

(ii) The target reliability indices \(\beta_{TG}, \beta_{TQ}, \beta_{TW}, ... \) thus established, must be not less than those given in Table B1V1b minus 0.5.

(iii) For situations where it is not appropriate to compare with an equivalent Deemed-to-Satisfy product, the target reliability index \(\beta \) must be as given in Table B1V1b.

(4) The resistance model for the component must be established by taking into account variability due to material properties, fabrication and construction processes and structural modelling.

Table B1V1a: Annual action models

<table>
<thead>
<tr>
<th>Design Action</th>
<th>Ratio of mean action to nominal</th>
<th>Coefficient of variation of the action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Action (\gamma_o = 1.35)</td>
<td>((G/\text{GN}) = 1.00)</td>
<td>(V_G = 0.10)</td>
</tr>
<tr>
<td>Imposed Action (\gamma_o = 1.50)</td>
<td>((G/\text{QN}) = 0.50)</td>
<td>(V_Q = 0.43)</td>
</tr>
<tr>
<td>Wind Action (\gamma_w = 1.00) (Non-cyclonic)</td>
<td>((\bar{W}/\text{WN}) = 0.33)</td>
<td>(V_W = 0.49)</td>
</tr>
<tr>
<td>Wind Action (\gamma_w = 1.00) (Cyclonic)</td>
<td>((\bar{W}/\text{WN}) = 0.16)</td>
<td>(V_W = 0.71)</td>
</tr>
<tr>
<td>Snow Action (\gamma_s = 1.00)</td>
<td>((\bar{S}/\text{SN}) = 0.29)</td>
<td>(V_S = 0.57)</td>
</tr>
<tr>
<td>Earthquake Action (\gamma_e = 1.00)</td>
<td>((\bar{E}/\text{EN}) = 0.05)</td>
<td>(V_E = 1.98)</td>
</tr>
</tbody>
</table>

Table B1V1b: Annual target reliability indices

<table>
<thead>
<tr>
<th>Type of action</th>
<th>Target reliability index (\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent action</td>
<td>4.3</td>
</tr>
<tr>
<td>Imposed action</td>
<td>4.0</td>
</tr>
<tr>
<td>Wind, snow and earthquake action</td>
<td>3.7</td>
</tr>
</tbody>
</table>
Table Notes:
1. Table B1V1b is applicable for components that exhibit brittle failure similar to concrete as specified in AS 3600.
2. For components with creep characteristics similar to timber as specified in AS 1720.1, the target reliability index for permanent action must be increased to 5.0.
3. The above target reliability indices are based on materials or systems that exhibit creep or brittle failure similar to timber or concrete.
4. Table B1V1b may also be applicable to materials or systems that exhibit creep or brittle failure differently to steel, timber or concrete provided the creep or brittle nature of the material or system are properly accounted for in the design model.
5. The above target reliability indices are also applicable for materials or systems that exhibit ductile failure characteristics.

B1V2 Structural robustness

[2019: BV2]

(1) Compliance with B1P1(1)(c) is verified for structural robustness if assessment of the structure determines that the building remains stable and the resulting collapse does not extend further than the immediately adjacent storeys upon the notional removal in isolation of—
(a) any supporting column; or
(b) any beam supporting one or more columns; or
(c) any segment of a load bearing wall of length equal to the height of the wall.

(2) Where a supporting structural component is relied upon to carry more than 25% of the total structure, then a systematic risk assessment of the building is undertaken and critical high risk components are identified and designed to cope with the identified hazard or protective measures are chosen to minimise the risk.

Deemed-to-Satisfy Provisions

B1D1 Deemed-to-Satisfy Provisions

[2019: B1.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements B1P1 to B1P4 are satisfied by complying with B1D2 to B1D6.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

B1D2 Resistance to actions

[2019: B1.1]

The resistance of a building or structure must be greater than the most critical action effect resulting from different combinations of actions, where—
(a) the most critical action effect on a building or structure is determined in accordance with B1D3 and the general design procedures contained in AS/NZS 1170.0; and
(b) the resistance of a building or structure is determined in accordance with B1D4.

B1D3 Determination of individual actions

[2019: B1.2]

The magnitude of individual actions must be determined in accordance with the following:
(a) Permanent actions:
(i) the design or known dimensions of the building or structure; and
(ii) the unit weight of the construction; and
(iii) AS/NZS 1170.1.

(b) Imposed actions:
(i) the known loads that will be imposed during the occupation or use of the building or structure; and
(ii) construction activity actions; and
(iii) AS/NZS 1170.1.

(c) Wind, snow and ice and earthquake actions:
(i) the applicable annual probability of design event for safety, determined by—
 (A) assigning the building or structure an Importance Level in accordance with Table B1D3a; and
 (B) determining the corresponding annual probability of exceedance in accordance with Table B1D3b; and
(ii) AS/NZS 1170.2; and
(iii) AS/NZS 1170.3 and AS 1170.4 as appropriate; and
(iv) AS 1170.4; and
(v) in cyclonic areas, metal roof cladding, its connections and immediate supporting members must comply with Specification 4; and
(vi) for the purposes of (iv), cyclonic areas are those determined as being located in wind regions C and D in accordance with AS/NZS 1170.2.

(d) Actions not covered in (a), (b) and (c) above:
(i) the nature of the action; and
(ii) the nature of the building or structure; and
(iii) the Importance Level of the building or structure determined in accordance with Table B1D3a; and
(iv) AS/NZS 1170.1.

(e) For the purposes of (d) the actions include but are not limited to—
(i) liquid pressure action; and
(ii) ground water action; and
(iii) rainwater action (including ponding action); and
(iv) earth pressure action; and
(v) differential movement; and
(vi) time dependent effects (including creep and shrinkage); and
(vii) thermal effects; and
(viii) ground movement caused by—
 (A) swelling, shrinkage or freezing of the subsoil; and
 (B) landslip or subsidence; and
 (C) siteworks associated with the building or structure; and
(ix) construction activity actions; and
(x) expected 10 year deflection for structural substrates in Part F1.

Table B1D3a: Importance Levels of buildings and structures

<table>
<thead>
<tr>
<th>Importance level</th>
<th>Building Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Buildings or structures presenting a low degree of hazard to life and other property in the case of failure.</td>
</tr>
<tr>
<td>2</td>
<td>Buildings or structures not included in Importance Levels 1, 3 and 4.</td>
</tr>
</tbody>
</table>
Determination of structural resistance of materials and forms of construction

[2019: B1.4]

The structural resistance of materials and forms of construction must be determined in accordance with the following, as appropriate:

(a) Masonry (including masonry-veneer, unreinforced masonry and reinforced masonry): AS 3700, except—
 (i) ‘(for piers—isolated or engaged)’ is removed from Clause 8.5.1(d); and
 (ii) where Clause 8.5.1 requires design as for unreinforced masonry in accordance with Section 7, the member must also be designed as unreinforced masonry in accordance with Tables 10.3 and 4.1(a)(i)(C) of AS 3700.

(b) Concrete:
 (i) Concrete construction (including reinforced and prestressed concrete): AS 3600.
 (iii) Post-installed and cast-in fastenings: AS 5216.

(c) Steel construction:
 (i) Steel structures: AS 4100.
 (ii) Cold-formed steel structures: AS/NZS 4600.

(d) Composite steel and concrete: AS/NZS 2327.

(e) Aluminium construction: AS/NZS 1664.1 or AS/NZS 1664.2.

(f) Timber construction:
 (i) Design of timber structures: AS 1720.1.
 (ii) Timber structures: AS 1684.2, AS 1684.3 or AS 1684.4.
 (iii) Nailplated timber roof trusses: AS 1720.5.

(g) Piling: AS 2159.

(h) Glazed assemblies:
 (i) The following glazed assemblies in an external wall must comply with AS 2047:
(A) Windows excluding those listed in (ii).

(B) Sliding and swinging glazed doors with a frame, including French and bi-fold doors with a frame.

(C) Adjustable louvres.

(D) Shopfronts.

(E) Window walls with one piece framing.

(ii) All glazed assemblies not covered by (i) and the following glazed assemblies must comply with AS 1288:

(A) All glazed assemblies not in an external wall.

(B) Revolving doors.

(C) Fixed louvres.

(D) Skylights, roof lights and windows in other than the vertical plane.

(E) Sliding and swinging doors without a frame.

(F) Windows constructed on site and architectural one-off windows, which are not design tested in accordance with AS 2047.

(G) Second-hand windows, re-used windows and recycled windows.

(H) Heritage windows.

(I) Glazing used in balustrades and sloping overhead glazing.

(i) Termite Risk Management: Where a primary building element is subject to attack by subterranean termites: AS 3660.1, and—

(i) for the purposes of this provision, a primary building element consisting entirely of, or a combination of, any of the following materials is considered not subject to termite attack:

(A) Steel, aluminium or other metals.

(B) Concrete.

(C) Masonry.

(D) Fibre-reinforced cement.

(E) Timber — naturally termite resistant in accordance with Appendix C of AS 3660.1.

(F) Timber — preservative treated in accordance with Appendix D of AS 3660.1; and

(ii) a durable notice must be permanently fixed to the building in a prominent location, such as a meter box or the like, indicating—

(A) the termite management system used; and

(B) the date of installation of the system; and

(C) where a chemical is used, its life expectancy as listed on the appropriate authority’s pesticides register label; and

(D) the installer’s or manufacturer’s recommendations for the scope and frequency of future inspections for termite activity.

(j) Roof construction (except in cyclonic areas):

(i) Roof tiling: AS 2050.

(ii) Cellulose cement corrugated sheets: AS/NZS 2908.1 with safety mesh installed in accordance with AS/NZS 1562.3 clause 2.4.3.2 except for sub-clause (c)(vii) or plastic sheeting.

(iii) Metal roofing: AS 1562.1.

(l) Garage doors and other large access doors in openings not more than 3 m in height in external walls of buildings determined as being located in wind region C or D in accordance with AS/NZS 1170.2: AS/NZS 4505.

(m) Lift shafts which are not required to have an FRL, must—

(i) except as required by (ii), be completely enclosed with non-perforated material between the bottom of the pit and the ceiling of the lift shaft, other than—

(A) at landing doors, emergency doors and pit access doors; and
(B) low-rise, low-speed constant pressure lifts; and
(C) small-sized, low-speed automatic lifts; and

(ii) in atrium and observation areas, be protected with non-perforated material not less than 2.5 m in height—
(A) above any places on which a person can stand, which are within 800 mm horizontal reach of any vertical moving lift component including ropes and counterweights; and
(B) at the lowest level of the atrium area that the lift serves, on all sides except the door opening, for not less than 2.5 m in height, by enclosure with non-perforated material; and

(iii) be of non-brittle material; and
(iv) where glazing is used—

(A) comply with Table B1D4; or
(B) not fail the deflection criteria required by S6C6(c).

Table B1D4: Material and minimum thickness of glazing and polycarbonate sheet

<table>
<thead>
<tr>
<th>Application</th>
<th>Lift shaft vision panels more than 65 000 mm², door panels, and lift shafts</th>
<th>Lift shaft vision panels less than or equal to 65 000 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminated glass</td>
<td>10mm (0.76 mm interlayer)</td>
<td>6mm (0.76 mm interlayer)</td>
</tr>
<tr>
<td>Toughened/ laminated glass</td>
<td>10mm (0.76 mm interlayer)</td>
<td>6mm (0.76 mm interlayer)</td>
</tr>
<tr>
<td>Annealed glass with security polyester film coating</td>
<td>10mm</td>
<td>6mm</td>
</tr>
<tr>
<td>Safety wire glass</td>
<td>Not applicable</td>
<td>Subject to fire test</td>
</tr>
<tr>
<td>Polycarbonate sheet</td>
<td>13 mm</td>
<td>6 mm</td>
</tr>
</tbody>
</table>

B1D5 Structural software

[2019: B1.5]

(1) Structural software used in computer aided design of a building or structure, that uses design criteria based on the Deemed-to-Satisfy Provisions of the BCA, including its referenced documents, for the design of steel or timber trussed roof and floor systems and framed building systems, must comply with the ABCB Protocol for Structural Software.

(2) Structural software referred to in (1) can only be used for buildings within the following geometrical limits:
 (a) The distance from ground level to the underside of eaves must not exceed 6 m.
 (b) The distance from ground level to the highest point of the roof, neglecting chimneys, must not exceed 8.5 m.
 (c) The building width including roofed verandahs, excluding eaves, must not exceed 16 m.
 (d) The building length must not exceed five times the building width.
 (e) The roof pitch must not exceed 35 degrees.

(3) The requirements of (1) do not apply to design software for individual frame members such as electronic tables similar to those provided in—
 (a) AS 1684; or
 (b) NASH Standard Residential and Low-Rise Steel Framing Part 2.

QLD B1D6
SA B1D6
VIC B1D6

B1D6 Construction of buildings in flood hazard areas

[2019: B1.6]

(1) A building in a flood hazard area must comply with the ABCB Standard for Construction of Buildings in Flood Hazard
Areas.

(2) The requirements of (1) only apply to a Class 2 or 3 building, Class 9a health-care building, Class 9c building or a Class 4 part of a building.
S4C1 Scope

(1) This specification contains requirements for the design of buildings in cyclonic areas in addition to the requirements of AS/NZS 1170.2.

(2) For the purposes of Specification 4, cyclonic areas are those determined as being located in wind regions C and D in accordance with AS/NZS 1170.2.

S4C2 Roof cladding

Test for strength: Metal roof cladding, its connections and immediate supporting members must be capable of remaining in position notwithstanding any permanent distortion, fracture or damage that might occur in the sheet or fastenings under the pressure sequences A to G defined in Table S4C2.

Table S4C2:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Number of cycles</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4500</td>
<td>0 to 0.45 Pt</td>
</tr>
<tr>
<td>B</td>
<td>600</td>
<td>0 to 0.6 Pt</td>
</tr>
<tr>
<td>C</td>
<td>80</td>
<td>0 to 0.8 Pt</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0 to 1.0 Pt</td>
</tr>
<tr>
<td>E</td>
<td>80</td>
<td>0 to 0.8 Pt</td>
</tr>
<tr>
<td>F</td>
<td>600</td>
<td>0 to 0.6 Pt</td>
</tr>
<tr>
<td>G</td>
<td>4500</td>
<td>0 to 0.45 Pt</td>
</tr>
</tbody>
</table>

Table Notes:
1. Pt is the ultimate limit state wind pressure on internal and external surfaces as determined in accordance with AS/NZS 1170.2, modified by an appropriate factor for variability, as determined in accordance with Table B1 of AS/NZS 1170.0.
2. The rate of load cycling must be less than 3 Hz.
3. The single load cycle (sequence D) must be held for a minimum of 10 seconds.
Section C Fire resistance

Part C1 Fire resistance Performance Requirements

Objectives
C1O1 Objective

Functional Statements
C1F1 Structural stability during a fire
C1F2 Prevention of fire spread

Performance Requirements
C1P1 Structural stability during a fire
C1P2 Spread of fire
C1P3 Spread of fire and smoke in health and residential care buildings
C1P4 Safe conditions for evacuation
C1P5 Behaviour of concrete external walls in a fire
C1P6 Fire protection of service equipment
C1P7 Fire protection of emergency equipment
C1P8 Fire protection of openings and penetrations
C1P9 Fire brigade access

Verification Methods
C1V1 Fire spread between buildings on adjoining allotments
C1V2 Fire spread between buildings on the same allotment
C1V3 Fire spread via external walls
C1V4 Fire Safety Verification Method

Part C2 Fire resistance and stability

Deemed-to-Satisfy Provisions
C2D1 Deemed-to-Satisfy Provisions
C2D2 Type of construction required
C2D3 Calculation of rise in storeys
C2D4 Buildings of multiple classification
C2D5 Mixed types of construction
C2D6 Two storey Class 2, 3 or 9c buildings
C2D7 Class 4 parts of buildings
C2D8 Open spectator stands and indoor sports stadiums
C2D9 Lightweight construction
C2D10 Non-combustible building elements
C2D11 Fire hazard properties
C2D12 Performance of external walls in fire
C2D13 Fire-protected timber: Concession
C2D14 Ancillary elements
Part C3

Compartmentation and separation

Deemed-to-Satisfy Provisions

C3D1 Deemed-to-Satisfy Provisions
C3D2 Application of Part
C3D3 General floor area and volume limitations
C3D4 Large isolated buildings
C3D5 Requirements for open spaces and vehicular access
C3D6 Class 9a and 9c buildings
C3D7 Vertical separation of openings in external walls
C3D8 Separation by fire walls
C3D9 Separation of classifications in the same storey
C3D10 Separation of classifications in different storeys
C3D11 Separation of lift shafts
C3D12 Stairways and lifts in one shaft
C3D13 Separation of equipment
C3D14 Electricity supply system
C3D15 Public corridors in Class 2 and 3 buildings

Part C4

Protection of openings

Deemed-to-Satisfy Provisions

C4D1 Deemed-to-Satisfy Provisions
C4D2 Application of Part
C4D3 Protection of openings in external walls
C4D4 Separation of external walls and associated openings in different fire compartments
C4D5 Acceptable methods of protection
C4D6 Doorways in fire walls
C4D7 Sliding fire doors
C4D8 Protection of doorways in horizontal exits
C4D9 Openings in fire-isolated exits
C4D10 Service penetrations in fire-isolated exits
C4D11 Openings in fire-isolated lift shafts
C4D12 Bounding construction: Class 2 and 3 buildings and Class 4 parts
C4D13 Openings in floors and ceilings for services
C4D14 Openings in shafts
C4D15 Openings for service installations
C4D16 Construction joints
C4D17 Columns protected with lightweight construction to achieve an FRL

Specification 5

Fire-resisting construction
<table>
<thead>
<tr>
<th>Specification 6</th>
<th>Structural tests for lightweight construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6C1</td>
<td>Scope</td>
</tr>
<tr>
<td>S6C2</td>
<td>Application</td>
</tr>
<tr>
<td>S6C3</td>
<td>Walls of certain Class 9b buildings</td>
</tr>
<tr>
<td>S6C4</td>
<td>Walls of shafts and fire-isolated exits generally</td>
</tr>
<tr>
<td>S6C5</td>
<td>Additional requirements for lift shafts</td>
</tr>
<tr>
<td>S6C6</td>
<td>Walls generally</td>
</tr>
<tr>
<td>S6C7</td>
<td>General requirements for testing</td>
</tr>
<tr>
<td>S6C8</td>
<td>Testing in-situ</td>
</tr>
<tr>
<td>S6C9</td>
<td>Testing of specimens</td>
</tr>
<tr>
<td>S6C10</td>
<td>Test methods</td>
</tr>
<tr>
<td>S6C11</td>
<td>Criteria for compliance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification 7</th>
<th>Fire hazard properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>S7C1</td>
<td>Scope</td>
</tr>
<tr>
<td>Specification 8</td>
<td>Performance of external walls in fire</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>S8C1</td>
<td>Scope</td>
</tr>
<tr>
<td>S8C2</td>
<td>Application</td>
</tr>
<tr>
<td>S8C3</td>
<td>General requirements for external wall panels</td>
</tr>
<tr>
<td>S8C4</td>
<td>Additional requirements for vertically spanning external wall panels adjacent to columns</td>
</tr>
</tbody>
</table>

Specification 9 Cavity barriers for fire-protected timber

| S9C1 | Scope |
| S9C2 | Requirements |

Specification 10 Fire-protected timber

S10C1	Scope
S10C2	General requirements
S10C3	Massive timber
S10C4	Form of test
S10C5	Smaller specimen permitted
S10C6	Acceptance criteria

Specification 11 Smoke-proof walls in health-care and residential care buildings

S11C1	Scope
S11C2	Class 9a health-care buildings
S11C3	Class 9c buildings
S11C4	Doorways in smoke-proof walls

Specification 12 Fire doors, smoke doors, fire windows and shutters

S12C1	Scope
S12C2	Fire doors
S12C3	General requirements for smoke doors
S12C4	Construction Deemed-to-Satisfy
S12C5	Fire shutters
S12C6	Fire windows

Specification 13 Penetration of walls, floors and ceilings by services

<p>| S13C1 | Scope |
| S13C2 | Application |
| S13C3 | Metal pipe systems |
| S13C4 | Pipes penetrating sanitary compartments |
| S13C5 | Wires and cables |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S13C6</td>
<td>Electrical switches and outlets</td>
</tr>
<tr>
<td>S13C7</td>
<td>Fire-stopping</td>
</tr>
</tbody>
</table>
Part C1 Fire resistance Performance Requirements

Introduction to this Part

This Part focusses on minimising risk of illness, injury or loss of life due to fire in a building including during evacuation; reducing fire spread within and between buildings; and, minimising risk to the public and occupants of nearby buildings when a fire occurs.

Objectives

C1O1 Objective

The Objective of this Part C1, C2, C3 and C4 is to—

(a) safeguard people from illness or injury due to a fire in a building; and
(b) safeguard occupants from illness or injury while evacuating a building during a fire; and
(c) facilitate the activities of emergency services personnel; and
(d) avoid the spread of fire between buildings; and
(e) protect other property from physical damage caused by structural failure of a building as a result of fire.

Functional Statements

C1F1 Structural stability during a fire

A building is to be constructed to maintain structural stability during fire to—

(a) allow occupants time to evacuate safely; and
(b) allow for fire brigade intervention; and
(c) avoid damage to other property.

C1F2 Prevention of fire spread

A building is to be provided with safeguards to prevent fire spread—

(a) so that occupants have time to evacuate safely without being overcome by the effects of fire; and
(b) to allow for fire brigade intervention; and
(c) to sole-occupancy units providing sleeping accommodation; and
(d) to adjoining fire compartments; and
(e) between buildings.

Applications:

C1F2(c) only applies to a Class 2 or 3 building or Class 4 part of a building.
Performance Requirements

C1P1 Structural stability during a fire

A building must have elements which will, to the degree necessary, maintain structural stability during a fire appropriate to—

(a) the function or use of the building; and
(b) the fire load; and
(c) the potential fire intensity; and
(d) the fire hazard; and
(e) the height of the building; and
(f) its proximity to other property; and
(g) any active fire safety systems installed in the building; and
(h) the size of any fire compartment; and
(i) fire brigade intervention; and
(j) other elements they support; and
(k) the evacuation time.

C1P2 Spread of fire

1. A building must have elements which will, to the degree necessary, avoid the spread of fire—
 (a) to exits; and
 (b) to sole-occupancy units and public corridors; and
 (c) between buildings; and
 (d) in a building.

2. Avoidance of the spread of fire referred to in (1) must be appropriate to—
 (a) the function or use of the building; and
 (b) the fire load; and
 (c) the potential fire intensity; and
 (d) the fire hazard; and
 (e) the number of storeys in the building; and
 (f) its proximity to other property; and
 (g) any active fire safety systems installed in the building; and
 (h) the size of any fire compartment; and
 (i) fire brigade intervention; and
 (j) other elements they support; and
 (k) the evacuation time.

Applications:

C1P2(1)(b) only applies to a Class 2 or 3 building or Class 4 part of a building.
C1P3 Spread of fire and smoke in health and residential care buildings

A building must be protected from the spread of fire and smoke to allow sufficient time for the orderly evacuation of the building in an emergency.

Applications:
C1P3 only applies to—
(a) a patient care area of a Class 9a health-care building; and
(b) a Class 9c building.

C1P4 Safe conditions for evacuation

To maintain tenable conditions during occupant evacuation, a material and an assembly must, to the degree necessary, resist the spread of fire and limit the generation of smoke and heat, and any toxic gases likely to be produced, appropriate to—

(a) the evacuation time; and
(b) the number, mobility and other characteristics of occupants; and
(c) the function or use of the building; and
(d) any active fire safety systems installed in the building.

Applications:
C1P4 applies to linings, materials and assemblies in a Class 2 to 9 building.

C1P5 Behaviour of concrete external walls in a fire

A concrete external wall that could collapse as a complete panel (e.g. tilt-up and pre-cast concrete) must be designed so that in the event of fire within the building the likelihood of outward collapse is avoided.

Limitations:
C1P5 does not apply to a building having more than two storeys above ground level.

C1P6 Fire protection of service equipment

A building must have elements, which will, to the degree necessary, avoid the spread of fire from service equipment having—

(a) a high fire hazard; or
(b) a potential for explosion resulting from a high fire hazard.
C1P7 Fire protection of emergency equipment

A building must have elements, which will, to the degree necessary, avoid the spread of fire so that emergency equipment provided in a building will continue to operate for a period of time necessary to ensure that the intended function of the equipment is maintained during a fire.

C1P8 Fire protection of openings and penetrations

Any building element provided to resist the spread of fire must be protected, to the degree necessary, so that an adequate level of performance is maintained—

(a) where openings, construction joints and the like occur; and

(b) where penetrations occur for building services.

C1P9 Fire brigade access

Access must be provided to and around a building, to the degree necessary, for fire brigade vehicles and personnel to facilitate fire brigade intervention appropriate to—

(a) the function or use of the building; and

(b) the fire load; and

(c) the potential fire intensity; and

(d) the fire hazard; and

(e) any active fire safety systems installed in the building; and

(f) the size of any fire compartment.

Verification Methods

C1V1 Fire spread between buildings on adjoining allotments

Compliance with C1P2(1)(c) to avoid the spread of fire between buildings on adjoining allotments is verified when it is calculated that—

(a) a building will not cause heat flux in excess of those set out in Column 2 of Table C1V1 at the location on an adjoining property set out in Column 1 of Table C1V1; and

(b) when located at the distances from the allotment boundary set out in Column 1 of Table C1V1, a building is capable of withstanding the heat flux set out in Column 2 of Table C1V1 without ignition.

<table>
<thead>
<tr>
<th>Column 1 (Location)</th>
<th>Column 2 (Heat flux (kW/m²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>On boundary</td>
<td>80</td>
</tr>
<tr>
<td>1 m from boundary</td>
<td>40</td>
</tr>
<tr>
<td>3 m from boundary</td>
<td>20</td>
</tr>
<tr>
<td>6 m from boundary</td>
<td>10</td>
</tr>
</tbody>
</table>
C1V2 Fire spread between buildings on the same allotment

Compliance with C1P2(1)(c) to avoid the spread of fire between buildings on the same allotment is verified when, for the distances between buildings set out in Column 1 of Table C1V2, it is calculated that a building—

(a) is capable of withstanding the heat flux set out in Column 2 of Table C1V2 without ignition; and

(b) will not cause heat flux in excess of those set out in Column 2 of Table C1V2.

Table C1V2: Fire spread between buildings on the same allotment

<table>
<thead>
<tr>
<th>Column 1 (Distance between buildings on the same allotment (m))</th>
<th>Column 2 (Heat flux (kW/m²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>

C1V3 Fire spread via external walls

Compliance with C1P2 to avoid the spread of fire via the external wall of a building is verified when—

(a) compliance with C1P2(1)(c) to avoid the spread of fire between buildings, where applicable, is verified in accordance with C1V1 or C1V2, as appropriate; and

(b) the external wall system—

(i) has been tested for external wall (EW) performance in accordance with AS 5113; and

(ii) has achieved the classification EW; and

(iii) if containing a cavity, incorporates cavity barriers and these cavity barriers have been included in the test performed under (i) at the perimeter of each floor; and

(c) in a building of Type A construction, the building is protected throughout by a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17 and has—

(i) sprinkler protection to balconies, patios and terraces, and where overhead sprinkler coverage is not achieved alongside the external wall, sidewall sprinkler heads are provided at the external wall for the extent of the balcony, patio or terrace where overhead sprinkler coverage is not achieved; and

(ii) for a building with an effective height greater than 25 m—

(A) monitored stop valves provided at each floor level arranged to allow the isolation of the floor level containing the stop valve while maintaining protection to the remainder of the building; and

(B) the sprinkler system being capable of providing sufficient flow to serve the design area required by AS 2118.1 for the relevant hazard class on each floor level plus the design area required by AS 2118.1 for the floor level above, except where the former level is either the floor level below the uppermost roof, or any floor level that is wholly below ground; and

(d) in a building of Type B construction, the building is—

(i) a Class 5, 6, 7 or 8 building or Class 4 part of a building; or

(ii) a Class 2, 3 or 9 building that—

(A) is protected throughout by a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17; or

(B) has any openings in external walls separated by a slab or other horizontal construction complying with C3D7(1)(d) as if the building were of Type A construction.
Fire Safety Verification Method

(1) Compliance with C1P1, C1P2, C1P3, C1P4, C1P5, C1P6, C1P7, C1P8 and C1P9 is verified when a building is designed in accordance with—
 (a) the requirements of (2), (3), (4), (5) and (6); and
 (b) the Fire Safety Verification Method Standard.

(2) Performance-based design brief (PBDB):
 (a) When using this Verification Method, the fire safety engineer must undertake a performance-based design brief (PBDB) that must—
 (i) involve all stakeholders relevant to the building design; and
 (ii) outline the fire strategy to be adopted.
 (b) While full agreement on all aspects of the PBDB is the preferred outcome, it is acknowledged that in some instances this may not be possible to obtain.
 (c) In the event that full agreement cannot be achieved through the PBDB, dissenting views must be appropriately recorded and carried throughout the process and considered as part of the due processes of the appropriate authority when determining compliance and providing approval.
 (d) Consideration of whether a peer review (by an independent fire safety engineer) of some or all of the proposed Performance Solutions and the supporting analysis is required or not, must be undertaken at this PBSB stage.

(3) Fire strategy:
 (a) The PBDB must cover the fire safety strategy for the building, outlining the philosophy and approach that will be adopted to achieve the required level of performance.
 (b) The fire safety strategy must pay particular attention to the evacuation strategy to be used and the management regimes necessary.

(4) Stakeholder involvement:
 (a) The PBDB must be developed collaboratively by the relevant stakeholders in the particular project.
 (b) The following parties must be involved:
 (i) Client or client’s representative (such as project manager).
 (ii) Fire engineer.
 (iii) Architect or designer.
 (iv) Various specialist consultants.
 (v) Fire service (public or private).
 (vi) Appropriate authority (Authority Having Jurisdiction – subject to state/territory legislation).
 (vii) Tenants or tenants representative for the proposed building (if available)
 (viii) Building operations management (if available).
 (c) Conducting a simple stakeholder analysis can be used to determine who must be involved in the PBDB process.
 (d) This analysis must identify stakeholders with a high level of interest in the design process, and/or likely to be affected by the consequences of a fire should it occur in the building.

(5) Required level of safety:
 (a) Given the absence of specific safety targets in the NCC and the qualitative nature of the NCC fire safety Performance Requirements, for this Verification Method to ensure the level of safety expected, the proposed building design must be at least equivalent to the relevant Deemed-to-Satisfy Provisions.
 (b) As the NCC Deemed-to-Satisfy Provisions evolved originally from State and Territory regulations and are regularly updated to reflect technical advances and experience they are commonly accepted as providing an acceptable benchmark.
 (c) It is accepted that the NCC Deemed-to-Satisfy Provisions reflect societal expectations in terms of fire safety, which address individual risk, societal risk and the robustness in the design by adopting a defence in depth
approach.

(d) In the majority of design scenarios the Verification Method requires a demonstration that the proposed level of safety is at least equivalent to the Deemed-to-Satisfy Provisions.

(e) In relation to the required level of safety the PBDB process must—

(i) identify the relevant Deemed-to-Satisfy Provisions to be used in the equivalency process to determine whether the relevant Performance Requirements have been met; and

(ii) consider the specific size, complexity and use of the building with regards to the Deemed-to-Satisfy Provisions to be used in the equivalency process; and

(iii) consider the specific occupant profile of the building, paying particular attention to occupants with a disability and the vulnerable, in regards to the Deemed-to-Satisfy Provisions to be used in the equivalency process.

(6) Final report: Once the analysis of all relevant design scenarios for all the required Performance Solutions has been completed, the fire safety engineer must prepare a final report that includes the following:

(a) The agreed PBDB.

(b) All modelling and analysis.

(c) Analysis required to demonstrate that the proposed building provides a level of safety at least equivalent to the relevant Deemed-to-Satisfy Provisions.

(d) Any other information required to clearly demonstrate that the building and its fire safety system satisfies the relevant Performance Requirements as set out in the Fire Safety Verification Method Standard.

Explanatory Information:

When developing a Performance Solution, a PBDB is an important step in the process. It allows all relevant stakeholders to be involved in the development of the building design and its fire safety system.

A PBDB is a documented process that defines the scope of work for the fire engineering analysis. Its purpose is to set down the basis, as agreed by the relevant stakeholders, on which the fire safety analysis of the proposed building and its Performance Solutions will be undertaken.

Relevant stakeholders will vary from design to design. However, some examples of relevant stakeholders are: a fire safety engineer, architect, developer, client, appropriate authority (some state legislation prevents appropriate authorities from being involved in the design process), fire authority and other stakeholders that fire safety design may affect such as insurers. Further information on the relevant stakeholders is provided in the Fire Safety Verification Method Standard.

Guidance on the development of a PBDB is presented in the International Fire Engineering Guidelines (2005) and referred to as a Fire Engineering Brief in that document.
Part C2 Fire resistance and stability

Introduction to this Part

This Part contains Deemed-to-Satisfy Provisions for Part C1. Its sets out Types of construction based on building height, size, use and other relevant factors; Fire Resistance Levels; and fire hazard properties which describe how certain materials react to fire.

Deemed-to-Satisfy Provisions

C2D1 Deemed-to-Satisfy Provisions

[2019: C1.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements C1P1 to C1P9 are satisfied by complying with—

(a) C2D2 to C2D14, C3D2 to C3D15 and C4D2 to C4D17; and
(b) in a building containing an atrium, Part G3; and
(c) for additional requirements for Class 9b buildings, Part I1; and
(d) for farm sheds, Part I3.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

C2D2 Type of construction required

[2019: C1.1]

SA C2D2(1)

(1) The minimum Type of fire-resisting construction of a building must be determined in accordance with Table C2D2, except as allowed for—

(a) certain Class 2, 3 or 9c buildings in C2D6; and
(b) a Class 4 part of a building located on the top storey in C2D4(2); and
(c) open spectator stands and indoor sports stadiums in C2D8.

(2) Each building element must comply with Specification 5 as applicable.

SA C2D2(3)

SA C2D2(4)

Table C2D2: Type of construction required

<table>
<thead>
<tr>
<th>Rise in storeys</th>
<th>Class of building 2, 3, 9</th>
<th>Class of building 5, 6, 7, 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 or more</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>
C2D3 Calculation of rise in storeys

[2019: C1.2]

(1) The rise in storeys is the sum of the greatest number of storeys at any part of the external walls of the building and any storeys within the roof space—
 (a) above the finished ground next to that part; or
 (b) if part of the external wall is on the boundary of the allotment, above the natural ground level at the relevant part of the boundary.

(2) A storey is not counted if—
 (a) it is situated at the top of the building and contains only heating, ventilating or lift equipment, water tanks, or similar service units or equipment; or
 (b) it is situated partly below the finished ground and the underside of the ceiling is not more than 1 m above the average finished level of the ground at the external wall, or if the external wall is more than 12 m long, the average for the 12 m part where the ground is lowest.

(3) In a Class 7 or 8 building, a storey that has an average internal height of more than 6 m is counted as—
 (a) one storey if it is the only storey above the ground; or
 (b) 2 storeys in any other case.

(4) For the purposes of calculating the rise in storeys of a building—
 (a) a mezzanine is regarded as a storey in that part of the building in which it is situated if its floor area is more than 200 m² or more than ⅓ of the floor area of the room, whichever is the lesser; and
 (b) two or more mezzanines are regarded as a storey in that part of the building in which they are situated if they are at or near the same level and have an aggregate floor area more than 200 m² or more than ⅓ of the floor area of the room, whichever is the lesser.

C2D4 Buildings of multiple classification

[2019: C1.3]

(1) In a building of multiple classifications, the Type of construction required for the building is the most fire-resisting Type resulting from the application of Table C2D2 on the basis that the classification applying to the top storey applies to all storeys.

(2) In a building containing a Class 4 part on the top storey, for the purpose of (1), the classification applying to the top storey must be—
 (a) when the Class 4 part occupies the whole of the top storey, the classification applicable to the next highest storey; or
 (b) when the Class 4 part occupies part of the top storey, the classification applicable to the adjacent part.

C2D5 Mixed types of construction

[2019: C1.4]

A building may be of mixed Types of construction where it is separated in accordance with C3D8 and the Type of construction is determined in accordance with C2D2 or C2D4.

C2D6 Two storey Class 2, 3 or 9c buildings

[2019: C1.5]

A building having a rise in storeys of 2 may be of Type C construction if—
 (a) it is a Class 2 or 3 building or a mixture of these classes and each sole-occupancy unit has—
 (i) access to at least 2 exits; or
(ii) its own direct access to a road or open space; or

(b) it is a Class 9c building protected throughout with a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17 and complies with the maximum compartment size specified in Table C2D2 for Type C construction.

C2D7 Class 4 parts of buildings

[2019: C1.6]

For the Type of construction required by C2D4, a Class 4 part of a building requires the same FRL for building elements and the same construction separating the Class 4 part from the remainder of the building as a Class 2 part in the same Type of construction.

C2D8 Open spectator stands and indoor sports stadiums

[2019: C1.7]

(1) An open spectator stand or indoor sports stadium may be of Type C construction and need not comply with the other provisions of this Part if it contains not more than 1 tier of seating, is of non-combustible construction, and has only changing rooms, sanitary facilities or the like below the tiered seating.

(2) In (1), one tier of seating means numerous rows of tiered seating incorporating cross-overs but within one viewing level.

C2D9 Lightweight construction

[2019: C1.8]

(1) Lightweight construction must comply with Specification 6 if it is used in a wall system—

(a) that is required to have an FRL; or

(b) for a lift shaft, stair shaft or service shaft or an external wall bounding a public corridor including a non fire-isolated passageway or non fire-isolated ramp, in a spectator stand, sports stadium, cinema or theatre, railway station, bus station or airport terminal.

(2) If lightweight construction is used for the fire-resisting covering of a steel column or the like, and if—

(a) the covering is not in continuous contact with the column, then the void must be filled solid, to a height of not less than 1.2 m above the floor to prevent indenting; and

(b) the column is liable to be damaged from the movement of vehicles, materials or equipment, then the covering must be protected by steel or other suitable material.

C2D10 Non-combustible building elements

[2019: C1.9]

(1) In a building required to be of Type A or B construction, the following building elements and their components must be non-combustible:

(a) External walls and common walls, including all components incorporated in them including the facade covering, framing and insulation.

(b) The flooring and floor framing of lift pits.

(c) Non-loadbearing internal walls where they are required to be fire-resisting.

(2) A shaft, being a lift, ventilating, pipe, garbage, or similar shaft that is not for the discharge of hot products of combustion, that is non-loadbearing, must be of non-combustible construction in—

(a) a building required to be of Type A construction; and

(b) a building required to be of Type B construction, subject to C3D11, in—

(i) a Class 2, 3 or 9 building; and
(ii) a Class 5, 6, 7 or 8 building if the shaft connects more than 2 storeys.

(3) A loadbearing internal wall and a loadbearing fire wall, including those that are part of a loadbearing shafts, must comply with Specification 5.

(4) The requirements of (1) and (2) do not apply to the following:

(a) Gaskets.
(b) Caulking.
(c) Sealants.
(d) Termite management systems.
(e) Glass, including laminated glass and associated adhesives, including tapes.
(f) Thermal breaks associated with glazing systems.
(g) Damp-proof courses.
(h) Compressible foams, polystyrene fillers and backer rods associated with articulation joints no wider than 50 mm.
(i) Isolated—
 (i) construction packers and shims, such as those used for levelling window frames at fixing points; or
 (ii) blocking for fixing fixtures such as handrails; or
 (iii) fixings such as screws, anchors, wall plugs and nails; or
 (iv) acoustic mounts.
(j) Waterproofing materials applied to the external face, used below ground level and up to 250 mm above ground level.
(k) Joint trims and joint reinforcing tape of a width no greater than 50 mm.
(l) Weather sealing materials, applied to gaps no wider than 50 mm, used within and between concrete tilt panels.
(m) Wall ties and other masonry components complying with AS 2699 Part 1 and Part 3 as appropriate, and associated with masonry wall construction.
(n) A material entirely composed of—
 (i) concrete; or
 (ii) steel; or
 (iii) masonry; or
 (iv) aluminium.
(o) Reinforcing bars and associated minor elements that are wholly or predominately encased in concrete or grout.
(p) Autoclaved aerated concrete.
(q) Concrete and terracotta roof tiles.
(r) A paint, lacquer or a similar finish or coating, other than nitro-cellulose lacquer where—
 (i) the average thickness of any layer of the finish system does not exceed 1.5 mm; and
 (ii) the total finish system thickness does not exceed 2 mm.

(5) The following materials may be used wherever a non-combustible material is required:

(a) Plasterboard.
(b) Perforated gypsum lath with a normal paper finish.
(c) Fibrous-plaster sheet.
(d) Fibre-reinforced cement sheeting.
(e) Pre-finished metal sheeting having a combustible surface finish not exceeding 1 mm thickness and where the Spread-of-Flame Index of the product is not greater than 0.
(f) Sarking-type materials and associated adhesives including tapes, that do not exceed 1 mm in thickness and have a Flammability Index not greater than 5.
(g) Bonded laminated materials where—
 (i) each lamina, including any core, is non-combustible; and
(ii) each adhesive layer does not exceed 1 mm in thickness and the total thickness of the adhesive layers does not exceed 2 mm; and

(iii) the Spread-of-Flame Index and the Smoke-Developed Index of the bonded laminated material as a whole do not exceed 0 and 3 respectively; and

(iv) when located externally, are fixed in accordance with C2D15.

C2D11 Fire hazard properties

[2019: C1.10]

NSW C2D11(1)

(1) The fire hazard properties of the following internal linings, materials and assemblies within a Class 2 to 9 building must comply with Specification 7:

(a) Floor linings and floor coverings.
(b) Wall linings and ceiling linings.
(c) Air-handling ductwork.
(d) Lift cars.
(e) In Class 9b buildings used as a theatre, public hall or the like—
 (i) fixed seating in the audience area or auditorium; and
 (ii) a proscenium curtain required by Specification 32.
(f) Escalators, moving walkways and non-required non-fire-isolated stairways or pedestrian ramps subject to Specification 14.
(g) Sarking-type materials.
(h) Attachments to floors, ceilings, internal walls, common walls, fire walls and to internal linings of external walls.
(i) Other materials including insulation materials other than sarking-type materials.

NSW C2D11(2)

(2) Paint or fire-retardant coatings must not be used to achieve compliance with the required fire hazard properties.

NSW C2D11(3)

VIC C2D11(3)

(3) The requirements of (1) do not apply to a material or assembly if it is—

(a) plaster, cement render, concrete, terrazzo, ceramic tile or the like; or
(b) a fire-protective covering; or
(c) a timber-framed window; or
(d) a solid timber handrail or skirting; or
(e) a timber-faced door; or
(f) an electrical switch, socket-outlet, cover plate or the like; or
(g) a material used for—
 (i) a roof insulating material applied in continuous contact with a substrate; or
 (ii) an adhesive; or
 (iii) a damp-proof course, flashing, caulking, sealing, ground moisture barrier, or the like; or
(h) a paint, varnish, lacquer or similar finish, other than nitro-cellulose lacquer; or
(i) a clear or translucent roof light of glass fibre-reinforced polyester if—
 (i) the roof in which it is installed forms part of a single storey building required to be Type C construction; and
 (ii) the material is used as part of the roof covering; and
 (iii) it is not closer than 1.5 m from another roof light of the same type; and
 (iv) each roof light is not more than 14 m² in area; and
(v) the area of the roof lights per 70 m² of roof surface is not more than 14 m²; or

(j) a face plate or neck adaptor of supply and return air outlets of an air handling system; or

(k) a face plate or diffuser plate of light fitting and emergency exit signs and associated electrical wiring and electrical components; or

(l) a joinery unit, cupboard, shelving, or the like; or

(m) an attached non-building fixture and fitting such as—
 (i) a curtain, blind, or similar decor, other than a proscenium curtain required by Specification 32; and
 (ii) a whiteboard, window treatment or the like; or

(n) timber treads, risers, landings and associated supporting framework installed in accordance with D3D30 where the Spread-of-Flame Index and the Smoke-Developed Index of the timber does not exceed 9 and 8 respectively; or

(o) any other material that does not significantly increase the hazards of fire.

C2D12 Performance of external walls in fire

[2019: C1.11]

Concrete external walls that could collapse as complete panels (e.g. tilt-up and pre-cast concrete), in a building having a rise in storeys of not more than 2, must comply with Specification 8.

C2D13 Fire-protected timber: Concession

[2019: C1.13]

Fire-protected timber may be used wherever an element is required to be non-combustible, provided—

(a) the building is—
 (i) a separate building; or
 (ii) a part of a building—
 (A) which only occupies part of a storey, and is separated from the remaining part by a fire wall; or
 (B) which is located above or below a part not containing fire-protected timber and the floor between the adjoining parts is provided with an FRL not less than that prescribed for a fire wall for the lower storey; and

(b) the building has an effective height of not more than 25 m; and

(c) the building has a sprinkler system (other than a FPAA101D or FPAA101H system) throughout complying with Specification 17; and

(d) any insulation installed in the cavity of the timber building element to have an FRL is non-combustible; and

(e) cavity barriers are provided in accordance with Specification 9.

C2D14 Ancillary elements

[2019: C1.14]

An ancillary element must not be fixed, installed, or attached to or supported by the internal space within parts or external face of an external wall that is required to be non-combustible unless it is one of the following:

(a) An ancillary element that is non-combustible.

(b) A gutter, downpipe or other plumbing fixture or fitting.

(c) A flashing.

(d) A grate or grille not more than 2 m² in area associated with a building service.

(e) An electrical switch, socket-outlet, cover plate or the like.

(f) A light fitting.
(g) A required sign.

(h) A sign other than one provided under (a) or (g) that—
 (i) achieves a group number of 1 or 2; and
 (ii) does not extend beyond one storey; and
 (iii) does not extend beyond one fire compartment; and
 (iv) is separated vertically from other signs permitted under (h) by at least 2 storeys.

(i) An awning, sunshade, canopy, blind or shading hood other than one provided under (a) that—
 (i) meets the relevant requirements of S7C4 as for an internal element; and
 (ii) serves a storey—
 (A) at ground level; or
 (B) immediately above a storey at ground level; and
 (iii) does not serve an exit, where it would render the exit unusable in a fire.

(j) A part of a security, intercom or announcement system.

(k) Wiring.

(l) A paint, lacquer or a similar finish.

(m) Waterproofing material applied to the floor surface of external balconies, terraces or the like, and a 250 mm upturn above the floor level. A gasket, caulking, sealant or adhesive directly associated with (a) to (k).

(n) A gasket, caulking, sealant or adhesive directly associated with (a) to (l).

Notes:
For the purposes of C2D14, an ancillary element includes additional elements that are associated with the ancillary element.

Explanatory Information:
An example of an ancillary element would be where a balcony is an ancillary element, the associated barrier is also considered a part of the ancillary element.

C2D15 Fixing of bonded laminated cladding panels

[New for 2022]

In a building required to be of Type A or B construction, externally located bonded laminated cladding panels must—

(a) not be solely fixed with adhesive; and

(b) have mechanical fixings hold all layers of the cladding.

SA C2D1516
Part C3 Compartmentation and separation

Introduction to this Part

This Part contains Deemed-to-Satisfy Provisions for Part C1. It covers compartmentation to limit fire size and spread; and separation to limit fire spread between fire compartments, parts with different classifications, stairways, lift shafts, equipment, electricity supplies and public corridors.

Deemed-to-Satisfy Provisions

C3D1 Deemed-to-Satisfy Provisions

[2019: C2.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements C1P1 to C1P9 are satisfied by complying with—

(a) C2D2 to C2D14, C3D2 to C3D15 and C4D2 to C4D17; and
(b) in a building containing an atrium, Part G3; and
(c) or additional requirements for Class 9b buildings, Part I1; and
(d) for farm sheds, Part I3.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

C3D2 Application of Part

[2019: C2.1]

(1) C3D3, C3D4 and C3D5 do not apply to a carpark provided with a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17, an open-deck carpark or an open spectator stand.

(2) C3D13(1)(e) does not apply to a Class 8 electricity network substation.

C3D3 General floor area and volume limitations

[2019: C2.2]

(1) The size of any fire compartment or atrium in a Class 5, 6, 7, 8 or 9 building must not exceed the relevant maximum floor area nor the relevant maximum volume set out in Table C3D3 and C3D6 except as permitted in C3D4.

(2) A part of a building which contains only heating, ventilating, or lift equipment, water tanks, or similar service units is not counted in the floor area or volume of a fire compartment or atrium if it is situated at the top of the building.

(3) In a building containing an atrium, the part of the atrium well bounded by the perimeter of the openings in the floors and extending from the level of the first floor above the atrium floor to the roof covering is not counted in the volume of the atrium for the purposes of this clause.

Table C3D3: Maximum size of fire compartments or atra

<table>
<thead>
<tr>
<th>Classification</th>
<th>Type A construction</th>
<th>Type B construction</th>
<th>Type C construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5, 9b or 9c</td>
<td>Max floor area—8000 m²</td>
<td>Max floor area—5500 m²</td>
<td>Max floor area—3000 m²</td>
</tr>
<tr>
<td></td>
<td>Max volume—48 000 m³</td>
<td>Max volume—33 000 m³</td>
<td>Max volume—18 000 m³</td>
</tr>
<tr>
<td>6, 7, 8 or 9a (except for)</td>
<td>Max floor area—5000 m²</td>
<td>Max floor area—3500 m²</td>
<td>Max floor area—2000 m²</td>
</tr>
</tbody>
</table>
Fire resistance

NCC 2022 Volume One - Building Code of Australia

Table Notes:
See C3D6 for maximum size of compartments in patient care areas in Class 9a health-care buildings.

C3D4 Large isolated buildings

The size of a fire compartment in a building may exceed that specified in Table C3D3 where—

(a) the building does not exceed 18,000 m² in floor area nor exceed 108,000 m³ in volume, if—

(i) the building is Class 7 or 8 and—

(A) contains not more than 2 storeys; and

(B) is provided with open space complying with C3D5(1) not less than 18 m wide around the building; or

(ii) the building is Class 5, 6, 7, 8 or 9 and is—

(A) protected throughout with a sprinkler system complying with Specification 17; and

(B) provided with a perimeter vehicular access complying with C3D5(2); or

(b) the building is Class 5, 6, 7, 8 or 9 and exceeds 18,000 m² in floor area or 108,000 m³ in volume, if it is—

(i) protected throughout with a sprinkler system complying with Specification 17; and

(ii) provided with a perimeter vehicular access complying with C3D5(2); or

(c) there is more than one building on the allotment and—

(i) each building complies with (a) or (b); or

(ii) if the buildings are closer than 6 m to each other they are regarded as one building and collectively comply with (a) or (b).

C3D5 Requirements for open spaces and vehicular access

(1) An open space required by C3D4 must—

(a) be wholly within the allotment except that any road, river, or public place adjoining the allotment, but not the farthest 6 m of it may be included; and

(b) include vehicular access in accordance with (2); and

(c) not be used for the storage or processing of materials; and

(d) not be built upon, except for guard houses and service structures (such as electricity substations and pump houses) which may encroach upon the width of the space if they do not unduly impede fire-fighting at any part of the perimeter of the allotment or unduly add to the risk of spread of fire to any building on an adjoining allotment.

(2) Vehicular access required by this Part—

(a) must be capable of providing continuous access for emergency vehicles to enable travel in a forward direction from a public road around the entire building; and

(b) must have a minimum unobstructed width of 6 m with no part of its furthest boundary more than 18 m from the building and in no part of the 6 m width be built upon or used for any purpose other than vehicular or pedestrian movement; and

(c) must provide reasonable pedestrian access from the vehicular access to the building; and

(d) must have a load bearing capacity and unobstructed height to permit the operation and passage of fire brigade vehicles; and

Classification	Type A construction	Type B construction	Type C construction
patient care areas | Max volume—30,000 m³ | Max volume—21,000 m³ | Max volume—12,000 m³

DRAFT
(e) must be wholly within the allotment except that a public road complying with (a), (b), (c) and (d) may serve as the vehicular access or part thereof.

C3D6 Class 9a and 9e buildings

[2019: C2.5]

(1) A Class 9a health-care building must comply with the following:

(a) patient care areas must be divided into fire compartments not exceeding 2000 m2.

(b) A fire compartment must be separated from the remainder of the building by fire walls and—

(i) in Type A construction—floors and roof or ceiling as required in Specification 5; and

(ii) in Type B construction—floors with an FRL of not less than 120/120/120 and with the openings in external walls bounding patient care areas being vertically separated in accordance with the requirements of C3D7 as if the building were of Type A construction.

(c) Ward areas—

(i) where the floor area exceeds 1000 m2, must be divided into floor areas not more than 1000 m2 by walls with an FRL of not less than 60/60/60; and

(ii) where the floor area exceeds 500 m2, must be divided into floor areas not more than 500 m2 by smoke-proof walls complying with Specification 11; and

(iii) where the floor area is not more than 500 m2, must be separated from the remainder of the patient care area by smoke-proof walls complying with Specification 11; and

(iv) where division of ward areas by fire-resisting walls under (a) or (c)(i) is not required, any smoke-proof wall required under (c)(ii) or (iii) must have an FRL of not less than 60/60/60.

(d) Treatment areas—

(i) where the floor area exceeds 1000 m2, must be divided into floor areas not more than 1000 m2 by smoke-proof walls complying with Specification 11; and

(ii) where the floor area is not more than 1000 m2, must be separated from the remainder of the patient care area by smoke-proof walls complying with Specification 11.

(e) Ancillary use areas located within a patient care area and containing equipment or materials that are a high potential fire hazard, must be separated from the remainder of the patient care area by walls with an FRL of not less than 60/60/60.

(f) The ancillary use areas referred to in (e) include, but are not limited to, the following:

(i) A kitchen and related food preparation areas having a combined floor area of more than 30 m2.

(ii) A room containing a hyperbaric facility (pressure chamber).

(iii) A room used predominantly for the storage of medical records having a floor area of more than 10 m2.

(iv) A laundry, where items of equipment are of the type that are potential fire sources (e.g. gas fire dryers).

(g) A wall required by (e) to separate ancillary use areas from the remainder of the building must extend to the underside of—

(i) the floor above; or

(ii) a non-combustible roof covering; or

(iii) a ceiling having a resistance to the incipient spread of fire to the space above itself of not less than 60 minutes.

(h) Openings in walls required by (c) and (e) to have an FRL must be protected as follows:

(i) Doorways— or automatic closing –/60/30 fire doors.

(ii) Windows—automatic or permanently fixed closed –/60/– fire windows or –/60/– automatic fire shutters.

(iii) Other openings—construction having an FRL not less than –/60/–.

(2) In a building containing a Class 9b early childhood centre, unless the Class 9b early childhood centre is the only use in the building, the Class 9b early childhood centre must be separated from the remainder of the building by walls and/or floors with an FRL not less than that required for a fire wall.
For the Class 9b early childhood centre the following applies:

(a) Each storey must contain not less than 2 fire compartments.

(b) Each fire compartment required by (a) must be served by not less than 2 horizontal exits, each located not less than 9 m from—
 (i) at least one other horizontal exit; and
 (ii) an exit other than a horizontal exit.

(c) The requirements of (a) need not apply where—
 (i) the area of the Class 9b early childhood centre is not more than 500 m²; and
 (ii) each fire-isolated exit serving the Class 9b early childhood centre is provided with a smoke lobby complying with D3D7 that is large enough to accommodate all occupants of the early childhood centre.

The requirements of (2) and (3) do not apply to a Class 9b early childhood centre that is wholly within a storey that provides direct egress to a road or open space.

A Class 9c building must comply with the following:

(a) A building must be divided into areas not more than 500 m² by smoke-proof walls complying with Specification 11.

(b) A fire compartment must be separated from the remainder of the building by fire walls and, notwithstanding C3D8 and Specification 5, floors with an FRL of not less than 60/60/60.

(c) Internal walls (other than those bounding lift and stair shafts) supported by floors provided in accordance with C3D6(25)(b) need not comply with Specification 5 if they have an FRL not less than 60/–/–.

(d) Ancillary use areas containing equipment or materials that are a high potential fire hazard, must be separated from the sole-occupancy units by smoke-proof walls complying with Specification 11.

(e) The ancillary use areas referred to in (d) include, but are not limited to, the following:
 (i) A kitchen and related food preparation areas having a combined floor area of more than 30 m².
 (ii) A laundry, where items of equipment are of the type that are potential fire sources (e.g. gas fired dryers).
 (iii) Storage rooms greater than 10 m² used predominantly for the storage of administrative records.

(f) Openings in fire walls must be protected as follows:
 (i) Doorways — or automatic closing –/60/30 fire doors.
 (ii) Windows — automatic or permanently fixed closed –/60/– fire windows or –/60/– automatic fire shutters.
 (iii) Other openings — construction having an FRL not less than –/60/–.

Vertical separation of openings in external walls

(1) If in a building of Type A construction, any part of a window or other opening in an external wall is above another opening in the storey next below and its vertical projection falls no further than 450 mm outside the lower opening (measured horizontally), the openings must be separated by—

(a) a spandrel which—
 (i) is not less than 900 mm in height; and
 (ii) extends not less than 600 mm above the upper surface of the intervening floor; and
 (iii) is of non-combustible material having an FRL of not less than 60/60/60; or

(b) part of a curtain wall or panel wall that complies with (a); or

(c) construction that complies with (a) behind a curtain wall or panel wall and has any gaps packed with a non-combustible material that will withstand thermal expansion and structural movement of the walling without the loss of seal against fire and smoke; or

(d) a slab or other horizontal construction that—
 (i) projects outwards from the external face of the wall not less than 1100 mm; and
Fire resistance

NCC 2022 Volume One - Building Code of Australia

Page 109

(ii) extends along the wall not less than 450 mm beyond the openings concerned; and
(iii) is non-combustible and has an FRL of not less than 60/60/60.

(2) The requirements of (1) do not apply to—
(a) an open-deck carpark; or
(b) an open spectator stand; or
(c) a building which has a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17 installed throughout; or
(d) openings within the same stairway; or
(e) openings in external walls where the floor separating the storeys does not require an FRL with respect to integrity and insulation.

(3) For the purposes of C3D7, window or other opening means that part of the external wall of a building that does not have an FRL of 60/60/60 or greater.

C3D8 Separation by fire walls

[2019: C2.7]

(1) Construction — A fire wall must be constructed in accordance with the following:
(a) The fire wall has the relevant FRL prescribed by Specification 5 for each of the adjoining parts, and if these are different, the greater FRL, except where S5C18(c), S5C21(3) and S5C24(3) permit a lower FRL on the carpark side.
(b) Any openings in a fire wall must not reduce the FRL required by Specification 5 for the fire wall, except where permitted by the Deemed-to-Satisfy Provisions of Part C4.
(c) Building elements, other than roof battens with dimensions of 75 mm x 50 mm or less or sarking-type material, must not pass through or cross the fire wall unless the required fire-resisting performance of the fire wall is maintained.

(2) Separation of buildings — A part of a building separated from the remainder of the building by a fire wall may be treated as a separate building for the purposes of the Deemed-to-Satisfy Provisions of Sections C, D and E if it is constructed in accordance with (1) and the following:
(a) The fire wall extends through all storeys and spaces in the nature of storeys that are common to that part and any adjoining part of the building.
(b) The fire wall is carried through to the underside of the roof covering.
(c) Where the roof of one of the adjoining parts is lower than the roof of the other part, the fire wall extends to the underside of—
(i) the covering of the higher roof, or not less than 6 m above the covering of the lower roof; or
(ii) the lower roof if it has an FRL not less than that of the fire wall and no openings closer than 3 m to any wall above the lower roof; or
(iii) the lower roof if its covering is non-combustible and the lower part has a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17.

(3) Separation of fire compartments — A part of a building separated from the remainder of the building by a fire wall may be treated as a separate fire compartment if it is constructed in accordance with (a) and the fire wall extends to the underside of—
(a) a floor having an FRL required for a fire wall; or
(b) the roof covering.

C3D9 Separation of classifications in the same storey

[2019: C2.8]

(1) If a building has parts of different classifications located alongside one another in the same storey—
(a) each building element in that storey must have the higher FRL prescribed in Specification 5 for that element for
the classifications concerned; or
(b) the parts must be separated in that storey by a fire wall.

(2) A fire wall required by (1)(b) must have the FRL prescribed in accordance with Specification 5 as applicable for that element for the Type of construction and the classifications concerned.

(3) For the purposes of (2), the FRL in Specification 5 must be either—
(a) the higher FRL prescribed in Tables S5C11a to S5C11g or S5C21a to S5C21f; or
(b) the FRL prescribed in Tables S5C24a to S5C24e.

(4) For the purposes of (1), where one part is a carpark complying with S5C19, S5C22 and S5C25, the parts may be separated by a fire wall complying with the appropriate Clause.

C3D10 Separation of classifications in different storeys

If parts of different classification are situated one above the other in adjoining storeys they must be separated as follows:
(a) Type A construction — The floor between the adjoining parts must have an FRL of not less than that prescribed in Specification 5 for the classification of the lower storey.
(b) Type B or C construction — If one of the adjoining parts is of Class 2, 3 or 4, the floor separating the part from the storey below must—
 (i) be a floor/ceiling system incorporating a ceiling which has a resistance to the incipient spread of fire to the space above itself of not less than 60 minutes; or
 (ii) have an FRL of at least 30/30/30; or
 (iii) have a fire-protective covering on the underside of the floor, including beams incorporated in it, if the floor is combustible or of metal.

C3D11 Separation of lift shafts

(1) Any lift connecting more than 2 storeys, or more than 3 storeys if the building is sprinklered, (other than lifts which are wholly within an atrium) must be separated from the remainder of the building by enclosure in a shaft in which—
(a) in a building required to be of Type A construction — the walls have the relevant FRL prescribed by Specification 5; and
(b) in a building required to be of Type B construction — the walls—
 (i) if loadbearing, have the relevant FRL prescribed by Tables S5C21a to S5C21f of Specification 5; or
 (ii) if non-loadbearing, be of non-combustible construction.

(2) Any lift in a patient care area in a Class 9a health-care building or a resident use area in Class 9c building must be separated from the remainder of the building by a shaft having an FRL of not less than—
(a) in a building of Type A or B construction — 120/120/120; or
(b) in a building of Type C construction — 60/60/60.

(3) An emergency lift must be contained within a fire-resisting shaft having an FRL of not less than 120/120/120.

(4) Openings for lift landing doors and services must be protected in accordance with the Deemed-to-Satisfy Provisions of Part C4.

C3D12 Stairways and lifts in one shaft

A stairway and lift must not be in the same shaft if either the stairway or the lift is required to be in a fire-resisting shaft.
C3D13 Separation of equipment

[2019: C2.12]

(1) Equipment other than that described in (2) and (3) must be separated from the remainder of the building with construction complying with (4), if that equipment comprises—
 (a) lift motors and lift control panels; or
 (b) emergency generators used to sustain emergency equipment operating in the emergency mode; or
 (c) central smoke control plant; or
 (d) boilers; or
 (e) a battery system installed in the building that has a total voltage of 12 volts or more and a storage capacity of 200 kWh or more.

(2) Equipment need not be separated in accordance with (1) if the equipment comprises—
 (a) smoke control exhaust fans located in the air stream which are constructed for high temperature operation in accordance with Specification 21; or
 (b) stair pressurising equipment installed in compliance with the relevant provisions of AS 1668.1; or
 (c) a lift installation without a machine-room; or
 (d) equipment otherwise adequately separated from the remainder of the building.

(3) Separation of on-site fire pumps must comply with the requirements of AS 2419.1.

(4) Separating construction must have—
 (a) except as provided by (b)—
 (i) an FRL as required by Specification 5, but not less than 120/120/120; and
 (ii) any doorway protected with a self-closing fire door having an FRL of not less than –/120/30; or
 (b) when separating a lift shaft and lift motor room, an FRL not less than 120/–/–.

C3D14 Electricity supply system

[2019: C2.13]

(1) An electricity substation located within a building must—
 (a) be separated from any other part of the building by construction having an FRL of not less than 120/120/120; and
 (b) have any doorway in that construction protected with a self-closing fire door having an FRL of not less than –/120/30.

(2) A main switchboard located within the building which sustains emergency equipment operating in the emergency mode must—
 (a) be separated from any other part of the building by construction having an FRL of not less than 120/120/120; and
 (b) have any doorway in that construction protected with a self-closing fire door having an FRL of not less than –/120/30.

(3) Subject to (4), electrical conductors must—
 (a) have a classification in accordance with AS/NZS 3013 of not less than—
 (i) if located in a position that could be subject to damage by motor vehicles — WS53W; or
 (ii) otherwise — WS52W; or
 (b) be enclosed or otherwise protected by construction having an FRL of not less than 120/120/120.

(4) The requirements of (3) only apply to electrical conductors located within a building that supply—
 (a) a substation located within the building which supplies a main switchboard covered by (2); or
(b) a main switchboard covered by (2).

(5) Where emergency equipment is required in a building, all switchboards in the electrical installation, which sustain the electricity supply to the emergency equipment, must be constructed so that emergency equipment switchgear is separated from non-emergency equipment switchgear by metal partitions designed to minimise the spread of a fault from the non-emergency equipment switchgear.

(6) For the purposes of (5), emergency equipment includes but is not limited to the following:

(a) Fire hydrant booster pumps.

(b) Pumps for automatic sprinkler systems, water spray, chemical fluid suppression systems or the like.

(c) Pumps for fire hose reels where such pumps and fire hose reels form the sole means of fire protection in the building.

(d) Air handling systems designed to exhaust and control the spread of fire and smoke.

(e) Emergency lifts.

(f) Control and indicating equipment.

(g) Emergency warning and intercom systems.

C3D15 Public corridors in Class 2 and 3 buildings

[2019: C2.14]

In a Class 2 or 3 building, a public corridor, if more than 40 m in length, must be divided at intervals of not more than 40 m with smoke-proof walls complying with S11C2.

SA C3D16
SA C3D17
Introduction to this Part

This Part contains Deemed-to-Satisfy Provisions for Part C1. It covers the protection of openings such as windows, doors, services and construction joints to reduce the risk of fire spread within or between buildings.

Deemed-to-Satisfy Provisions

C4D1 Deemed-to-Satisfy Provisions

[2019: C3.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements C1P1 to C1P9 are satisfied by complying with—
 (a) C2D2 to C2D14, C3D2 to C3D15 and C4D2 to C4D17; and
 (b) in a building containing an atrium, Part G3; and
 (c) for additional requirements for Class 9b buildings, Part I1; and
 (d) for farm sheds, Part I3.

(2) Where a Performance Solution is proposed the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

C4D2 Application of Part

[2019: C3.1]

(1) The Deemed-to-Satisfy Provisions of this Part do not apply to the following:
 (a) Control joints, weep holes and the like in external walls of masonry construction and joints between panels in external walls of pre-cast concrete panel construction if, in all cases they are not larger than necessary for the purpose.
 (b) Non-combustible ventilators for subfloor or cavity ventilation, if each does not exceed 45000 mm² in face area and is spaced not less than 2 m from any other ventilator in the same wall.
 (c) Openings in the vertical plane formed between building elements at the construction edge or perimeter of a balcony or verandah, colonnade, terrace, or the like.
 (d) In a carpark floor other than a floor that separates a part not used as a carpark, and subject to (e), the following openings in a carpark floor:
 (i) Service penetrations.
 (ii) Openings formed by a vehicle ramp.
 (e) The requirements of (d) only apply—
 (i) to openings in carpark floors that do not separate the carpark from a part not used as a carpark; and
 (ii) where the connected carpark levels comply as a single fire compartment for the purposes of all other requirements of the Deemed-to-Satisfy Provisions of Sections C, D and E.

(2) For the purposes of the Deemed-to-Satisfy Provisions of this Part, openings in building elements required to be fire-resisting include doorways, windows (including any associated fanlight), infill panels and fixed or openable glazed areas that do not have the required FRL.

(3) For the purposes of the Deemed-to-Satisfy Provisions of this Part, openings, other than those covered under (1)(c), between building elements such as columns, beams and the like, in the plane formed at the construction edge or perimeter of the building, are deemed to be openings in an external wall.
C4D3 Protection of openings in external walls

[2019: C3.2]

(1) Subject to (2), openings in an external wall that is required to have an FRL must be protected in accordance with C4D5, and if wall-wetting sprinklers are used they must be located externally.

(2) The requirements of (1) only apply if the distance between the opening and the fire-source feature to which it is exposed is less than—

(a) 3 m from a side or rear boundary of the allotment; or
(b) 6 m from the far boundary of a road, river, lake or the like adjoining the allotment, if not located in a storey at or near ground level; or
(c) 6 m from another building on the allotment that is not Class 10.

(3) Openings in an external wall that is required to have an FRL, if required to be protected under (1), must not occupy more than 1/3 of the area of the external wall of the storey in which it is located unless they are in a Class 9b building used as an open spectator stand.

C4D4 Separation of external walls and associated openings in different fire compartments

[2019: C3.3]

The distance between parts of external walls and any openings within them in different fire compartments separated by a fire wall must not be less than that set out in Table C4D4, unless—

(a) those parts of each wall have an FRL not less than 60/60/60; and
(b) any openings protected in accordance with C4D5.

Table C4D4: Distance between external walls and associated openings in different fire compartments

<table>
<thead>
<tr>
<th>Angle between walls</th>
<th>Minimum distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0° (walls opposite)</td>
<td>6</td>
</tr>
<tr>
<td>more than 0° to 45°</td>
<td>5</td>
</tr>
<tr>
<td>more than 45° to 90°</td>
<td>4</td>
</tr>
<tr>
<td>more than 90° to 135°</td>
<td>3</td>
</tr>
<tr>
<td>more than 135° to less than 180°</td>
<td>2</td>
</tr>
<tr>
<td>180° or more</td>
<td>Nil</td>
</tr>
</tbody>
</table>

C4D5 Acceptable methods of protection

[2019: C3.4]

(1) Where protection is required, doorways, windows and other openings must be protected as follows:

(a) Doorways—

(i) internal or external wall-wetting sprinklers as appropriate used with doors that are self-closing or automatic closing; or
(ii) ~/60/30 fire doors that are self-closing or automatic closing.

(b) Windows—

(i) internal or external wall-wetting sprinklers as appropriate used with windows that are automatic closing or permanently fixed in the closed position; or
(ii) ~/60/~ fire windows that are automatic closing or permanently fixed in the closed position; or
(iii) ~/60/~ automatic closing fire shutters.
(c) Other openings—
 (i) excluding voids — internal or external wall-wetting sprinklers, as appropriate; or
 (ii) construction having an FRL not less than \(\sim 60/\sim \).

(2) Fire doors, fire windows and fire shutters must comply with Specification 12.

C4D6 Doorways in fire walls

[2019: C3.5]

(1) The aggregate width of openings for doorways in a fire wall, which are not part of a horizontal exit, must not exceed \(\frac{1}{2} \) of the length of the fire wall, and each doorway must be protected by—
 (a) 2 fire doors or fire shutters, one on each side of the doorway, each of which has an FRL of not less than \(\frac{1}{2} \) that required by Specification 5 for the fire wall except that each door or shutter must have an insulation level of at least 30; or
 (b) a fire door on one side and a fire shutter on the other side of the doorway, each of which complies with (a); or
 (c) a single fire door or fire shutter which has an FRL of not less than that required by Specification 5 for the fire wall except that each door or shutter must have an insulation level of at least 30.

(2) A fire door or fire shutter required by (1)(a), (b) or (c) must be self-closing, or automatic closing in accordance with (3) and (4).

(3) The automatic closing operation required by (2) must be initiated by the activation of a smoke detector, or any other detector deemed suitable in accordance with AS 1670.1 if smoke detectors are unsuitable in the atmosphere, installed in accordance with the relevant provisions of AS 1670.1 and located on each side of the fire wall not more than 1.5 m horizontal distance from the opening.

(4) Where any other required suitable fire alarm system, including a sprinkler system (other than a FPAA101D system) complying with Specification 17, is installed in the building, activation of the system in either fire compartment separated by the fire wall must also initiate the automatic closing operation.

C4D7 Sliding fire doors

[2019: C3.6]

(1) If a doorway in a fire wall is fitted with a sliding fire door which is open when the building is in use—
 (a) it must be held open with an electromagnetic device, which when de-activated in accordance with (2) and (3), allows the door to be fully closed in not less than 20 seconds and not more than 30 seconds after release; and
 (b) in the event of power failure to the door — the door must fail safe in the closed position in accordance with (a); and
 (c) an audible warning device must be located near the doorway and a red flashing warning light of adequate intensity on each side of the doorway must be activated in accordance with (2) and (3); and
 (d) signs must be installed on each side of the doorway located directly over the opening stating, in capital letters not less than 50 mm high in a colour contrasting with the background:

 WARNING — SLIDING FIRE DOOR

(2) The electromagnetic device required by (1)(a) must be de-activated and the warning system activated by heat or smoke detectors, as appropriate, installed in accordance with AS 1905.1 and the relevant provisions of AS 1670.1.

(3) Where any other required suitable fire alarm system, including a sprinkler system (other than a FPAA101D system) complying with Specification 17, is installed in the building, activation in either fire compartment separated by the fire wall must also de-activate the electromagnetic device and activate the warning system.

C4D8 Protection of doorways in horizontal exits

[2019: C3.7]

(1) A doorway that is part of a horizontal exit must be protected by either—
 (a) a single fire door that has an FRL of not less than that required by Specification 5 for the fire wall except that the
door must have an *insulation* level of at least 30; or

(b) in a Class 7 or 8 building — 2 fire doors, one on each side of the doorway, each with an FRL of not less than ½ that *required* by Specification 5 for the fire wall except that each door must have an *insulation* level of at least 30.

(2) Each door *required* by (1) must be *self-closing*, or *automatic*-closing in accordance with the following:

(a) The *automatic*-closing operation must be initiated by the activation of a smoke detector, or any other detector deemed suitable in accordance with AS 1670.1 if smoke detectors are unsuitable in the atmosphere, installed in accordance with the relevant provisions of AS 1670.1 and located on each side of the fire wall not more than 1.5 m horizontal distance from the opening.

(b) Where any other *required* suitable fire alarm system, including a sprinkler system (other than a FPAA101D system) complying with Specification 17, is installed in the building, activation of the system in either fire compartment separated by the fire wall must also initiate the *automatic*-closing operation.

C4D9

Openings in fire-isolated exits

[2019: C3.8]

(1) Doorways that open to *fire-isolated stairways, fire-isolated passageways or fire-isolated ramps*, and are not doorways opening to a road or *open space*, must be protected by –/60/30 fire doors that are *self-closing*, or *automatic* closing in accordance with (2) and (3).

(2) The *automatic*-closing operation *required* by (1) must be initiated by the activation of a smoke detector, or any other detector deemed suitable in accordance with AS 1670.1 if smoke detectors are unsuitable in the atmosphere, installed in accordance with the relevant provisions of AS 1670.1 and located not more than 1.5 m horizontal distance from the approach side of the doorway.

(3) Where any other *required* suitable fire alarm system, including a sprinkler system (other than a FPAA101D system) complying with Specification 17, is installed in the building, activation of the system must also initiate the *automatic*-closing operation.

(4) A *window* in an *external wall* of a *fire-isolated stairway, fire-isolated passageway or fire-isolated ramp* must be protected in accordance with C4D5 if it is within 6 m of, and exposed to, a *window* or other opening in a wall of the same building, other than in the same fire-isolated enclosure.

C4D10

Service penetrations in fire-isolated exits

[2019: C3.9]

Fire-isolated *exits* must not be penetrated by any services other than—

(a) electrical wiring permitted by D3D8(6) to be installed within the *exit*; or

(b) ducting associated with a pressurisation system if it—

(i) is constructed of material having an FRL of not less than –/120/60 where it passes through any other part of the building; and

(ii) does not open into any other part of the building; or

(c) water supply and test drain pipes for fire services.

C4D11

Openings in fire-isolated lift shafts

[2019: C3.10]

(1) Doorways — If a lift *shaft* is *required* to be fire-isolated, an entrance doorway to that *shaft* must be protected by –/60/– fire doors that—

(a) comply with AS 1735.11; and

(b) are set to remain closed except when discharging or receiving passengers, goods or vehicles.

(2) Lift indicator panels — A lift call panel, indicator panel or other panel in the wall of a fire-isolated lift *shaft* must be backed by construction having an FRL of not less than –/60/60 if it exceeds 35,000 mm² in area.
Bounding construction: Class 2 and 3 buildings and Class 4 parts

(1) A doorway in a Class 2 or 3 building must be protected if it provides access from a sole-occupancy unit to—
 (a) a public corridor, public lobby, or the like; or
 (b) a room not within a sole-occupancy unit; or
 (c) the landing of an internal non fire-isolated stairway that serves as a required exit; or
 (d) another sole-occupancy unit.

(2) A doorway in a Class 2 or 3 building must be protected if it provides access from a room not within a sole-occupancy unit to—
 (a) a public corridor, public lobby, or the like; or
 (b) the landing of an internal non fire-isolated stairway that serves as a required exit.

(3) A doorway in a Class 4 part of a building must be protected if it provides access to any other internal part of the building.

NSW C4D12(4)

(4) Except as provided in (5), protection for a doorway must be at least—
 (a) in a building of Type A construction — a self-closing –/60/30 fire door; and
 (b) in a building of Type B or C construction — a self-closing, tight fitting, solid core door, not less than 35 mm thick.

NSW C4D12(5)

(5) In a Class 3 building used as a residential care building protected with a sprinkler system complying with Specification 17, protection for a doorway must be at least—
 (a) a tight fitting, solid core door not less than 35 mm thick if the building is divided into floor areas not exceeding 500 m² with smoke proof walls complying with S11C2; or
 (b) a tight fitting, solid core door not less than 35 mm thick fitted with a self-closing device, a delayed closing device or an automatic closing device.

(6) Other openings in internal walls which are required to have an FRL with respect to integrity and insulation must not reduce the fire-resisting performance of the wall.

(7) A door required by (4) or (5) may be automatic-closing in accordance with the following:
 (a) The automatic-closing operation must be initiated by the activation of a smoke detector, or any other detector deemed suitable in accordance with AS 1670.1 if smoke detectors are unsuitable in the atmosphere, installed in accordance with the relevant provisions of AS 1670.1 and located not more than 1.5 m horizontal distance from the approach side of the doorway.
 (b) Where any other required suitable fire alarm system, including a sprinkler system (other than a FPAA101D system) complying with Specification 17, is installed in the building, activation of the system must also initiate the automatic-closing operation.

(8) The requirements of (9) apply in a Class 2 or 3 building where a path of travel to an exit—
 (a) does not provide a person seeking egress with a choice of travel in different directions to alternative exits; and
 (b) is along an open balcony, landing or the like; and
 (c) passes an external wall of—
 (i) another sole-occupancy unit; or
 (ii) a room not within a sole-occupancy unit.

(9) The external wall mentioned in (8)(c) must—
 (a) be constructed of concrete or masonry, or be lined internally with a fire-protective covering; and
 (b) have any doorway fitted with a self-closing, tight-fitting solid core door not less than 35 mm thick; and
 (c) have any windows or other openings—
protected internally in accordance with C4D5; or
(ii) located at least 1.5 m above the floor of the balcony, landing or the like.

NSW C4D12(10)

C4D13 Openings in floors and ceilings for services

[2019: C3.12]

(1) Where a service passes through—
 (a) a floor that is required to have an FRL with respect to integrity and insulation; or
 (b) a ceiling required to have a resistance to the incipient spread of fire,
 the service must be installed in accordance with (2).
 (2) A service must be protected—
 (a) in a building of Type A construction, by a shaft complying with Specification 5; or
 (b) in a building of Type B or C construction, by a shaft that will not reduce the fire performance of the building elements it penetrates; or
 (c) in accordance with C4D15.
 (3) Where a service passes through a floor which is required to be protected by a fire-protective covering, the penetration must not reduce the fire performance of the covering.

C4D14 Openings in shafts

[2019: C3.13]

In a building of Type A construction, an opening in a wall providing access to a ventilating, pipe, garbage or other service shaft must be protected by—
 (a) if it is in a sanitary compartment — a door or panel which, together with its frame, is non-combustible or has an FRL of not less than −/30/30; or
 (b) a self-closing −/60/30 fire door or hopper; or
 (c) an access panel having an FRL of not less than −/60/30; or
 (d) if the shaft is a garbage shaft — a door or hopper of non-combustible construction.

C4D15 Openings for service installations

[2019: C3.15]

(1) The requirements of (2) apply where an electrical, electronic, plumbing, mechanical ventilation, air-conditioning or other service penetrates a building element (other than an external wall or roof) that is required to have an FRL with respect to integrity or insulation or a resistance to the incipient spread of fire.

(2) An installation mentioned in (1) must comply with any one of the following:
 (a) Tested systems — the following applies:
 (i) The service, building element and any protection method at the penetration—
 (A) are identical with a prototype assembly of the service, building element and protection method which has been tested in accordance with AS 4072.1 and AS 1530.4 and has achieved the required FRL or resistance to the incipient spread of fire; or
 (B) differ from a prototype assembly of the service, building element and protection method in accordance with Section 4 of AS 4072.1.
 (ii) It complies with (i) except for the insulation criteria relating to the service if—
 (A) the service is a pipe system comprised entirely of metal (excluding pipe seals or the like); and
 (B) any combustible building element is not located within 100 mm of the service for a distance of 2 m
from the penetration; and
(C) combustible material is not able to be located within 100 mm of the service for a distance of 2 m from the penetration; and
(D) it is not located in a required exit.

(iii) The determination of the required FRL must be confirmed in a report from an Accredited Testing Laboratory in accordance with Specifications 1 and 2.

(b) Ventilation and air-conditioning — in the case of ventilating or air-conditioning ducts or equipment, the installation is in accordance with AS 1668.1.

(c) Compliance with Specification 13. — the following applies:

(i) The service is a pipe system comprised entirely of metal (excluding pipe seals or the like) and is installed in accordance with Specification 13. and it—
(A) penetrates a wall, floor or ceiling, but not a ceiling required to have a resistance to the incipient spread of fire; and
(B) connects not more than 2 fire compartments in addition to any fire-resisting service shafts; and
(C) does not contain a flammable or combustible liquid or gas.

(ii) The service is sanitary plumbing installed in accordance with Specification 13 and it—
(A) is of metal or UPVC pipe; and
(B) penetrates the floors of a Class 5, 6, 7, 8 or 9b building; and
(C) is in a sanitary compartment separated from other parts of the building by walls with the FRL required by Specification 5 for a stair shaft in the building and a self-closing 1/60/30 fire door.

(iii) The service is a wire or cable, or a cluster of wires or cables installed in accordance with Specification 13 and it—
(A) penetrates a wall, floor or ceiling, but not a ceiling required to have a Resistance to the incipient spread of fire; and
(B) connects not more than 2 fire compartments in addition to any fire-resisting service shafts.

(iv) The service is an electrical switch, outlet, or the like, and it is installed in accordance with Specification 13.

C4D16 Construction joints

[2019: C3.16]

(1) Construction joints, spaces and the like in and between building elements required to be fire-resisting with respect to integrity and insulation must be protected in a manner identical with a prototype tested in accordance with AS 1530.4 to achieve the required FRL—

(a) identical with a prototype tested in accordance with AS 4072.1 and AS 1530.4 to achieve the required FRL; or
(b) that differs from a prototype in accordance with Section 4 of AS 4072.1 and achieves the required FRL.

(2) The requirements of (1) do not apply where joints, spaces and the like between fire-protected timber elements are provided with cavity barriers in accordance with Specification 9. The determination of the required FRL must be confirmed in a report from an Accredited Testing Laboratory in accordance with Specifications 1 and 2.

(3) The requirements of (1) do not apply where joints, spaces and the like between fire-protected timber elements are provided with cavity barriers in accordance with Specification 9.

C4D17 Columns protected with lightweight construction to achieve an FRL

[2019: C3.17]

A column protected by lightweight construction to achieve an FRL which passes through a building element that is required to have an FRL or a resistance to the incipient spread of fire, must be installed using a method and materials identical with a prototype assembly of the construction which has achieved the required FRL or resistance to the incipient spread of fire.
Spec 5C1 Scope

This Specification contains requirements for the fire-resisting construction of building elements.

General requirements

Spec 5C2 Exposure to fire-source features

(1) A part of a building element is exposed to a fire-source feature if any of the horizontal straight lines between that part and the fire-source feature, or vertical projection of the feature, is not obstructed by another part of the building that—
 (a) has an FRL of not less than 30/–/–; and
 (b) is neither transparent nor translucent.

(2) A part of a building element is not exposed to a fire-source feature if the fire-source feature is—
 (a) an external wall of another building that stands on the allotment and the part concerned is more than 15 m above the highest part of that external wall; or
 (b) a side or rear boundary of the allotment and the part concerned is below the level of the finished ground at every relevant part of the boundary concerned.

(3) If various distances apply for different parts of a building element—
 (a) the entire element must have the FRL applicable to that part having the least distance between itself and the relevant fire-source feature; or
 (b) each part of the element must have the FRL applicable according to its individual distance from the relevant fire-source feature.

(4) The requirements of (3) do not override or permit any exemption from Spec 5C3.

Spec 5C3 Fire protection for a support of another part

(1) Where a part of a building required to have an FRL depends upon direct vertical or lateral support from another part to maintain its FRL, that supporting part, subject to (2), must—
 (a) have an FRL not less than that required by other provisions of this Specification; and
 (b) if located within the same fire compartment as the part it supports have an FRL in respect of structural adequacy the greater of that required—
 (i) for the supporting part itself; and
 (ii) for the part it supports; and
 (c) be non-combustible—
 (i) if required by other provisions of this Specification; or
 (ii) if the part it supports is required to be non-combustible.

(2) The following building elements need not comply with (1)(b) and (1)(c)(ii):
 (a) An element providing lateral support to an external wall complying with Spec 5C24(1)(b) or C2D12.
(b) An element providing support within a carpark and complying with S5C19, S5C22 or S5C25.
(c) A roof providing lateral support in a building—
 (i) of Type A construction if it complies with S5C15(a), (b) or (d); and
 (ii) of Type B and C construction.
(d) A column providing lateral support to a wall where the column complies with S5C6(1) and (2).
(e) An element providing lateral support to a fire wall or fire-resisting wall, provided the wall is supported on both sides and failure of the element on one side does not affect the fire performance of the wall.

(3) Notwithstanding (1), timber framing may be used for an element that provides support to an element constructed with timber framing or non-combustible material in accordance with S5C20(1) or S5C23(1).

S5C4 Lintels

[2019: Spec C1.1: 2.3]

(1) A lintel must have the FRL required for the part of the building in which it is situated.
(2) A lintel need not comply with (1) if it does not contribute to the support of a fire door, fire window or fire shutter, and—
 (a) it spans an opening in—
 (i) a wall of a building containing only one storey; or
 (ii) a non-loadbearing wall of a Class 2 or 3 building; or
 (b) it spans an opening in masonry which is not more than 150 mm thick and—
 (i) not more than 3 m wide if the masonry is non-loadbearing; or
 (ii) not more than 1.8 m wide if the masonry is loadbearing and part of a solid wall or one of the leaves of a cavity wall.

S5C5 Method of attachment not to reduce the fire-resistance of building elements

[2019: Spec C1.1: 2.4]

The method of attaching or installing a finish, lining, ancillary element or service installation to the building element must not reduce the fire-resistance of that element to below that required.

S5C6 General concessions

[2019: Spec C1.1: 2.5]

(1) Steel columns — A steel column, other than one in a fire wall or common wall, need not have an FRL in a building that contains—
 (a) only 1 storey; or
 (b) 2 storeys in some of its parts and 1 storey only in its remaining parts if the sum of the floor areas of the upper storeys of its 2 storey parts does not exceed the lesser of—
 (i) 1/8 of the sum of the floor areas of the 1 storey parts; or
 (ii) in the case of a building to which one of the maximum floor areas specified in Table C3D3 is applicable — 1/10 of that area; or
 (iii) in the case of a building to which two or more of the maximum floor area specified in Table C3D3 is applicable — 1/10 of the lesser of those areas.

(2) Timber columns — A timber column may be used in a single storey building if—
 (a) in a fire wall or common wall the column has an FRL not less than that listed in the appropriate Tables S5C11a to S5C11g, S5C21a to S5C21f or S5C24a to S5C24e; and
 (b) in any other case where the column is required to have an FRL in accordance with Tables S5C11a to S5C11g,
S5C21a to S5C21f or S5C24a to S5C24e, it has an FRL of not less than 30/–/–.

(3) Structures on roofs — A non-combustible structure situated on a roof need not comply with the other provisions of this Specification if it only contains—

(a) lift motor equipment; or

(b) one or more of the following:

(i) Hot water or other water tanks.

(ii) Ventilating ductwork, ventilating fans and their motors.

(iii) Air-conditioning chillers.

(iv) Window cleaning equipment.

(v) Other service units that are non-combustible and do not contain flammable or combustible liquids or gases.

(4) Curtain walls and panel walls — A requirement for an to have an FRL does not apply to a curtain wall or panel wall which is of non-combustible construction and fully protected by automatic external wall-wetting sprinklers.

(5) Balconies and verandahs — A balcony, verandah or the like and any incorporated supporting part, which is attached to or forms part of a building, need not comply with Tables S5C11a to S5C11g, S5C21a to S5C21f and S5C24a to S5C24e if—

(a) it does not form part of the only path of travel to a required exit from the building; and

(b) in Type A construction—

(i) it is situated not more than 2 storeys above the lowest storey providing direct egress to a road or open space; and

(ii) any supporting columns are of non-combustible construction.

S5C7 Mezzanine floors: Concession

[2019: Spec C1.1: 2.6]

(1) This Clause does not apply to a Class 9b building that is a spectator stand or audience viewing area accommodating more than 100 persons as calculated according to D2D18.

(2) A mezzanine and its supports need not have an FRL or be non-combustible provided—

(a) the total floor area of all the mezzanines in the same room does not exceed 1/3 of the floor area of the room or 200 m², whichever is the lesser; and

(b) the FRL of each wall and column that supports any other part of the building within 6 m of the mezzanine is increased by the amount listed in Table S5C7.

<table>
<thead>
<tr>
<th>Level otherwise required for any FRL criterion (mins)</th>
<th>Increase in level to not less than (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>180</td>
<td>240</td>
</tr>
</tbody>
</table>

Table Notes:
The increase in level applies to each FRL criterion (structural adequacy, integrity or insulation) relevant to the building element concerned.
S5C8 Enclosure of shafts

[2019: Spec C1.1: 2.7]

(1) *Shafts required* to have an FRL must be enclosed at the top and bottom by construction having an FRL not less than that required for the walls of a non-loadbearing shaft in the same building.

(2) The provisions of (1) need not apply to—

(a) the top of a shaft extending beyond the roof covering, other than one enclosing a fire-isolated stairway or ramp; or

(b) the bottom of a shaft if it is non-combustible and laid directly on the ground.

S5C9 Carparks in Class 2 and 3 buildings

[2019: Spec C1.1: 2.8]

(1) If a Class 2 building contains not more than 4 storeys of which—

(a) one storey is Class 7 used solely for the purpose of parking motor vehicles or for some other purpose that is ancillary to a Class 2; and

(b) the remaining storeys are of Class 2,

the carpark storey is regarded as Class 2 only for the purpose of determining the relevant fire-resisting requirements of this Specification.

(2) If a Class 3 building or a building of Class 2 and 3 contains not more than 3 storeys of which—

(a) one storey is Class 7 used solely for the purpose of parking motor vehicles or for some other purpose that is ancillary to the other storeys; and

(b) the remaining storeys are of Class 2 or 3,

the carpark storey is regarded as Class 2 or 3 only for the purpose of determining the relevant fire-resisting requirements of this Specification.

S5C10 Residential care building: Concession

[2019: Spec C1.1: 2.9]

(1) In a Class 3 building protected with a sprinkler system complying with Specification 17 and used as a residential care building, any FRL criterion prescribed in Tables S5C11a to S5C11g, S5C21a to S5C21f or S5C24a to S5C24e—

(a) for any floor and any loadbearing wall, may be reduced to 60, except any FRL criterion of 90 for an external wall must be maintained when tested from the outside; and

(b) for any non-loadbearing internal wall, need not apply if—

(i) it is lined on each side with standard grade plasterboard not less than 13 mm thick or similar non-combustible material; and

(ii) it extends—

(A) to the underside of the floor next above; or

(B) to the underside of a ceiling lined with standard grade plasterboard not less than 13 mm thick or a material with at least an equivalent level of fire protection; or

(C) to the underside of a non-combustible roof covering; and

(iii) any insulation installed in the cavity of the wall is non-combustible; and

(iv) any construction joint, space or the like between the top of the wall and the floor, ceiling or roof is smoke sealed with intumescent putty or other suitable material.

(2) The concession described at (1) does not apply to fire-protected timber building elements.
Fire resistance

NCC 2022 Volume One - Building Code of Australia

Type A Fire-Resisting Construction

S5C11 Fire-resistance of building elements

[2019: Spec C1.1: 3.1 and Table 3]

(1) In a building required to be of Type A construction—

(a) each building element listed in Tables S5C11a to S5C11g and any beam or column incorporated in it, must have an FRL not less than that listed in those Tables for the particular Class of building concerned; and

(b) any internal wall required to have an FRL with respect to integrity and insulation must extend to—

(i) the underside of the floor next above; or

(ii) the underside of a roof complying with Tables S5C11a to S5C11g; or

(iii) if under S5C15 the roof is not required to comply with Tables S5C11a to S5C11g, the underside of the non-combustible roof covering and, except for roof battens with dimensions of 75 mm x 50 mm or less or sarking-type material, must not be crossed by timber or other combustible building elements; or

(iv) a ceiling that is immediately below the roof and has a resistance to the incipient spread of fire to the roof space between the ceiling and the roof of not less than 60 minutes; and

(c) a loadbearing internal wall and a loadbearing fire wall (including those that are part of a loadbearing shaft) must be constructed from—

(i) concrete; or

(ii) masonry; or

(iii) subject to (2), fire-protected timber; or

(iv) any combination of (i) to (iii); and

(d) the FRLs specified in Tables S5C11a to S5C11g for an external column apply also to those parts of an internal column that face and are within 1.5 m of a window and are exposed through that window to a fire-source feature.

(2) For the purposes of (1)(c)(iii), fire-protected timber may be used, provided that—

(a) the building is—

(i) a separate building; or

(ii) a part of a building—

(A) which only occupies part of a storey, and is separated from the remaining part by a fire wall; or

(B) which is located above or below a part not containing fire-protected timber and the floor between the adjoining parts is provided with an FRL not less than that prescribed for a fire wall for the lower storey; and

(b) the building has an effective height of not more than 25 m; and

(c) the building has a sprinkler system (other than a FPAA101D or FPAA101H system) throughout complying with Specification 17; and

(d) any insulation installed in the cavity of the timber building element required to have an FRL is non-combustible; and

(e) cavity barriers are provided in accordance with Specification 9.

(3) For the purposes of Table S5C11a and Table S5C11b, includes any column and other building element incorporated within it or other external building element.
Table S5C11a: Type A construction: FRL of loadbearing parts of external walls

<table>
<thead>
<tr>
<th>Distance from a fire-source feature</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 2, 3 or 4 part</td>
</tr>
<tr>
<td>Less than 1.5m</td>
<td>90/90/90</td>
</tr>
<tr>
<td>1.5 to less than 3m</td>
<td>90/60/60</td>
</tr>
<tr>
<td>3m or more</td>
<td>90/60/30</td>
</tr>
</tbody>
</table>

Table S5C11b: Type A construction: FRL of non-loadbearing parts of external walls

<table>
<thead>
<tr>
<th>Distance from a fire-source feature</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 2, 3 or 4 part</td>
</tr>
<tr>
<td>Less than 1.5m</td>
<td>–/90/90</td>
</tr>
<tr>
<td>1.5 to less than 3m</td>
<td>–/60/60</td>
</tr>
<tr>
<td>3m or more</td>
<td>–/–/–</td>
</tr>
</tbody>
</table>

Table S5C11c: Type A construction: FRL of external columns not incorporated in an external wall

<table>
<thead>
<tr>
<th>Column type</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 2, 3 or 4 part</td>
</tr>
<tr>
<td>Loadbearing</td>
<td>90/–/–</td>
</tr>
<tr>
<td>Non-loadbearing</td>
<td>–/–/–</td>
</tr>
</tbody>
</table>

Table S5C11d: Type A construction: FRL of common walls and fire walls

<table>
<thead>
<tr>
<th>Wall type</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 2, 3 or 4 part</td>
</tr>
<tr>
<td>loadbearing or non-loadbearing</td>
<td>90/90/90</td>
</tr>
</tbody>
</table>

Table S5C11e: Type A construction: FRL of loadbearing internal walls

<table>
<thead>
<tr>
<th>Distance from a fire-source feature</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire-resisting lift and stair shafts</td>
<td>90/90/90</td>
</tr>
<tr>
<td>Bounding public corridors, public lobbies and the like</td>
<td>90/90/90</td>
</tr>
<tr>
<td>Between or bounding sole-occupancy units</td>
<td>90/90/90</td>
</tr>
<tr>
<td>Ventilating, pipe, garbage, and like shafts not used for the discharge of hot products of combustion</td>
<td>90/90/90</td>
</tr>
</tbody>
</table>
Table S5C11f: Type A construction: FRL of non-loadbearing internal walls

<table>
<thead>
<tr>
<th>Location</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 2, 3 or 4 part</td>
</tr>
<tr>
<td>Fire-resisting lift and stair shafts</td>
<td>–/90/90</td>
</tr>
<tr>
<td>Bounding public corridors, public lobbies and the like</td>
<td>–/60/60</td>
</tr>
<tr>
<td>Between or bounding sole-occupancy units</td>
<td>–/60/60</td>
</tr>
<tr>
<td>Ventilating, pipe, garbage, and like shafts not used for the discharge of hot products of combustion</td>
<td>–/90/90</td>
</tr>
</tbody>
</table>

Table S5C11g: Type A construction: FRL of other building elements not covered by Tables S5C11a to S5C11f

<table>
<thead>
<tr>
<th>Building element</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other loadbearing internal walls, internal beams, trusses and columns</td>
<td>90/-/-</td>
</tr>
<tr>
<td>Floors</td>
<td>90/90/90</td>
</tr>
<tr>
<td>Roofs</td>
<td>90/60/30</td>
</tr>
</tbody>
</table>

S5C12 Concessions for floors

[2019: Spec C1.1: 3.2]

A floor need not comply with Tables S5C11a to S5C11g if—

(a) it is laid directly on the ground; or

(b) in a Class 2, 3, 5 or 9 building, the space below is not a storey, does not accommodate motor vehicles, is not a storage or work area, and is not used for any other ancillary purpose; or

(c) it is a timber stage floor in a Class 9b building laid over a floor having the required FRL and the space below the stage is not used as a dressing room, store room, or the like; or

(d) it is within a sole-occupancy unit in a Class 2 or 3 building or Class 4 part of a building; or

(e) it is an open-access floor (for the accommodation of electrical and electronic services and the like) above a floor with the required FRL.

S5C13 Floor loading of Class 5 and 9b buildings: Concession

[2019: Spec C1.1: 3.3]

If a floor in a Class 5 or 9b building is designed for a live load not exceeding 3 kPa—

(a) the floor next above (including floor beams) may have an FRL of 90/90/90; or

(b) the roof, if that is next above (including roof beams) may have an FRL of 90/60/30.

S5C14 Roof superimposed on concrete slab: Concession

[2019: Spec C1.1: 3.4]

A roof superimposed on a concrete slab roof need not comply with S5C11 as to fire-resisting construction if—
(a) the superimposed roof and any construction between it and the concrete slab roof are non-combustible throughout; and

(b) the concrete slab roof complies with Tables S5C11a to S5C11g.

S5C15 Roof: Concession

[2019: Spec C1.1: 3.5]

A roof need not comply with Tables S5C11a to S5C11g if its covering is non-combustible and the building—

(a) has a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17 installed throughout; or

(b) has a rise in storeys of 3 or less; or

(c) is of Class 2 or 3; or

(d) has an effective height of not more than 25 m and the ceiling immediately below the roof has a resistance to the incipient spread of fire to the roof space of not less than 60 minutes.

S5C16 Roof lights

[2019: Spec C1.1: 3.6]

If a roof is required to have an FRL or its covering is required to be non-combustible, roof lights or the like installed in that roof must—

(a) have an aggregate area of not more than 20% of the roof surface; and

(b) be not less than 3 m from—

(i) any boundary of the allotment other than the boundary with a road or public place; and

(ii) any part of the building which projects above the roof unless that part has the FRL required of a fire wall and any openings in that part of the wall for 6 m vertically above the roof light or the like are protected in accordance with C4D5; and

(iii) any roof light or the like in an adjoining sole-occupancy unit if the walls bounding the unit are required to have an FRL; and

(iv) any roof light or the like in an adjoining fire-separated section of the building; and

(c) if a ceiling with a resistance to the incipient spread of fire is required be installed in a way that will maintain the level of protection provided by the ceiling to the roof space.

S5C17 Internal columns and walls: Concession

[2019: Spec C1.1:3.7]

For a building with an effective height of not more than 25 m and having a roof without an FRL in accordance with S5C15, in the storey immediately below that roof, internal columns other than those referred to in S5C11(1)(d) and internal walls other than fire walls and shaft walls may have—

(a) in a Class 2 or 3 building: FRL 60/60/60; or

(b) in a Class 5, 6, 7, 8 or 9 building—

(i) with rise in storeys exceeding 3: FRL 60/60/60; or

(ii) with rise in storeys not exceeding 3: no FRL.

S5C18 Open spectator stands and indoor sports stadiums: Concession

[2019: Spec C1.1: 3.8]

In an open spectator stand or indoor sports stadium, the following building elements need not have the FRL specified in Tables S5C11a to S5C11g:
The roof if it is non-combustible.

Columns and loadbearing walls supporting only the roof if they are non-combustible.

Any non-loadbearing part of an external wall less than 3 m—

(i) from any fire-source feature to which it is exposed if it has an FRL of not less than –/60/60 and is non-combustible; or

(ii) from an external wall of another open spectator stand if it is non-combustible.

S5C19 Carparks

[2019: Spec C1.1: 3.9 and Table 3.9]

(1) Notwithstanding S5C11, a carpark may comply with this clause if it is an open-deck carpark or is protected with a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17 and is—

(a) a separate building; or

(b) a part of a building—

(i) which only occupies part of a storey, and is separated from the remaining part by a fire wall; or

(ii) which is located above or below another classification, and the floor separating the classifications complies with C3D10; or

(iii) which is located above another Class 7 part of the building not used for carparking, and the floor separating the parts complies with Tables S5C11a to S5C11g for a Class 7 part other than a carpark; or

(iv) which is located below another Class 7 part of the building not used for carparking, and the floor separating the parts complies with this clause.

(2) For the purposes of this clause, a carpark—

(a) includes—

(i) an administration area associated with the functioning of the carpark; and

(ii) where the carpark is sprinklered, is associated with a Class 2 or 3 building and provides carparking for separate sole-occupancy units, each carparking area with an area not greater than 10% of its floor area for purposes ancillary to the sole-occupancy units; but

(b) excludes—

(i) except for (a), any area of another classification, or other part of a Class 7 building not used for carparking; and

(ii) a building or part of a building specifically intended for the parking of trucks, buses, vans and the like.

(3) For building elements in a carpark as described in (1) and (2), the following minimum FRLs are applicable:

(a) External wall:

(i) Less than 3 m from a fire-source feature to which it is exposed:

 (A) Loadbearing: 60/60/60.

 (B) Non-loadbearing: –/60/60.

(ii) 3 m or more from a fire-source feature to which it is exposed: –/–/–.

(b) Internal wall:

(i) Loadbearing, other than one supporting only the roof (not used for carparking): 60/–/–.

(ii) Supporting only the roof (not used for carparking): –/–/–.

(iii) Non-loadbearing: –/–/–.

(c) Fire wall:

(i) From the direction used as a carpark: 60/60/60.

(ii) From the direction not used as a carpark: as required by Tables S5C11a to S5C11g.

(d) Columns:

(i) Supporting only the roof (not used for carparking) and 3 m or more from a fire-source feature to which it is
Fire resistance

exposed: –/–/–.
(ii) Steel column, other than one covered by (i) and one that does not support a part of a building that is not used as a carpark—
 (A) 60/–/–; or
 (B) an ESA/M of not greater than 26m²/tonne.
(iii) Any other column not covered by (i) or (ii): 60/–/–.

(e) Beams:
 (i) Steel floor beam in continuous contact with a concrete floor slab—
 (A) 60/–/–; or
 (B) an ESA/M of not greater than 30m²/tonne.
 (ii) Any other beam: 60/–/–.

(f) Fire-resisting lift and stair shaft (within the carpark only): 60/60/60.

(g) Floor slab and vehicle ramp: 60/60/60.

(h) Roof (not used for carparking):–/–/–.

(4) For the purposes of subclause (3):
 (a) ESA/M means the ratio of exposed surface area to mass per unit length.
 (b) Refer to Specification 17 for special requirements for a sprinkler system in a carpark complying with (3) and located within a multi-classified building.

S5C20 Class 2 and 3 buildings: Concession [2019: Spec C1.1: 3.10]

(1) In a Class 2 or 3 building with a rise in storeys of not more than 3—
 (a) notwithstanding C2D10(1) and (2) and C3D7, timber framing may be used for—
 (i) external walls; and
 (ii) common walls; and
 (iii) the floor framing of lifts pits; and
 (iv) non-loadbearing internal walls which are required to be fire-resisting; and
 (v) non-loadbearing Shafts, except Shafts used for the discharge of hot products of combustion; and
 (vi) spandrels or horizontal construction provided for the purposes of C3D7; and
 (b) notwithstanding S5C11(1)(c), for loadbearing internal walls and loadbearing fire walls—
 (i) timber framing may be used; and
 (ii) non-combustible materials may be used.

(2) A Class 2 or 3 building having a rise in storeys of not more than 4 may have the top three storeys constructed in accordance with (1) provided—
 (a) the lowest storey is used solely for the purpose of parking motor vehicles or for some other ancillary purpose; and
 (b) the lowest storey is constructed of concrete or masonry including the floor between it and the Class 2 or 3 part of the building above; and
 (c) the lowest storey and the storey above are separated by construction having an FRL of not less than 90/90/90 with no openings or penetrations that would reduce the fire-resisting performance of that construction except that a doorway in that construction may be protected by a –/60/30 self-closing fire door.

(3) In a Class 2 or 3 building complying with (1) or (2) and fitted with a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17, any FRL criterion prescribed in Tables S5C11a to S5C11g—
 (a) for any floor and any loadbearing wall, may be reduced to 60, except any FRL criterion of 90 for an external wall must be maintained when tested from the outside; and
for any non-loadbearing internal wall, need not apply if—

(i) it is lined on each side with 13 mm standard grade plasterboard or similar non-combustible material; and

(ii) it extends—

(A) to the underside of the floor next above; or

(B) to the underside of a ceiling with a resistance to the incipient spread of fire of 60 minutes; or

(C) to the underside of a non-combustible roof covering; and

(iii) any insulation installed in the cavity of the wall is non-combustible; and

(iv) any construction joint, space or the like between the top of the wall and the floor, ceiling or roof is smoke sealed with intumescent putty or other suitable material; and

(v) any doorway in the wall is protected by a self-closing, tight fitting, solid core door not less than 35 mm thick.

Type B Fire-Resisting Construction

S5C21 Fire-resistance of building elements

[2019: Spec C1.1: 4.1 and Table 4]

(1) In a building required to be of Type B construction—

(a) each building element listed in Tables S5C21a to S5C21f, and any beam or column incorporated in it, must have an FRL not less than that listed in the Table for the particular Class of building concerned; and

(b) if a stair shaft supports any floor or a structural part of it—

(i) the floor or part must have an FRL of 60/–/– or more; or

(ii) the junction of the stair shaft must be constructed so that the floor or part will be free to sag or fall in a fire without causing structural damage to the shaft; and

(c) any internal wall which is required to have an FRL with respect to integrity and insulation, except a wall that bounds a sole-occupancy unit in the topmost (or only) storey and there is only one unit in that storey, must extend to—

(i) the underside of the floor next above if that floor has an FRL of at least 30/30/30; or

(ii) the underside of a ceiling having a resistance to the incipient spread of fire to the space above itself of not less than 60 minutes; or

(iii) the underside of the roof covering if it is non-combustible and, except for roof battens with dimensions of 75 mm x 50 mm or less or sarking-type material, must not be crossed by timber or other combustible building elements; or

(iv) 450 mm above the roof covering if it is combustible; and

(d) a loadbearing internal wall and a loadbearing fire wall (including those that are part of a loadbearing shaft) must be constructed from—

(i) concrete; or

(ii) masonry; or

(iii) subject to (2), fire-protected timber; or

(iv) any combination of (i) to (iii); and

(e) in a Class 5, 6, 7, 8 or 9 building, in the storey immediately below the roof, internal columns and internal walls other than fire walls and shaft walls, need not comply with Tables S5C21a to S5C21f; and

(f) in a Class 2 or 3 building, except where within the one sole-occupancy units, or a Class 9a health-care building or a Class 9b building, a floor separating storeys or above a space for the accommodation of motor vehicles or used for storage or any other ancillary purpose, must—

(i) be constructed so that it is at least of the standard achieved by a floor/ceiling system incorporating a ceiling which has a resistance to the incipient spread of fire to the space above itself of not less than 60 minutes; or
Fire resistance

(ii) have an FRL of at least 30/30/30; or

(iii) have a fire-protective covering on the underside of the floor, including beams incorporated in it, if the floor is combustible or of metal; and

(g) in a Class 9c building a floor above a space for the accommodation of motor vehicles or used for storage or any other ancillary purpose, and any column supporting the floor must—

(i) be constructed so that it is at least of the standard achieved by a floor/ceiling system incorporating a ceiling which has a resistance to the incipient spread of fire to the space above itself of not less than 60 minutes; or

(ii) have an FRL of at least 30/30/30; or

(iii) have a fire-protective covering on the underside of the floor, including beams incorporated in it, if the floor is combustible or of metal.

(2) For the purposes of (1)(d)(iii), fire-protected timber may be used, provided that—

(a) the building is—

(i) a separate building; or

(ii) a part of a building—

(A) which only occupies part of a storey, and is separated from the remaining part by a fire wall; or

(B) which is located above or below a part not containing fire-protected timber and the floor between the adjoining parts is provided with an FRL not less than that prescribed for a fire wall for the lower storey; and

(b) the building has an effective height of not more than 25 m; and

(c) the building has a sprinkler system (other than a FPAA101D or FPAA101H system) throughout complying with Specification 17; and

(d) any insulation installed in the cavity of the timber building element required to have an FRL is non-combustible; and

(e) cavity barriers are provided in accordance with Specification 9.

(3) For the purposes of Table S5C21a and Table S5C21b, external wall includes any column and other building element incorporated within it or other external building element.

| Table S5C21a: Type B construction: FRL of loadbearing parts of external walls |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
Distance from a fire-source feature	FRL: (in minutes)	Structural adequacy / Integrity / Insulation			
Class 2, 3 or 4 part	Class 5, 7a or 9	Class 6	Class 7b or 8		
---------------------------------	-----------------	---------------------------------	---------------------------------	---------------------------------	---------------------------------
Less than 1.5 m	90/90/90	120/120/120	180/180/180	240/240/240	
1.5 to less than 3 m	90/60/30	120/90/60	180/120/90	240/180/120	
3 m to less than 9 m	90/30/30	120/30/30	180/90/60	240/90/60	
9 m to less than 18 m	90/30/--	120/30/--	180/60/--	240/60/--	
18 m or more	--/--/--	--/--/--	--/--/--	--/--/--	

| Table S5C21b: Type B construction: FRL of non-loadbearing parts of external walls |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
Distance from a fire-source feature	FRL (in minutes): Structural adequacy / Integrity / Insulation				
Class 2, 3 or 4 part	Class 5, 7a or 9	Class 6	Class 7b or 8		
---------------------------------	-----------------	---------------------------------	---------------------------------	---------------------------------	---------------------------------
Loadbearing column — less than 18 m	90/--/--	120/--/--	180/--/--	240/--/--	
Loadbearing column — 18 m or more	--/--/--	--/--/--	--/--/--	--/--/--	
Non-loadbearing column	--/--/--	--/--/--	--/--/--	--/--/--	
Table S5C21c: Type B construction: FRL of common walls and fire walls

<table>
<thead>
<tr>
<th>Wall type</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 2, 3 or 4 part</td>
</tr>
<tr>
<td>Loadbearing or non-loadbearing</td>
<td>90/90/90</td>
</tr>
</tbody>
</table>

Table S5C21d: Type B construction: FRL of loadbearing internal walls

<table>
<thead>
<tr>
<th>Location</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 2, 3 or 4 part</td>
</tr>
<tr>
<td>Fire-resisting lift and stair shafts</td>
<td>90/90/90</td>
</tr>
<tr>
<td>Bounding public corridors, public lobbies and the like</td>
<td>60/60/60</td>
</tr>
<tr>
<td>Between or bounding sole-occupancy units</td>
<td>60/60/60</td>
</tr>
</tbody>
</table>

Table S5C21e: Type B construction: FRL of non-loadbearing internal walls

<table>
<thead>
<tr>
<th>Location</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 2, 3 or 4 part</td>
</tr>
<tr>
<td>Fire-resisting lift and stair shafts</td>
<td>–/90/90</td>
</tr>
<tr>
<td>Bounding public corridor, public lobbies and the like</td>
<td>–/60/60</td>
</tr>
<tr>
<td>Between or bounding sole-occupancy units</td>
<td>–/60/60</td>
</tr>
</tbody>
</table>

Table S5C21f: Type B construction: FRL of other building elements not covered by Tables S5C21a to S5C21e

<table>
<thead>
<tr>
<th>Building element</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Loadbearing internal walls and columns</td>
<td>60/–/–</td>
</tr>
<tr>
<td>Roofs</td>
<td>–/–/–</td>
</tr>
</tbody>
</table>

S5C22 Carports

[2019: Spec C1.1: 4.2 and Table 4.2]

1. Notwithstanding S5C21, a carpark may comply with this clause if it is an open-deck carpark or is protected with a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17 and is—
 (a) a separate building; or
 (b) a part of a building, and if occupying only part of a storey, is separated from the remaining part by a fire wall.

2. For the purposes of this clause, a carpark—
 (a) includes—
 (i) an administration area associated with the functioning of the carpark; and
 (ii) where the carpark is sprinkled, is associated with a Class 2 or 3 building and provides carparking for
separate sole-occupancy units each carparking area with an area not greater than 10% of its floor area for purposes ancillary to the sole-occupancy units; but

(b) excludes—
 (i) except for (a), any area of another classification, or other part of a Class 7 building not used for carparking; and
 (ii) a building or part of a building specifically intended for the parking of trucks, buses, vans and the like.

(3) For building elements in a carpark as described in (1) and (2), the following minimum FRLs are applicable:

(a) **External walls:**
 (i) Less than 3 m from a fire-source feature to which it is exposed:
 (A) Loadbearing: 60/60/60.
 (B) Non-loadbearing: –/60/60.
 (ii) 3 m or more from a fire-source feature to which it is exposed: –/–/–.

(b) **Internal walls:**
 (i) Loadbearing, other than one supporting only the roof (not used for carparking): 60/–/–.
 (ii) Supporting only the roof (not used for carparking): –/–/–.
 (iii) Non-loadbearing: –/–/–.

(c) **Fire walls:**
 (i) From the direction used as a carpark: 60/60/60.
 (ii) From the direction not used as a carpark: as required by Tables S5C21a to S5C21f.

(d) **Columns:**
 (i) Supporting only the roof (not used for carparking) and 3 m or more from a fire-source feature to which it is exposed: –/–/–.
 (ii) Steel column, other than one covered by (i) and one that does not support a part of a building that is not used as a carpark—
 (A) 60/–/–; or
 (B) an ESA/M of not greater than 26m²/tonne.
 (iii) Any other column not covered by (i) or (ii): 60/–/–.

(e) **Beams:**
 (i) Steel floor beam in continuous contact with a concrete floor slab—
 (A) 60/–/–; or
 (B) an ESA/M of not greater than 30m²/tonne.
 (ii) Any other beam: 60/–/–.

(f) **Lift shaft:** –/–/–.

(g) Fire-resisting stair shaft (within the carpark only): 60/60/60/.

(h) Roof, floor slab and vehicle ramp: –/–/–.

(4) For the purposes of (3), ESA/M means the ratio of exposed surface area to mass per unit length.

S5C23 **Class 2 and 3 buildings: Concession**

[2019: Spec C1.1: 4.3]

(1) In a Class 2 or 3 building with a rise in storeys of not more than 2—
 (a) notwithstanding C2D10(1) and (2), timber framing may be used for—
 (i) external walls; and
 (ii) common walls; and
 (iii) the floor framing of lifts pits; and
(iv) non-loadbearing internal walls which are required to be fire-resisting; and
(v) non-loadbearing shafts, except shafts used for the discharge of hot products of combustion; and

(b) notwithstanding S5C21(1)(d), for loadbearing internal walls and loadbearing fire walls—
(i) timber framing may be used; and
(ii) non-combustible materials may be used.

(2) A Class 2 or 3 building having a rise in storeys of not more than 2 may have the top storey constructed in accordance with (1) provided—
(a) the lowest storey is used solely for the purpose of parking motor vehicles or for some other ancillary purpose; and
(b) the lowest storey is constructed of concrete or masonry including the floor between it and the Class 2 or 3 part of the building above; and
(c) the lowest storey and the storey above are separated by construction having an FRL of not less than 90/90/90 with no openings or penetrations that would reduce the fire-resisting performance of that construction except that a doorway in that construction may be protected by a –/60/30 self-closing fire door.

(3) In a Class 2 or 3 building complying with (1) or (2) and fitted with a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17, any FRL criterion prescribed in Tables S5C21a to S5C21f—
(a) for any loadbearing wall, may be reduced to 60, except any FRL criterion of 90 for an external wall must be maintained when tested from the outside; and
(b) for any non-loadbearing internal wall, need not apply, if—
(i) it is lined on both sides with 13 mm standard grade plasterboard or similar non-combustible material; and
(ii) it extends—
(A) to the underside of the floor next above if that floor has an FRL of at least 30/30/30 or is lined on the underside with a fire-protective covering; or
(B) to the underside of a ceiling with a resistance to the incipient spread of fire of 60 minutes; or
(C) to the underside of a non-combustible roof covering; and
(iii) any insulation installed in the cavity of the wall is non-combustible; and
(iv) any construction joints, spaces and the like between the top of the wall and the floor, ceiling or roof is smoke sealed with intumescent putty or other suitable material.

Type C Fire-Resisting Construction

S5C24 Fire-resistance of building elements

[2019: Spec C1.1: 5.1 and Table 5]

(1) In a building required to be of Type C construction—
(a) a building element listed in Tables S5C24a to S5C24e and any beam or column incorporated in it, must have an FRL not less than that listed in the Table for the particular Class of building concerned; and
(b) an external wall that is required by Tables S5C24a to S5C24e to have an FRL need only be tested from the outside to satisfy the requirement; and
(c) a fire wall or an internal wall bounding a sole-occupancy unit or separating adjoining units must comply with Specification 6 if it is of lightweight construction and is required to have an FRL; and
(d) in a Class 2 or 3 building, an internal wall which is required by Tables S5C24a to S5C24e to have an FRL must extend—
(i) to the underside of the floor next above if that floor has an FRL of at least 30/30/30 or a fire-protective covering on the underside of the floor; or
(ii) to the underside of a ceiling having a resistance to the incipient spread of fire to the space above itself of not less than 60 minutes; or
(iii) to the underside of the roof covering if it is non-combustible, and except for roof battens with dimensions of 75 mm x 50 mm or less or sarking-type material, must not be crossed by timber or other combustible building elements; or

(iv) 450 mm above the roof covering if it is combustible; and

(e) in a Class 2 or 3 building, except where within the one sole-occupancy unit, or a Class 9a health-care building, or a Class 9b building, a floor separating storeys, or above a space for the accommodation of motor vehicles or used for storage or any other ancillary purpose, and any column supporting the floor, must—

(i) have an FRL of at least 30/30/30; or

(ii) have a fire-protective covering on the underside of the floor including beams incorporated in it and around the column, if the floor or column is combustible or of metal; and

(f) in a Class 9c building a floor above a space for the accommodation of motor vehicles or used for storage or any other ancillary purpose, and any column supporting the floor, must—

(i) have an FRL of at least 30/30/30; or

(ii) have a fire-protective covering on the underside of the floor including beams incorporated in it and around the column, if the floor or column is combustible or of metal.

(2) For the purposes of Table S5C24a and Table S5C24b, external wall includes any column and other building element incorporated within it) or other external building element.

(3) For building elements in a carpark as described in (1) and (2), the following minimum FRLs are applicable:

(a) External walls:

 (i) Less than 1.5 m from a fire-source feature to which it is exposed:

 (A) Loadbearing: 60/60/60.

 (B) Non-loadbearing: –/60/60.

 (ii) 1.5 m or more from a fire-source feature to which it is exposed: –/–/–.

(b) Internal walls: –/–/–.

(c) Fire walls:

 (i) From the direction used as a carpark: 60/60/60.

 (ii) From the direction not used as a carpark: 90/90/90.

(d) Columns:

 (i) Steel column less than 1.5 m from a fire-source feature—

 (A) 60/–/–; or

 (B) ESA/M not greater than 26m²/tonne.

 (ii) Any other column not less than 1.5 m from a fire-source feature: 60/–/–.

 (iii) Any other column not covered by (i) or (ii): –/–/–.

(e) Beams:

 (i) Steel floor beam in continuous contact with a concrete floor slab:

 (A) 60/–/–; or

 (B) 60/–/–.

 (ii) Any other beam: –/–/–.

(f) Roof, floor slab and vehicle ramp: –/–/–.

(4) For the purposes of (3), ESA/M means the ratio of exposed surface area to mass per unit length.
Table S5C24a: Type C construction: FRL of parts of external walls

<table>
<thead>
<tr>
<th>Distance from a fire-source feature</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 2, 3 or 4 part</td>
</tr>
<tr>
<td>Less than 1.5 m</td>
<td>90/90/90</td>
</tr>
<tr>
<td>1.5 to less than 3 m</td>
<td>--/--/--</td>
</tr>
<tr>
<td>3 m or more</td>
<td>--/--/--</td>
</tr>
</tbody>
</table>

Table S5C24b: Type C construction: FRL of external columns not incorporated into an external wall

<table>
<thead>
<tr>
<th>Distance from a fire-source feature</th>
<th>FRL (in minutes): structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 2, 3 or 4 part</td>
</tr>
<tr>
<td>Less than 1.5 m</td>
<td>90/--/--</td>
</tr>
<tr>
<td>1.5 to less than 3 m</td>
<td>--/--/--</td>
</tr>
<tr>
<td>3 m or more</td>
<td>--/--/--</td>
</tr>
</tbody>
</table>

Table S5C24c: Type C construction: FRL of common walls and fire walls

<table>
<thead>
<tr>
<th>Wall type</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 2, 3 or 4 part</td>
</tr>
<tr>
<td>Loadbearing or non-loadbearing</td>
<td>90/90/90</td>
</tr>
</tbody>
</table>

Table S5C24d: Type C construction: FRL of internal walls

<table>
<thead>
<tr>
<th>Location</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bounding public corridors, public lobbies and the like</td>
<td>60/60/60 --/--/-- --/--/-- --/--/--</td>
</tr>
<tr>
<td>Between or bounding sole-occupancy units</td>
<td>60/60/60 --/--/-- --/--/-- --/--/--</td>
</tr>
<tr>
<td>Bounding a stair if required to be rated</td>
<td>60/60/60 60/60/60 60/60/60 60/60/60</td>
</tr>
</tbody>
</table>

Table S5C24e: Type C construction: FRL of roof

<table>
<thead>
<tr>
<th>Location</th>
<th>FRL (in minutes): Structural adequacy / Integrity / Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roofs</td>
<td>--/--/--</td>
</tr>
</tbody>
</table>

S5C25 Car Parks

[2019: Spec C1.1: 5.2 and Table 5.2]

(1) Notwithstanding S5C24, a carpark may comply with this clause if it is an open-deck carpark or is protected with a
sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17 and is—
(a) a separate building; or
(b) a part of a building, and if occupying only part of a storey, is separated from the remaining part by a fire wall.

(2) For the purposes of this clause, a carpark—
(a) includes—
 (i) an administration area associated with the functioning of the carpark; and
 (ii) where the carpark is sprinklered, is associated with a Class 2 or 3 building and provides carparking for separate Sole-occupancy units, each carparking area with an area not greater than 10% of its floor area for purposes ancillary to the sole-occupancy units; but
(b) excludes—
 (i) except for (a), any area of another classification, or other part of a Class 7 building not used for carparking; and
 (ii) a building or part of a building specifically intended for the parking of trucks, buses, vans and the like.

(3) For building elements in a carpark as described in (1) and (2), the following minimum FRLs are applicable:
(a) **External walls:**
 (i) Less than 1.5 m from a fire-source feature to which it is exposed:
 (A) **Loadbearing:** 60/60/60.
 (B) **Non-loadbearing:** –/60/60.
 (ii) 1.5 m or more from a fire-source feature to which it is exposed: –/–/–.

(b) **Internal walls:** –/–/–.

(c) **Fire walls:**
 (i) From the direction used as a carpark: 60/60/60.
 (ii) From the direction not used as a carpark: 90/90/90.

(d) **Columns:**
 (i) Steel column less than 1.5 m from a fire-source feature—
 (A) 60/–/–; or
 (B) ESA/M not greater than 26m\(^2\)/tonne.
 (ii) Any other column not less than 1.5 m from a fire-source feature: 60/–/–.
 (iii) Any other column not covered by (i) or (ii): –/–/–.

(e) **Beams:**
 (i) Steel floor beam in continuous contact with a concrete floor slab—
 (A) 60/–/–; or
 (B) 60/–/–.
 (ii) Any other beam: –/–/–.

(f) **Roof, floor slab and vehicle ramp:** –/–/–.

(4) For the purposes of (3), ESA/M means the ratio of exposed surface area to mass per unit length.
S6C1 Scope

This Specification describes tests to be applied to and criteria to be satisfied by a wall system of *lightweight construction*.

S6C2 Application

A wall system need not be tested in accordance with this Specification for static pressure or impact if it is designed and constructed in accordance with the *Deemed-to-Satisfy Provisions* of Part B1 to resist the appropriate pressures and impacts defined in this Specification.

Tests

S6C3 Walls of certain Class 9b buildings

(1) *Lightweight construction* forming—

(a) a wall of a lift *shaft* and stair *shaft*; and

(b) an *external* and *internal wall* bounding a *public corridor*, public lobby or the like, including a *fire-isolated* and non *fire-isolated passageway* or *ramp*,

in spectator stand, sports stadium, cinema or theatre, railway or bus station or airport terminal, must be subjected to the tests and must fulfil the criteria set out in (2).

(2) For the purposes of (1), the following tests and criteria apply:

(a) The materials tests of S6C10(a) and the criteria of S6C11(a).

(b) A static test by the imposition of a uniformly distributed load of 1.0 kPa (or its equivalent) in accordance with S6C10(b) and the damage and deflection criteria of S6C11(b) and (c) respectively.

(c) A dynamic test by the fall of the impact bag through a height of 350 mm in accordance with S6C10(c) and the damage and deflection criteria of S6C11(b) and (d) respectively.

(d) The surface indentation test of S6C10(d) and the surface indentation criterion of S6C11(e).

S6C4 Walls of shafts and fire-isolated exits generally

A wall of *lightweight construction* that is required to be *fire-resisting* and which bounds a lift *shaft*, stair *shaft*, or service *shaft*, *fire-isolated passageway* or *fire-isolated ramp* must be subjected to the following tests and must fulfil the following criteria:

(a) The materials tests of S6C10(a) and the criteria of S6C11(a).

(b) A static test by the imposition of a uniformly distributed load of 0.35 kPa (or its equivalent) in accordance with S6C10(b) and the damage and deflection criteria of S6C11(b) and (c) respectively.

(c) A dynamic test by the fall of the impact bag through a height of 150 mm in accordance with S6C10(c) and the damage and deflection criteria of S6C11(b) and (d) respectively.

(d) The surface indentation test of S6C10(d) and the surface indentation criterion of S6C11(e).
S6C5 Additional requirements for lift shafts

(1) In addition to the requirements of S6C3 and S6C4, a wall system for use in a lift shaft that is required to be fire-resisting must be subjected to dynamic test by the imposition of—
 (a) where the lift car speed is 7 m/s or less — 10^6 cycles of a uniformly distributed load between 0 and 0.2 kPa (or its equivalent); or
 (b) where the lift car speed is greater than 7 m/s — 10^6 cycles of a uniformly distributed load between 0 and 0.35 kPa (or its equivalent) in accordance with S6C10(e) and must fulfil the damage criteria of S6C11(b).

(2) The wall system must be subjected to the static test in accordance with S6C4(b) after the successful conclusion of the dynamic test specified in (1)(a).

S6C6 Walls generally

An external and internal wall of lightweight construction that is required to be fire-resisting, other than one covered by S6C3, S6C4 or S6C5, must be subjected to the following tests and must fulfil the following criteria:
 (a) The materials tests of S6C10(a) and the criteria of S6C11(a).
 (b) A static test by the imposition of a uniformly distributed load of 0.25 kPa (or its equivalent) in accordance with S6C10(b) and the damage and deflection criteria of S6C11(b) and (c) respectively.
 (c) A dynamic test by fall of the impact bag through a height of 100 mm in accordance with S6C10(c) and the damage and deflection criteria of S6C11(b) and (d) respectively.
 (d) The surface indentation test of S6C10(d) and the surface indentation criterion of S6C11(e).

Test Specimens

S6C7 General requirements for testing

Testing must be carried out on either—
 (a) construction in-situ; or
 (b) a laboratory specimen of the construction.

S6C8 Testing in-situ

If testing is carried out in-situ, it must be done on that part of the construction least likely, because of the particular combination of the height of the walls, the support conditions and other aspects of the construction, to resist the loads.

S6C9 Testing of specimens

If a laboratory specimen is tested, the specimen must span only in the direction corresponding to the height of the wall and testing must be done in accordance with either (a) or (b) below:
 (a) The test specimen—
 (i) height (or length, if the specimen is tested horizontally) must be identical with the height between supports in the actual construction; and
(ii) must be supported at the top and bottom (or at each end if tested horizontally) by components identical with, and in a manner identical with, the actual construction.

(b) If the distance between supports of the actual construction is more than 3 m, then a smaller specimen may be tested but—
(i) the distance between supports must be not less than 3 m; and
(ii) forces, reactions and support conditions must be modelled so as to reproduce the behaviour of the actual construction if it were tested in-situ.

Test Methods and Compliance Criteria

S6C10 Test methods

Tests must be carried out in accordance with the following:

(a) Material tests — The methods specified for the constituent materials of the construction of the standards adopted by reference in the BCA.

(b) For resistance to static pressure — The provisions for testing walls under transverse load in ASTM E72-15, except that—
 (i) support conditions must be as specified in S6C9; and
 (ii) equivalent load shall mean the quarter-point load that produces the same deflection or central moment as appropriate; and
 (iii) the timber species nominated in that standard may be substituted with a different species.

(c) For resistance to impact — The provisions for testing wall systems in ASTM E695-03, except that—
 (i) the point of impact must be set 1.5 m above finished floor level or 1.5 m above the part of the specimen that corresponds to finished floor level; and
 (ii) the impact bag must be not less than 225 mm in diameter and not more than 260 mm in diameter and have a mass of not less than 27.2 kg or more than 27.3 kg; and
 (iii) the mass must be achieved by putting loose, dry sand into the bag and must be adjusted before each series of impact tests; and
 (iv) where the impact bag and suspension cannot be vertical at the instant of impact on a curved surface or an inclined surface, the height of drop is the net height at the point of impact.

(d) For resistance to surface indentation — The test for resistance to surface indentation must be carried out at three points on the surface of an undamaged sample sheet as follows:
 (i) A steel ball of 10 mm diameter with a load of 150 N must be placed gently on the surface of the sheet and allowed to remain in position for 5 minutes.
 (ii) The ball and load must then be removed and the diameter of each impression of the ball on the surface measured.

(e) For resistance of lift shaft construction to repetitive load — As for (b) except that—
 (i) it is sufficient to test one specimen with the pressure applied from the side of the construction on which the lift will operate; and
 (ii) the load must be applied dynamically at a frequency not less than 1 Hz and not more than 3 Hz; and
 (iii) equivalent load shall mean the quarter-point load that produces the same central moment as the distributed load.

S6C11 Criteria for compliance

The wall system or the specimen of it must fulfil the following criteria:
(a) Materials — Materials must comply with the applicable standard adopted by reference in the BCA.

(b) Damage — There must be no crack, penetration or permanent surface-deformation to a depth of more than 0.5 mm or any other non-elastic deformation or fastener failure.

(c) Deflection — Static pressure — Under static pressure the deflection must not be more than—
 (i) 1/240th of the height between supports; or
 (ii) for construction other than a lift shaft — 30 mm; or
 (iii) for a lift shaft — 20 mm.

(d) Deflection — Impact — Under impact the instantaneous deflection must not be more than—
 (i) 1/120th of the height of the wall between supports; or
 (ii) for construction other than a lift shaft — 30 mm; or
 (iii) for a lift shaft — 20 mm.

(e) Surface indentation — No impression must be more than 5 mm in diameter.
Specification 7 Fire hazard properties

S7C1 Scope

[2019: Spec C1.10: 1]

This Specification sets out requirements in relation to the fire hazard properties of linings, materials and assemblies in Class 2 to 9 buildings as set out in Table S7C2.

S7C2 Application

[2019: Spec C1.10: 2]

Linings, materials and assemblies must comply with the appropriate requirement described in Table S7C2.

Table S7C2: Fire hazard property requirements

<table>
<thead>
<tr>
<th>Lining, material or assembly</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor linings and floor coverings</td>
<td>S7C3</td>
</tr>
<tr>
<td>Wall linings and ceiling linings</td>
<td>S7C4</td>
</tr>
<tr>
<td>Air-handling ductwork</td>
<td>S7C5</td>
</tr>
<tr>
<td>Lift cars</td>
<td>S7C6</td>
</tr>
<tr>
<td>In fire control rooms subject to Specification 6 and fire isolated</td>
<td></td>
</tr>
<tr>
<td>exits</td>
<td>S7C7</td>
</tr>
<tr>
<td>In Class 9b buildings used as a theatre, public hall or the like —</td>
<td></td>
</tr>
<tr>
<td>fixed seating in the audience area or auditorium; and a proscenium</td>
<td></td>
</tr>
<tr>
<td>curtain required by Specification 32</td>
<td>S7C7</td>
</tr>
<tr>
<td>Escalators, moving walkways and non-required non-fire-isolated</td>
<td></td>
</tr>
<tr>
<td>stairways or pedestrian ramps subject to Specification 14</td>
<td>S7C7</td>
</tr>
<tr>
<td>Sarking-type material</td>
<td>S7C7</td>
</tr>
<tr>
<td>Attachments to internal floors, walls and ceilings</td>
<td>S7C7</td>
</tr>
<tr>
<td>Other materials including insulation</td>
<td>S7C7</td>
</tr>
</tbody>
</table>

S7C3 Floor linings and floor coverings

[2019: Spec C1.10: 3]

A floor lining or floor covering must have—

(a) a critical radiant flux not less than that listed in Table S7C3; and

(b) in a building not protected by a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17, a maximum smoke development rate of 750 percent-minutes; and

(c) a group number complying with S7C6(b), for any portion of the floor covering that is continued more than 150 mm up a wall.
Table S7C3: Critical radiant flux (CHF in kW/m²) of floor linings and floor coverings

<table>
<thead>
<tr>
<th>Class of building</th>
<th>Building not fitted with a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17</th>
<th>Building fitted with a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17</th>
<th>Fire-isolated exits and fire control rooms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 2, 3, 5, 6, 7, 8 or 9b, excluding Class 3 accommodation for the aged and Class 9b as specified below</td>
<td>2.2 kW/m²</td>
<td>1.2 kW/m²</td>
<td>2.2 kW/m²</td>
</tr>
<tr>
<td>Class 3 accommodation for the aged</td>
<td>4.5 kW/m²</td>
<td>2.2 kW/m²</td>
<td>4.5 kW/m²</td>
</tr>
<tr>
<td>Class 9a patient care areas</td>
<td>4.5 kW/m²</td>
<td>2.2 kW/m²</td>
<td>4.5 kW/m²</td>
</tr>
<tr>
<td>Class 9a areas other than patient care areas</td>
<td>2.2 kW/m²</td>
<td>1.2 kW/m²</td>
<td>4.5 kW/m²</td>
</tr>
<tr>
<td>Class 9b auditorium or audience seating area used mainly for indoor swimming or ice skating</td>
<td>1.2 kW/m²</td>
<td>1.2 kW/m²</td>
<td>2.2 kW/m²</td>
</tr>
<tr>
<td>Class 9b auditorium or audience seating area used mainly for other sports or multi-purpose functions</td>
<td>2.2 kW/m²</td>
<td>1.2 kW/m²</td>
<td>2.2 kW/m²</td>
</tr>
<tr>
<td>Class 9c resident use area</td>
<td>N/A</td>
<td>2.2 kW/m²</td>
<td>4.5 kW/m²</td>
</tr>
<tr>
<td>Class 9c areas other than resident use areas</td>
<td>N/A</td>
<td>1.2 kW/m²</td>
<td>4.5 kW/m²</td>
</tr>
</tbody>
</table>

S7C4 Wall and ceiling linings

[2019: Spec C1.10: 4]

(1) A wall or ceiling lining system must comply with the group number specified in Table S7C4 and for buildings not fitted with a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17 have—

(a) a smoke growth rate index not more than 100; or

(b) an average specific extinction area less than 250 m²/kg.

(2) A group number of a wall or ceiling lining and the smoke growth rate index or average specific extinction area must be determined in accordance with AS 5637.1.

Table S7C4: Wall and ceiling lining materials (material groups permitted)

<table>
<thead>
<tr>
<th>Class of building</th>
<th>Fire-isolated exits and fire control rooms</th>
<th>Public corridors</th>
<th>Specific areas</th>
<th>Other areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 2 or 3, unsprinklered, excluding accommodation for the aged, people with disabilities and children</td>
<td>Walls: 1</td>
<td>Walls: 1, 2</td>
<td>Walls: 1, 2, 3</td>
<td>Walls: 1, 2, 3</td>
</tr>
<tr>
<td></td>
<td>Ceilings: 1</td>
<td>Ceilings: 1, 2</td>
<td>Ceilings: 1, 2, 3</td>
<td>Ceilings: 1, 2, 3</td>
</tr>
<tr>
<td>Class 2 or 3, sprinklered, excluding accommodation for</td>
<td>Walls: 1</td>
<td>Walls: 1, 2, 3</td>
<td>Walls: 1, 2, 3</td>
<td>Walls: 1, 2, 3</td>
</tr>
<tr>
<td></td>
<td>Ceilings: 1</td>
<td>Ceilings: 1, 2, 3</td>
<td>Ceilings: 1, 2, 3</td>
<td>Ceilings: 1, 2, 3</td>
</tr>
</tbody>
</table>
Table Notes:

1. "Sprinklered" means a building fitted with a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17.
2. "Specific areas" means within—

 (i) for Class 2 and 3 buildings, a sole-occupancy unit; and
 (ii) for Class 5 buildings, open plan offices with a minimum floor dimension/floor to ceiling height ratio > 5; and
 (iii) for Class 6 buildings, shops or other building with a minimum floor dimension/floor to ceiling height ratio > 5; and
 (iv) for Class 9a health-care buildings, patient care areas; and
 (v) for Class 9b theatres and halls, etc, an auditorium; and
 (vi) for Class 9b schools, a classroom; and
 (vii) for Class 9c buildings, resident use area.

S7C5 Air-handling ductwork

[2019: Spec C1.10: 5]

Rigid and flexible ductwork in a Class 2 to 9 building must comply with the fire hazard properties set out in AS 4254.1 and AS 4254.2.
S7C6 Lift cars

Materials used as—

(a) floor linings and floor coverings must have a critical radiant flux not less than 2.2; and
(b) wall and ceiling linings must be a Group 1 material or a Group 2 material in accordance with AS 5637.1.

NSW S7C7

S7C7 Other materials

Materials and assemblies not included in S7C3, S7C4, S7C5 or S7C6 must not exceed the indices set out in Table S7C7.

Table S7C7: Other materials

<table>
<thead>
<tr>
<th>Material or assembly location</th>
<th>Flammability Index</th>
<th>Spread-of-Flame Index</th>
<th>Smoke-Developed Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire control rooms subject to Specification 19 and fire-isolated exits, other than a Sarking-type material used in a ceiling or used as an attachment or part of an attachment to a building element. Note 1</td>
<td>N/A</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Class 9b buildings used as a theatre, public hall or the like: Any part of fixed seating in the audience area or auditorium.</td>
<td>N/A</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Class 9b buildings used as a theatre, public hall or the like: A proscenium curtain required by Specification 32.</td>
<td>N/A</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Escalators, moving walkways or non-required non fire-isolated stairway or pedestrian ramps subject to Specification 14.</td>
<td>N/A</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Sarking-type material: In a fire control room subject to Specification 19 or a fire-isolated exit or fire control room used in the form of an exposed wall or ceiling.</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Sarking-type material: In other locations. Note 2</td>
<td>5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Other materials or locations and insulation materials other than Sarking-type material. Note 2 and 3</td>
<td>N/A</td>
<td>9</td>
<td>8 if the Spread-of-Flame Index is more than 5</td>
</tr>
</tbody>
</table>
Table Notes:

1. In a fire control room or fire-isolated stairway, a material used as an attachment or part of an attachment to a building element must, if combustible, be attached directly to a non-combustible substrate and not exceed 1 mm finished thickness.

2. A material, other than one located within a fire-isolated exit or fire control room, may be covered on all faces by concrete or masonry not less than 50 mm thick, as an alternative to meeting the specified indices.

3. In the case of a composite member or assembly, the member or assembly must be constructed so that when assembled as proposed in a building—
 a. any material which does not comply with this Table is protected on all sides and edges from exposure to the air; and
 b. the member or assembly, when tested in accordance with Specification 3, has Spread-of-Flame Index and Smoke-Developed Index not exceeding those prescribed in this Table; and
 c. the member or assembly retains the protection in position so that it prevents ignition of the material and continues to screen it from access to free air for a period of not less than 10 minutes.
S8C1 Scope

This Specification contains measures to minimise, in the event of fire, the likelihood of external walls covered by S8C2 collapsing outwards as complete panels and the likelihood of panels separating from supporting members.

S8C2 Application

This Specification applies to buildings having a rise in storeys of not more than 2 with concrete external walls that could collapse as complete panels (e.g. tilt-up and precast concrete) which—

(a) consist of either single or multiple panels attached by steel connections to lateral supporting members; and
(b) depend on those connections to resist outward movement of the panels relative to the supporting members; and
(c) have height to thickness ratio not greater than 50.

S8C3 General requirements for external wall panels

(1) Cast-in inserts and fixings must be anchored into the panel with welded bars or be fixed to the panel reinforcement.

(2) Cast-in inserts for top connections and fixings acting together must be able to resist an ultimate load of two times the larger of the forces required to develop—

(a) the ultimate bending moment capacity of the panel at its base; or
(b) the overturning moment at the base of the panel arising from an outwards lateral displacement at the top of the panel equal to one tenth of the panel height.

(3) Top connections of the panel exposed to fire, such as clips and drilled-in inserts, acting together must be able to resist an ultimate load of six times the larger of the forces required to develop the moment specified in (2)(a) or (b).

(4) Lateral supporting members and their connections must be designed to resist the connection forces specified in (2) and (3) and in the case of an eaves tie member the force in the member must be determined assuming that it deforms in a manner compatible with the lateral displacement of the wall panels, and that it acts in tension only.

(5) External wall panels that span vertically must have at least two upper connections per panel to the supporting member, except that where a number of panels are designed to act as one unit, (e.g. tongue and groove hollow-core panels), only two upper connections are required for each unit.

(6) External wall panels that span horizontally between columns must have at least two connections at each column.

(7) Connections providing lateral support to a panel must be designed to remain engaged to the supported panel both before and during a fire.

Notes:
The increased forces specified by the multiplier of two or six in (2) and (3) above are to take account of the lower strength of the connections and members at the higher than ambient temperatures expected in a fire.
S8C4 Additional requirements for vertically spanning external wall panels adjacent to columns

[2019: Spec C1.11: 4]

(1) Where vertically spanning external wall panels are located adjacent to columns, connections to the panels must be located and/or detailed to minimise forces that may develop between the panels and columns arising from the restraint of differential displacement.

(2) The requirements of (1) are satisfied by—

(a) detailing the connections and/or the supporting member to sustain a relative outward displacement of (d) between the panels and columns at the connection height where d(m) is calculated as—

(i) the square of the connection height (m) divided by one hundred and twenty-five, when the connection height is less than 5 m; or

(ii) the connection height (m) divided by twenty-five, when the connection height (m) is greater than or equal to 5 m; or

(b) in situations where an eaves tie member is used to provide lateral support to external wall panels, the tie member is connected to the panels no closer than a distance (s) from the column where s(m) is taken as one quarter of the panel height (m).
S9C1 Scope

This Specification sets out requirements for cavity barriers in fire-protected timber construction.

S9C2 Requirements

(1) Cavity barriers must be provided in the following locations where fire-protected timber is used in any of the listed elements:
 (a) At concealed cavities adjacent to junctions between fire-resisting floor/ceiling assemblies and fire-resisting walls.
 (b) At concealed cavities adjacent to junctions between fire-resisting floor/ceiling assemblies and fire-resisting or non-combustible external walls.
 (c) At concealed cavities adjacent to junctions between fire-resisting walls and fire-resisting or non-combustible external walls.
 (d) Around the perimeter of door and window openings in fire-resisting construction.

(2) Cavity barriers must be installed so they are tight fitting and are able to withstand thermal expansion and structural movement without the loss of seal against fire and smoke.

(3) In addition to cavity barriers required by (1), horizontal and vertical cavity barriers are to be provided to wall cavities within, around or adjacent to fire-protected timber elements as follows:
 (a) Horizontal cavity barriers — at not more than 5 m centres.
 (b) Vertical cavity barriers — at not more than 10 m centres.

(4) Cavity barriers must—
 (a) achieve the performance specified in Table S9C2 based on the highest FRL of the elements they are mounted within or seal against; or
 (b) consist of—
 (i) timber with the minimum thickness specified in Table S9C2; or
 (ii) polythene-sleeved mineral wool or mineral wool slabs or strips placed under compression to achieve the minimum thickness specified in Table S9C2.

(5) Cavity barriers provided around openings may be formed by the window or door frame if—
 (a) the frame is constructed of steel or timber with the minimum thickness specified in Table S9C2 for timber; and
 (b) the frame is tightly fitted to rigid construction and mechanically fixed in position.

(6) The FRL of cavity barriers in fire-protected timber construction must be determined in accordance with Specifications 1 and 2 applying the criteria for control joint systems specified in Section 10 of AS 1530.4 with the cavity barrier system fitted within an opening between timber members exposed directly to the furnace heating conditions.

(7) Notwithstanding anything to the contrary in Specifications 1 and 2 or AS 1530.4, the test results from (6) may be used when the fire-protected timber is constructed from timber having a nominal density at least equal to the tested timber.

Table S9C2: Cavity barrier requirements

<table>
<thead>
<tr>
<th>System required FRL</th>
<th>FRL requirement</th>
<th>System required FRL</th>
<th>FRL requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity barrier</td>
<td>–/60/60 or –/90/90</td>
<td>Timber, required</td>
<td>–/120/120, –/180/180 or –/240/240</td>
</tr>
<tr>
<td>FRL</td>
<td>–/60/60</td>
<td>FRL</td>
<td>–/60/60</td>
</tr>
<tr>
<td>Timber, required</td>
<td>45 mm</td>
<td>Minimum thickness</td>
<td>60 mm</td>
</tr>
</tbody>
</table>
Table Notes:

Minimum thicknesses are to be measured in the direction of heat flow.

<table>
<thead>
<tr>
<th>System required FRL</th>
<th>−/60/60 or −/90/90</th>
<th>−/120/120, −/180/180 or −/240/240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral wool, required minimum</td>
<td>45 mm</td>
<td>60 mm</td>
</tr>
</tbody>
</table>
Specification 10 Fire-protected timber

S10C1 Scope

This Specification contains requirements for fire-protected timber and procedures for determining the time at which the temperature at the interface between the protection system and the timber is exceeded.

Requirements

S10C2 General requirements

[2019: Spec C1.13a: 2.1]

(1) Fire-protected timber must—
 (a) utilise a non-combustible fire-protective covering fixed in accordance with the system requirements to achieve an FRL not less than that required for the building element; and
 (b) have a non-combustible fire-protective covering fixed in accordance with system requirements—
 (i) to achieve a resistance to the incipient spread of fire of not less than 45 minutes when tested in accordance with—
 (A) for horizontal elements — Section 4 of AS 1530.4; and
 (B) for other elements — the relevant test procedures from Section 4 of AS 1530.4 applied to the element lining; or
 (ii) which consists of not less than 2 layers of 13 mm thick, fire-protective grade plasterboard.

(2) For the purposes of (1), the non-combustible fire-protective covering provided under (1)(b) may form all or part of the non-combustible fire-protective covering provided under (1)(a).

S10C3 Massive timber

[2019: Spec C1.13a: 2.2]

(1) Fire-protected timber, where the timber is massive timber, need not comply with S10C2 if the fire-protected timber—
 (a) utilises a non-combustible fire-protective covering fixed in accordance with system requirements to achieve an FRL not less than that required for the building element; and
 (b) has a non-combustible fire-protective covering fixed in accordance with system requirements—
 (i) so as the temperature at the interface between the protection system and the timber does not exceed 300°C during a fire resistance test performed in accordance with S10C3 for the application and periods listed in Table S10C3; or
 (ii) not less than that specified by Table S10C3; and
 (c) has any cavity filled with non-combustible insulation, or no cavity, between—
 (i) the surface of the timber and the fire-protective covering; or
 (ii) timber elements within the fire-protective covering.

(2) For the purposes of (1), the non-combustible fire-protective covering provided under (1)(b) may form all or part of the non-combustible fire-protective covering provided under (1)(a).
Form of test

(1) Tests must be carried out in accordance with the Standard Fire Test, or an equivalent or more severe test, on the timber element with the proposed non-combustible coverings fixed in a representative manner, with the time the timber interface temperatures exceeded 300°C confirmed in a report from an Accredited Testing Laboratory.

(2) If a fire protection system incorporates joints, the test specimens must incorporate representative joints.

(3) Interface temperatures must be measured over the following features by a minimum of two thermocouples:
 - At joint positions in the protection systems.
 - At least 200 mm from any joint.
 - At service penetrations.
 - At any other locations where, in the opinion of the Accredited Testing Laboratory, the interface temperature may be higher than the above positions.

(4) The temperatures must be measured in accordance with Appendix C1 and Section 2 of AS 1530.4 as appropriate.

Smaller specimen permitted

An Accredited Testing Laboratory may carry out the test specified in S10C4 at pilot scale provided—

(a) a specimen (which must be not less than 1000 mm x 1000 mm) adequately represents the proposed construction in the building; and

(b) the fire resistance of the specimen has already been determined in a full scale test performed in accordance with AS 1530.4 to demonstrate adequate retention of the fire protection system in conjunction with the timber elements being protected; and

(c) the results of the test do not apply to construction larger than limits defined by the Accredited Testing Laboratory conducting the pilot examination.

Acceptance criteria

The time the timber interface temperature exceeds 300°C must be taken as the minimum time any of the thermocouples specified in S10C4 exceeded 300°C.
Specification 11 Smoke-proof walls in health-care and residential care buildings

S11C1 Scope

[2019: Spec C2.5: 1]

1. This Specification sets out requirements for the construction of smoke-proof walls in Class 9a health-care buildings and Class 9c buildings.
2. Smoke proof walls required to have an FRL are to be in accordance with A5G4.

S11C2 Class 9a health-care buildings

[2019: Spec C2.5: 2]

Smoke-proof walls **required** by C3D6 in Class 9a health-care buildings must comply with the following:

(a) Be **non-combustible** and extend to the underside of—
 (i) the floor above; or
 (ii) a **non-combustible** roof covering; or
 (iii) a ceiling having a *resistance to the incipient spread of fire* to the space above itself of not less than 60 minutes.

(b) Not incorporate any glazed areas unless the glass is safety glass as defined in AS 1288.

(c) Only have doorways which are fitted with smoke doors complying with Specification 12.

(d) Have all openings around penetrations and the junctions of the smoke-proof wall and the remainder of the building stopped with **non-combustible** material to prevent the free passage of smoke.

(e) Incorporate smoke dampers where air-handling ducts penetrate the wall unless the duct forms part of a smoke hazard management system **required** to continue air movement through the duct during a fire.

S11C3 Class 9c buildings

[2019: Spec C2.5: 3]

Smoke-proof walls **required** by C3D6 in Class 9c buildings must comply with the following:

(a) The wall may be lined on one side only.

(b) Linings on the wall must be **non-combustible** and extend to the underside of—
 (i) the floor above; or
 (ii) a **non-combustible** roof covering; or
 (iii) a flush plasterboard ceiling lined with 13 mm standard grade plasterboard or a fire-protective covering, with all penetrations sealed against the free passage of smoke.

(c) If plasterboard is used in the lining on a wall, it must be a minimum of 13 mm standard grade plasterboard.

(d) Not incorporate any glazed areas unless the glass is safety glass as defined in AS 1288.

(e) Only have doorways which are fitted with smoke doors complying with Specification 12.

(f) Have all openings around penetrations and the junctions of the smoke-proof wall and the remainder of the building stopped with **non-combustible** material to prevent the free passage of smoke.

(g) Incorporate smoke dampers where air-handling ducts penetrate the wall unless the duct forms part of a smoke hazard management system **required** to continue air movement through the duct during a fire.
S11C4 Doorways in smoke-proof walls

A door required by C3D6 or this Specification to be smoke-proof or have an FRL, other than one that serves a fire compartment provided with a zone pressurisation system in accordance with AS 1668.1, must provide a smoke reservoir by not extending within 400 mm of the underside of—

(a) a roof covering; or
(b) the floor above; or
(c) an imperforate false ceiling that will prevent the free passage of smoke.
S12C1 Scope

This Specification sets out requirements for the construction of fire doors, smoke doors, fire windows and fire shutters.

S12C2 Fire doors

A required fire door must—

(a) comply with AS 1905.1; and
(b) not fail by radiation through any glazed part during the period specified for integrity in the required FRL.

Smoke Doors

S12C3 General requirements for smoke doors

Smoke doors must be constructed so that smoke will not pass from one side of the doorway to the other and, if they are glazed, there is minimal danger of a person being injured by accidentally walking into them.

S12C4 Construction Deemed-to-Satisfy

A smoke door of one or two leaves satisfies S12C3 if it is constructed as follows:

(a) The leaves are side-hung to swing—
 (i) in the direction of egress; or
 (ii) in both directions.

(b) The leaves are solid-core and at least 35 mm thick, or are capable of resisting smoke at 200°C for 30 minutes.

(c) The leaves are fitted with smoke seals.

(d) The leaves—
 (i) are normally in the closed position; or
 (ii) operate such that—
 (A) they are closed automatically with the automatic closing operation initiated by smoke detectors, installed in accordance with the relevant provisions of AS 1670.1, located on each side of the doorway not more than 1.5 m horizontal distance from the doorway; and
 (B) in the event of power failure to the door, they will fail-safe in the closed position.

(e) The leaves return to the fully closed position after each manual opening.

(f) Any glazing incorporated in the door complies with AS 1288.

(g) If a glazed panel is capable of being mistaken for an unobstructed exit, the presence of the glass must be identified by an opaque mid-height band, mid-rail, crash-bar or other opaque construction.
Fire Shutters and Fire Windows

S12C5 Fire shutters

A required fire shutter must—

(a) a shutter that—
 (i) is identical with a tested prototype that has achieved the required FRL; and
 (ii) is installed in the same manner and in an opening that is not larger than the tested prototype; and
 (iii) did not have a rise in average temperature on the side remote from the furnace of more than 140 K during
 the first 30 minutes of the test; or

(b) a steel shutter complying with AS 1905.2 if a metallic fire shutter is not prohibited by C4D6.

S12C6 Fire windows

A required fire window must be—

(a) identical in construction with a prototype that has achieved the required FRL; and

(b) installed in the same manner and in an opening that is not larger than the tested prototype.
S13C1 Scope

This Specification prescribes materials and methods of installation for services that penetrate walls, floors and ceilings required to have an FRL.

S13C2 Application

(1) This Specification applies to installations permitted under the Deemed-to-Satisfy Provisions of the BCA as alternatives to systems that have been demonstrated by test to fulfil the requirements of C4D15(2)(a).

(2) This Specification does not apply to installations in ceilings required to have a resistance to the incipient spread of fire nor to the installation of piping that contains or is intended to contain a flammable liquid or gas.

S13C3 Metal pipe systems

(1) A pipe system comprised entirely of metal (excluding pipe seals or the like) that is not normally filled with liquid must not be located within 100 mm, for a distance of 2 m from the penetration, of any combustible building element or a position where combustible material may be located, and must be constructed of—
 (a) copper alloy or stainless steel with a wall thickness of at least 1 mm; or
 (b) cast iron or steel (other than stainless steel) with a wall thickness of at least 2 mm.

(2) An opening for a pipe system comprised entirely of metal (excluding pipe seals or the like) must—
 (a) be neatly formed, cut or drilled; and
 (b) be no closer than 200 mm to any other service penetration; and
 (c) accommodate only one pipe.

(3) A pipe system comprised entirely of metal (excluding pipe seals or the like) must be wrapped but must not be lagged or enclosed in thermal insulation over the length of its penetration of a wall, floor or ceiling unless the lagging or thermal insulation fulfils the requirements of S13C7.

(4) The gap between a metal pipe and the wall, floor or ceiling it penetrates must be fire-stopped in accordance with S13C7.

S13C4 Pipes penetrating sanitary compartments

If a pipe of metal or UPVC penetrates the floor of a sanitary compartment in accordance with C4D15(2)(c)(ii)—
 (a) the opening must be neatly formed and no larger than is necessary to accommodate the pipe or fitting; and
 (b) the gap between pipe and floor must be fire-stopped in accordance with S13C7.

S13C5 Wires and cables

If a wire or cable or cluster of wires or cables penetrates a floor, wall or ceiling—
 (a) the opening must be neatly formed, cut or drilled and no closer than 50 mm to any other service; and
(b) the opening must be no larger in cross-sectional area than—
 (i) 2000 mm2 if only a single cable is accommodated and the gap between cable and wall, floor or ceiling is no wider than 15 mm; or
 (ii) 500 mm2 in any other case; and
(c) the gap between the service and the wall, floor or ceiling must be fire-stopped in accordance with S13C7.

S13C6 Electrical switches and outlets

If an electrical switch, outlet, socket or the like is accommodated in an opening or recess in a wall, floor or ceiling—

(a) the opening or recess must not—
 (i) be located opposite any point within 300 mm horizontally or 600 mm vertically of any opening or recess on the opposite side of the wall; or
 (ii) extend beyond half the thickness of the wall; and
(b) the gap between the service and the wall, floor or ceiling must be fire-stopped in accordance with S13C7.

S13C7 Fire-stopping

1. Material: The material used for the fire-stopping of service penetrations must be concrete, high-temperature mineral fibre, high-temperature ceramic fibre or other material that does not flow at a temperature below 1120°C when tested in accordance with ISO 540, and must have—
 (a) demonstrated in a system tested in accordance with C4D15(2)(a) that it does not impair the fire-resisting performance of the building element in which it is installed; or
 (b) demonstrated in a test in accordance with (5) that it does not impair the fire-resisting performance of the test slab.

2. Installation: Fire-stopping material must be packed into the gap between the service and wall, floor or ceiling in a manner, and compressed to the same degree, as adopted for testing under (1)(a) or (b).

3. Hollow construction: If a pipe penetrates a hollow wall (such as a stud wall, a cavity wall or a wall of hollow blockwork) or a hollow floor/ceiling system, the cavity must be so framed and packed with fire-stopping material that is—
 (a) installed in accordance with (2) to a thickness of 25 mm all round the service for the full length of the penetration; and
 (b) restrained, independently of the service, from moving or parting from the surfaces of the service and of the wall, floor or ceiling.

4. Recesses: If an electrical switch, socket, outlet or the like is accommodated in a recess in a hollow wall or hollow floor/ceiling system—
 (a) the cavity immediately behind the service must be framed and packed with fire-stopping material in accordance with (3); or
 (b) the back and sides of the service must be protected with refractory lining board identical with and to the same thickness as that in which the service is installed.

5. Test: The test to demonstrate compliance of a fire-stopping material with this Specification must be conducted as follows:
 (a) The test specimen must comprise a concrete slab not less than 1 m square and not more than 100 mm thick, and appropriately reinforced if necessary for structural adequacy during manufacture, transport and testing.
 (b) The slab must have a hole 50 mm in diameter through the centre and the hole must be packed with the fire-stopping material.
 (c) The slab must be conditioned in accordance with AS 1530.4.
 (d) Two thermocouples complying with AS 1530.4 must be attached to the upper surface of the packing each about 5 mm from its centre.
(e) The slab must be tested on flat generally in accordance with Section 10 of AS 1530.4 and must achieve an FRL of 60/60/60 or as otherwise required.
Section D Access and egress

Part D1 Access and egress – Performance Requirements

Objectives
D1O1 Objective

Functional Statements
D1F1 Access
D1F2 Egress

Performance Requirements
D1P1 Access for people with a disability
D1P2 Safe movement to and within a building
D1P3 Fall prevention barriers
D1P4 Exits
D1P5 Fire-isolated exits
D1P6 Paths of travel to exits
D1P7 Evacuation lifts
D1P8 Carparking for people with a disability
D1P9 Communication systems for people with hearing impairment

Verification Methods
D1V1 Wire barriers
D1V2 Access to and within a building
D1V3 Ramp gradient, crossfall, surface profile and slip resistance for ramps used by wheelchairs
D1V4 Fire Safety Verification Method

Part D2 Provision for escape

Deemed-to-Satisfy Provisions
D2D1 Deemed-to-Satisfy Provisions
D2D2 Application of Part
D2D3 Number of exits required
D2D4 When fire-isolated stairways and ramps are required
D2D5 Exit travel distances
D2D6 Distance between alternative exits
D2D7 Height of doorways in exits and paths of travel to exits
D2D8 Width of exits and paths of travel to exits
D2D9 Width of doorways in exits or paths of travel to exits
D2D10 Exit width not to diminish in direction of travel
D2D11 Determination and measurement of exits and paths of travel to exits
D2D12 Travel via fire-isolated exits
D2D13 External stairways or ramps in lieu of fire-isolated exits

NCC 2022 Volume One - Building Code of Australia
Part D3

Construction of exits

Deemed-to-Satisfy Provisions

D3D1 Deemed-to-Satisfy Provisions
D3D2 Application of Part
D3D3 Fire-isolated stairways and ramps
D3D4 Non-fire-isolated stairways and ramps
D3D5 Separation of rising and descending stair flights
D3D6 Open access ramps and balconies
D3D7 Smoke lobbies
D3D8 Installations in exits and paths of travel
D3D9 Enclosure of space under stairs and ramps
D3D10 Width of required stairways and ramps
D3D11 Pedestrian ramps
D3D12 Fire-isolated passageways
D3D13 Roof as open space
D3D14 Goings and risers
D3D15 Landings
D3D16 Thresholds
D3D17 Barriers to prevent falls
D3D18 Height of barriers
D3D19 Openings in barriers
D3D20 Barrier climbability
D3D21 Wire barriers
D3D22 Handrails
D3D23 Fixed platforms, walkways, stairways and ladders
D3D24 Doorways and doors
D3D25 Swinging doors
D3D26 Operation of latch
D3D27 Re-entry from fire-isolated exits
Part D4 Access for people with a disability
Deemed-to-Satisfy Provisions

D4D1 Deemed-to-Satisfy Provisions
D4D2 General building access requirements
D4D3 Access to buildings
D4D4 Parts of buildings to be accessible
D4D5 Exemptions
D4D6 Accessible carparking
D4D7 Signage
D4D8 Hearing augmentation
D4D9 Tactile indicators
D4D10 Wheelchair seating spaces in Class 9b assembly buildings
D4D11 Swimming pools
D4D12 Ramps
D4D13 Glazing on an accessway

Specification 14 Non-required stairways, ramps and escalators
S14C1 Scope
S14C2 Requirements

Specification 15 Braille and tactile signs
S15C1 Scope
S15C2 Location of braille and tactile signs
S15C3 Braille and tactile sign specification
S15C4 Luminance contrast
S15C5 Lighting
S15C6 Braille

Specification 16 Accessible water entry/exit from swimming pools
S16C1 Scope
S16C2 Fixed or moveable ramp
S16C3 Zero depth entry
S16C4 Platform swimming pool lift
S16C5 Sling-style swimming pool lift
S16C6 Aquatic wheelchair
Introduction to this Part

This Part focuses on specifying the number and location of fire exits; construction of exits to enable safe evacuation; and, providing access to and within buildings for people with disability. It also includes measures intended to reduce slips, trips and falls.

Objectives

D1O1 Objective

The Objective of this Section is to—

(a) provide, as far as is reasonable, people with safe, equitable and dignified access to—
 (i) a building; and
 (ii) the services and facilities within a building; and

(b) safeguard occupants from illness or injury while evacuating in an emergency.

Functional Statements

D1F1 Access

A building is to provide, as far as is reasonable—

(a) safe; and

(b) equitable and dignified,

access for people to the services and facilities within.

Limitations:
D1F1(b) does not apply to a Class 4 part of a building.

D1F2 Egress

A building is to be provided with means of evacuation which allow occupants time to evacuate safely without being overcome by the effects of an emergency.

Limitations:
D1F2 does not apply to the internal parts of a sole-occupancy unit in a Class 2 or 3 building or Class 4 part of a building.
D1P1 Access for people with a disability

Access must be provided, to the degree necessary, to enable—

(a) people to—
 (i) approach the building from the road boundary and from any accessible carparking spaces associated with the building; and
 (ii) approach the building from any accessible associated building; and
 (iii) access work and public spaces, accommodation and facilities for personal hygiene; and
(b) identification of accessways at appropriate locations which are easy to find.

Limitations:
D1P1 does not apply to a Class 4 part of a building.

D1P2 Safe movement to and within a building

So that people can move safely to and within a building, it must have—

(a) walking surfaces with safe gradients; and
(b) any doors installed to avoid the risk of occupants—
 (i) having their egress impeded; or
 (ii) being trapped in the building; and
(c) any stairways and ramps with—
 (i) slip-resistant walking surfaces on—
 (A) ramps; and
 (B) stairway treads or near the edge of the nosing; and
 (ii) suitable handrails where necessary to assist and provide stability to people using the stairway or ramp; and
 (iii) suitable landings to avoid undue fatigue; and
 (iv) landings where a door opens from or onto the stairway or ramp so that the door does not create an obstruction; and
 (v) in the case of a stairway, suitable safe passage in relation to the nature, volume and frequency of likely usage.

D1P3 Fall prevention barriers

(1) A barrier must be provided where people could fall—

(a) 1 m or more—
 (i) from a floor or roof or through an opening (other than through an openable window) in the external wall of a building; or
 (ii) due to a sudden change of level within or associated with a building; or
(b) 2 m or more from a floor through an openable window—
 (i) in a bedroom in a Class 2 or 3 building or a Class 4 part of a building; or
 (ii) in a Class 9b early childhood centre; or
(c) 4 m or more from a floor through an openable window not covered by (b).
(2) A barrier required by (1) must be—
 (a) continuous and extend for the full extent of the hazard; and
 (b) of a height to protect people from accidentally falling from the floor or roof or through the opening or openable window; and
 (c) constructed to prevent people from falling through the barrier; and
 (d) capable of restricting the passage of children; and
 (e) of strength and rigidity to withstand—
 (i) the foreseeable impact of people; and
 (ii) where appropriate, the static pressure of people pressing against it.

Limitations:
(1) D1P3 does not apply where such barrier would be incompatible with the intended use of an area such as a stage, loading dock or the like.
(2) D1P3(2)(d) does not apply to—
 (a) fire-isolated stairways, fire-isolated ramps, and other areas used primarily for emergency purposes, excluding external stairways and ramps; and
 (b) Class 7 (other than carparks) and Class 8 buildings and parts of buildings containing those classifications.

D1P4 Exits

Exits must be provided from a building to allow occupants to evacuate safely, with their number, location and dimensions being appropriate to—
 (a) the travel distance; and
 (b) the number, mobility and other characteristics of occupants; and
 (c) the function or use of the building; and
 (d) the height of the building; and
 (e) whether the exit is from above or below ground level.

D1P5 Fire-isolated exits

To protect evacuating occupants from a fire in the building exits must be fire-isolated, to the degree necessary, appropriate to—
 (a) the number of storeys connected by the exits; and
 (b) the fire safety system installed in the building; and
 (c) the function or use of the building; and
 (d) the number of storeys passed through by the exits; and
 (e) fire brigade intervention.

D1P6 Paths of travel to exits

So that occupants can safely evacuate the building, paths of travel to exits must have dimensions appropriate to—
 (a) the number, mobility and other characteristics of occupants; and
 (b) the function or use of the building.
D1P6 Access and egress

Limitations:
D1P6 does not apply to the internal parts of a sole-occupancy unit in a Class 2 or 3 building or Class 4 part of a building.

D1P7 Evacuation lifts

[2019: DP7]

Where a lift is intended to be used in addition to the required exits to assist occupants to evacuate a building safely, the type, number, location and fire-isolation must be appropriate to—
(a) the travel distance to the lift; and
(b) the number, mobility and other characteristics of occupants; and
(c) the function or use of the building; and
(d) the number of storeys connected by the lift; and
(e) the fire safety system installed in the building; and
(f) the waiting time, travel time and capacity of the lift; and
(g) the reliability and availability of the lift; and
(h) the emergency procedures for the building.

D1P8 Carparking for people with a disability

[2019: DP8]

Carparking spaces for use by people with a disability must be—
(a) provided, to the degree necessary, to give equitable access for carparking; and
(b) designated and easy to find.

Limitations:
D1P8 does not apply to a building where—
(a) a parking service is provided; and
(b) direct access to any carparking spaces by the general public or occupants is not available.

D1P9 Communication systems for people with hearing impairment

[2019: DP9]

An inbuilt communication system for entry, information, entertainment, or for the provision of a service, must be suitable for occupants who are deaf or hearing impaired.

Limitations:
D1P9 does not apply to—
(a) a Class 4 part of a building; or
(b) an inbuilt communication system used only for emergency warning purposes.

TAS D1P10
Verification Methods

D1V1 Wire barriers

Compliance with D1P3(2)(c) and (d) for wire barriers is verified when the wire barrier passes the test described below:

(a) Application — the test must be carried out on either—
 (i) a prototype of a wire barrier that is identical to that proposed to be installed on-site; or
 (ii) a wire barrier installed on-site.

(b) Test equipment — the test equipment must consist of the following:
 (i) A horizontally suspended 125 mm diameter, 405 mm long cylinder of 1 mm thick steel having a highly polished 105 mm long cone at one end with a 20 mm diameter flat leading edge to which an eye bolt is fixed.
 (ii) A sufficiently flexible horizontal cable with mechanisms capable of applying and measuring a tension of 150 N (or a 15.3 kg weight suspended over a low friction pulley) is to be attached to the eye bolt (see Figure D1V1).
 (iii) A mechanism capable of measuring the tension force applied to each wire.

(c) Test procedure — the test procedure must be as follows:
 (i) Tension the wires, within their safe load, to the same tension in all wires and measure the tensions with a strain indicator.
 (ii) For—
 (A) horizontal or near horizontal wires, position the cone against a pair of wires at the mid-span between supports, then apply the 150 N tension force to the cone; and
 (B) vertical wires, position the cone against a pair of wires at the mid-span between supporting rails, then apply the 150 N tension force to the cone; and
 (C) near-vertical wires, position the cone against a pair of wires at the widest opening between the wires, then apply the 150 N tension force to the cone.
 (iii) Attempt to pull the cone through the gap between the wires under the 150 N load, and—
 (A) increase the tension in the wires and repeat (ii) until such time as the cone will not pull through; or
 (B) if it does not pull through, reduce the tension in the wires and repeat step (ii); and
 (iv) When the cone is just prevented from pulling through the gap, the wires are at the correct tension in which case the cone is withdrawn and the tension recorded.
 (v) Reduce the tension in the wires and repeat steps (ii) to (iv) twice more, recording the tension in each case after the cone has been removed and then calculate the average of the three tensions as the required tension for each wire.
 (vi) For prototype tests of horizontal or near horizontal wires, record the deflection of each wire at the average tension calculated in accordance with (v) when a 2 kg mass is hung at mid-span between supports.

(d) Test report — the test report must include the following information:
 (i) The name and address of the person supervising the test.
 (ii) The test report number.
 (iii) The date of the test.
 (iv) The wire manufacturer’s name and address, and specifications of the wires used in the test including the safe load limit of the wires.
 (v) The construction details of the test specimen, including a description and drawings and details of the components including supports, post or railing spacings and wire spacings.
 (vi) For a prototype test, the required tension calculated in accordance with (c)(v).
 (vii) For prototype tests of horizontal or near horizontal wires, the deflection measured in accordance with (c)(vi).
Compliance with D1P1, D1P2, D1P6, E3P4 and/or F2P1, for access, is verified when it is determined that the proposed building provides an equivalent level of access as a reference building when using the following process:

(a) A performance-based design brief is completed to define the following:
 (i) The occupant profile and characteristics based on the type and use of the building.
 (ii) The appropriate method for determining the level of access.
 (iii) The appropriate modelling method and tool.
 (iv) The measurable acceptance criteria.

(b) Using the appropriate method, the level of access required is determined by first modelling a reference building using the relevant Deemed-to-Satisfy Provisions of Sections D, E and F and the occupant profile and characteristics to determine the—
 (i) needs of the occupants that the reference building addresses; and
 (ii) facilities required to be accessed by each occupant profile; and
 (iii) baseline measurable acceptance criteria.

(c) The proposed building and access solution must be modelled using a modelling method and approach consistent with that used for the reference building, and the same critical features including the following:
 (i) Occupant profile and characteristics.
 (ii) Building location and orientation.
 (iii) Locations of all entrances and exits.
 (iv) Locations of facilities important to the solution, including sanitary facilities, lifts, stairwells, etc.
 (v) The number and range of facilities.

(d) The proposed solution's level of access is assessed by modelling occupant performance using characteristics, whereby the proposed building provides for equivalent access appropriate to the needs of each occupant profile.
D1V3 Ramp gradient, crossfall, surface profile and slip resistance for ramps used by wheelchairs

[2019: DV3]

(1) Compliance with **Performance Requirement D1P2**, relating to gradient, crossfall, surface profile and slip resistance of a ramp for the use of wheelchairs is verified when—
 (a) the ramp has a gradient that is not steeper than 1:8; and
 (b) the pushing force required to accelerate a wheelchair and user during ascent is in accordance with (2); and
 (c) the required braking force for a wheelchair and user during descent is in accordance with (3); and
 (d) the projected ascent time is in accordance with (4); and
 (e) the ramp crossfall, surface profile and slip resistance is in accordance with (5).

(2) The pushing force during ascent must be in accordance with the formula:

\[F_p > mg \sin \alpha + C_{\pi 1} N_1 + C_{\pi 2} N_2 \]

where—

- \(F_p \) = the maximum force during ascent, equal to 40 N for ramps required to be usable by the general public; and
- \(m \) = the design mass of the wheelchair and wheelchair user, equal to 127 kg for ramps required to be usable by the general public; and
- \(\vartheta \) = the gravitational constant, equal to 9.8 m/s\(^2\); and
- \(\alpha \) = the angle of incline of the ramp; and
- \(C_{\pi 1}, C_{\pi 2} \) = the coefficient of rolling resistance between the wheelchair wheel and the ramp surface, for the wheels and front wheels respectively; and
- \(N_1, N_2 \) = the normal force between the wheelchair wheels and ramp surface, for rear wheels and front wheels respectively.

(3) The braking force during descent must be less than 9 N when calculated in accordance with the formula:

\[F_b = mg \sin \alpha - C_{\pi 1} N_1 - C_{\pi 2} N_2 \]

where—

- \(F_b \) = the braking force during descent; and
- \(m \) = the design mass of the wheelchair and wheelchair user, equal to 127 kg for ramps required to be usable by the general public; and
- \(\vartheta \) = the gravitational constant, equal to 9.8 m/s\(^2\); and
- \(\alpha \) = the angle of incline of the ramp; and
- \(C_{\pi 1}, C_{\pi 2} \) = the coefficient of rolling resistance between the wheelchair wheel and ramp surface, for the rear wheels and front wheels respectively; and
- \(N_1, N_2 \) = the normal force between the wheelchair wheels and ramp surface, for rear wheels and front wheels respectively.

(4) The time taken to ascend the ramp must be less than 17 s when calculated in accordance with the formula:

\[T = \frac{Lm}{t(F_p - mg \sin \alpha - C_{\pi 1} N_1 - C_{\pi 2} N_2)} \]

where—

- \(T \) = the time taken to ascend the ramp in seconds; and
- \(L \) = the length of the ramp in metres; and
\[m = \text{the design mass of the wheelchair and wheelchair user, equal to 127 kg for ramps required to be useable by the general public; and} \]

\[t = \text{the time taken for the wheelchair to achieve maximum velocity, equal to 0.8 m/s; and} \]

\[F_p = \text{the maximum pushing force during ascent, equal to 40 N for ramps required to be useable by the general public; and} \]

\[g = \text{the gravitational constant, equal to 9.8 m/s}^2; \text{and} \]

\[\alpha = \text{the angle of incline of the ramp; and} \]

\[C_{\pi 1}, C_{\pi 2} = \text{the coefficient of rolling resistance between the wheelchair wheel and ramp surface, for the rear wheels and front wheels respectively; and} \]

\[N_1, N_2 = \text{the normal force between wheelchair wheels and ramp surface, for the rear wheels and front wheels respectively.} \]

(5) The crossfall must be no steeper than, the surface profile must be no rougher than, and the slip resistance must be no less than, the values nominated in Table D1V3 for the gradient of the ramp.

<table>
<thead>
<tr>
<th>Gradient</th>
<th>Crossfall</th>
<th>Surface profile (mm)</th>
<th>Slip resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:14</td>
<td>1:40</td>
<td>2</td>
<td>P4/R11</td>
</tr>
<tr>
<td>1:12</td>
<td>1:50</td>
<td>2</td>
<td>P5/R12</td>
</tr>
<tr>
<td>1:10</td>
<td>1:100</td>
<td>1</td>
<td>P5/R12</td>
</tr>
<tr>
<td>1:8</td>
<td>1:100</td>
<td>0.5</td>
<td>P5/R12</td>
</tr>
</tbody>
</table>

D1V4 Fire Safety Verification Method

[2019: DV4]

Compliance with D1P4, D1P5, D1P6 and D1P7 is verified when a building is designed in accordance with C1V4.
Introduction to this Part

This Part contains Deemed-to-Satisfy Provisions for Part D1. It sets out required numbers, dimensions and placement of fire exits; rules for measuring building occupancy and travel distance to exits; places exits lead to; and, the use of horizontal exits within a building.

Deemed-to-Satisfy Provisions

D2D1 Deemed-to-Satisfy Provisions

[2019: D1.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements D1P1 to D1P6, D1P8 and D1P9 are satisfied by complying with—
 (a) D2D2 to D2D23, D3D2 to D3D30 and D4D2 to D4D13; and
 (b) in a building containing an atrium, Part G3; and
 (c) in a building in an alpine area, Part G4; and
 (d) for a building containing an occupiable outdoor area, Part G6; and
 (e) for additional requirements for Class 9b buildings, Part I1; and
 (f) for public transport buildings, Part I2; and
 (g) for farm sheds, Part I3.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

(3) Performance Requirement D1P7 must be complied with if lifts are to be used to assist occupants to evacuate a building.

Notes:

There are no Deemed-to-Satisfy Provisions for D1P7 in respect of using lifts.

D2D2 Application of Part

[2019: D1.1]

The Deemed-to-Satisfy Provisions of this Part do not apply to the internal parts of a sole-occupancy unit in a Class 2 or 3 building or a Class 4 part of a building.

D2D3 Number of exits required

[2019: D1.2]

(1) All buildings — Every building must have at least one exit from each storey.

SA D2D3(2)

(2) Class 2 to 8 buildings — In addition to any horizontal exit, not less than 2 exits must be provided from the following:
 (a) In addition to any horizontal exit, not less than 2 exits must be provided from the following:
 (i) Each storey if the building has an effective height of more than 25 m.
 (ii) A Class 2 or 3 building subject to C2D6.
(a) The requirements of (a)(i) do not apply to a part of a storey that—
 (i) is provided with direct egress to a road or open space; and
 (ii) satisfies D2D5 by the provision of 1 exit.
(b) Each storey if the building has an effective height of more than 25 m.
(c) A Class 2 or 3 building subject to C2D6.

(3) Basements — In addition to any horizontal exit, not less than 2 exits must be provided from any storey if egress from that storey involves a vertical rise within the building of more than 1.5 m, unless—
 (a) the floor area of the storey is not more than 50 m²; and
 (b) the distance of travel from any point on the floor to a single exit is not more than 20 m.

NSW D2D3(4)

(4) Class 9 buildings — In addition to any horizontal exit, not less than 2 exits must be provided from the following:
 (a) In addition to any horizontal exit, not less than 2 exits must be provided from the following:
 (i) Each storey if the building has a rise in storeys of more than 6 or an effective height of more than 25 m.
 (ii) Any storey which includes a patient care area in a Class 9a health-care building.
 (iii) Any storey that contains sleeping areas in a Class 9c building.
 (iv) Each storey, or each part of a storey, used as an early childhood centre.
 (v) Each storey in a primary or secondary school with a rise in storeys of 2 or more.
 (vi) Any storey or mezzanine that accommodates more than 50 persons, calculated under D2D18.
 (b) The requirements of (a) do not apply to a part of a storey that—
 (i) is a plant room, machinery room, storeroom, lift-machine room or the like; and
 (ii) is provided with direct egress to a road or open space; and
 (iii) satisfies D2D5 by the provision of 1 exit.
 (a) Each storey if the building has a rise in storeys of more than 6 or an effective height of more than 25 m.
 (b) Any storey which includes a patient care area in a Class 9a health-care building.
 (c) Any storey that contains sleeping areas in a Class 9c building.
 (d) Each storey in a Class 9b building used as an early childhood centre.
 (e) Each storey in a primary or secondary school with a rise in storeys of 2 or more.
 (f) Any storey or mezzanine that accommodates more than 50 persons, calculated under D2D18.

(5) Exits from Class 9c buildings, Class 9b early childhood centres and patient care areas in Class 9a health-care buildings — In a Class 9a health-care building, Class 9b early childhood centre and a Class 9c building, at least one exit must be provided from every part of a storey which has been divided into fire compartments in accordance with C3D3 or C3D6.

(6) Exits in open spectator stands — In an open spectator stand containing more than one tier of seating, every tier must have not less than 2 stairways or ramps, each forming part of the path of travel to not less than 2 exits.

(7) Access to exits — Without passing through another sole-occupancy unit every occupant of a storey or part of a storey must have access to—
 (a) an exit; or
 (b) at least 2 exits if 2 or more exits are required.

D2D4 When fire-isolated stairways and ramps are required [2019: D1.3]

(1) Class 2 and 3 buildings — The following applies:
 (a) Subject to (b), every stairway or ramp serving as a required exit must be fire-isolated unless it connects, passes through or passes by not more than—
(i) 3 consecutive storeys in a Class 2 building; or
(ii) 2 consecutive storeys in a Class 3 building.

(b) Notwithstanding (a), one extra storey of any classification may be included if—
 (i) it is only for the accommodation of motor vehicles or for other ancillary purposes; or
 (ii) the building has a sprinkler system (other than a FPAA101D system) complying with Specification 17 installed throughout; or
 (iii) the required exit does not provide access to or egress for, and is separated from, the extra storey by construction having—
 (A) an FRL of –/60/60, if non-loadbearing; and
 (B) an FRL of 90/90/90, if loadbearing; and
 (C) no opening that could permit the passage of fire or smoke.

SA D2D4(2)

(2) Class 5, 6, 7, 8 or 9 buildings — Every stairway or ramp serving as a required exit must be fire-isolated unless—
 (a) in a Class 9a health-care building — it connects, or passes through or passes by not more than 2 consecutive storeys in areas other than patient care areas; or
 (b) it is part of an open spectator stand; or
 (c) in any other case, except in a Class 9b early childhood centre or a Class 9c building, it connects, passes through or passes by not more than 2 consecutive storeys and one extra storey of any classification may be included if—
 (i) the building has a sprinkler system (other than a FPAA101D system) complying with Specification 17 installed throughout; or
 (ii) the required exit does not provide access to or egress for, and is separated from, the extra storey by construction having—
 (A) an FRL of –/60/60, if non-loadbearing; and
 (B) an FRL of 90/90/90 for Type A construction or 60/60/60 for Type B or C construction, if loadbearing; and
 (C) no opening that could permit the passage of fire or smoke.

D2D5 Exit travel distances

[2019: D1.4]

(1) Class 2 and 3 buildings —
 (a) The entrance doorway of any sole-occupancy unit must be not more than—
 (i) 6 m from an exit or from a point from which travel in different directions to 2 exits is available; or
 (ii) 20 m from a single exit serving the storey at the level of egress to a road or open space; and
 (b) no point on the floor of a room which is not in a sole-occupancy unit must be more than 20 m from an exit or from a point at which travel in different directions to 2 exits is available.

(2) Class 4 parts of a building — The entrance doorway to any Class 4 part of a building must be not more than 6 m from an exit or a point from which travel in different directions to 2 exits is available.

(3) Class 5, 6, 7, 8 or 9 buildings — Subject to (4), (5) and (6)—
 (a) no point on a floor must be more than 20 m from an exit, or a point from which travel in different directions to 2 exits is available, in which case the maximum distance to one of those exits must not exceed 40 m; and
 (b) in a Class 5 or 6 building, the distance to a single exit serving a storey at the level of access to a road or open space may be increased to 30 m.

VIC D2D5(4)

(4) Class 9a buildings — In a patient care area in a Class 9a building—
 (a) no point on the floor must be more than 12 m from a point from which travel in different directions to 2 of the...
required exits is available; and
(b) the maximum distance to one of those exits must not be more than 30 m from the starting point.

(5) Open spectator stands — The distance of travel to an exit in a Class 9b building used as an open spectator stand must not be more than 60 m.

(6) Assembly buildings — In a Class 9b building other than a school or early childhood centre, the distance to one of the exits may be 60 m if—
(a) the path of travel from the room concerned to that exit is through another area which is a corridor, hallway, lobby, ramp or other circulation space; and
(b) the room is smoke-separated from the circulation space by construction having an FRL of not less than 60/60/60 with every doorway in that construction protected by a tight fitting, self-closing, solid-core door not less than 35 mm thick; and
(c) the maximum distance of travel does not exceed 40 m within the room and 20 m from the doorway to the room through the circulation space to the exit.

SA D2D5(7)
SA D2D5(8)

SA D2D6

D2D6 Distance between alternative exits

Exits that are required as alternative means of egress must be—
(a) distributed as uniformly as practicable within or around the storey served and in positions where unobstructed access to at least 2 exits is readily available from all points on the floor including lift lobby areas; and
(b) not less than 9 m apart; and
(c) not more than—
(i) in a Class 2 or 3 building — 45 m apart; or
(ii) in a Class 9a health-care building, if such required exit serves a patient care area — 45 m apart; or
(iii) in all other cases — 60 m apart; and
(d) located so that alternative paths of travel do not converge such that they become less than 6 m apart.

D2D7 Height of doorways in exits and paths of travel to exits

[2019: D1.6(a)]

In a required exit or path of travel to an exit the unobstructed height throughout must be not less than 2 m, except the unobstructed height of any doorway may be reduced to not less than 1980 mm.

D2D8 Width of exits and paths of travel to exits

[2019: D1.6(b), (c), (d) and (e)]

(1) The unobstructed width of each required exit or path of travel to an exit, except for ladders provided in accordance with D2D21, D3D23 or I3D5, and doorways, must be not less than—
(a) 1 m; or
(b) 1.8 m in a passageway, corridor or ramp normally used for the transportation of patients in beds within a treatment area or ward area; and
(c) in a public corridor in a Class 9c aged care building, notwithstanding (2) and (3)—
(i) 1.5 m; and
(ii) 1.8 m for the full width of the doorway, providing access into a sole-occupancy unit or communal bathroom.
(2) If the storey, mezzanine or open spectator stand accommodates more than 100 persons but not more than 200 persons, the aggregate unobstructed width of each required exit or path of travel to an exit, except for doorways, must be not less than—

(a) 1 m plus 250 mm for each 25 persons (or part) in excess of 100; or

(b) 1.8 m in a passageway, corridor or ramp normally used for the transportation of patients in beds within a treatment area or ward area.

(3) If the storey, mezzanine or open spectator stand accommodates more than 200 persons, the aggregate unobstructed width of each required exit or path of travel to an exit, except for doorways, must be not less than—

(a) 2 m plus 500 mm for every 60 persons (or part) in excess of 200 persons if egress involves a change in floor level by a stairway or ramp with a gradient steeper than 1 in 12; or

(b) in any other case, 2 m plus 500 mm for every 75 persons (or part) in excess of 200.

(4) In an open spectator stand which accommodates more than 2000 persons, the aggregate unobstructed width of each required exit or path of travel to an exit, except for doorways, must be not less than 17 m plus a width (in metres) equal to the number in excess of 2000 divided by 600.

NSW D2D9

VIC D2D9

D2D9 Width of doorways in exits or paths of travel to exits

[2019: D1.6(f)]

In a required exit or path of travel to an exit, the unobstructed width of a doorway must be not less than—

(a) in patient care areas through which patients would normally be transported in beds—

(i) if the doorway provides access to, or from, a corridor of width—

(A) less than 2.2 m — 1200 mm; or

(B) 2.2 m or greater — 1070 mm; and

(ii) where the doorway referred to in (i) is fitted with two leaves and one leaf is secured in the closed position in accordance with D3D26(3)(e), the other leaf must permit an unobstructed opening not less than 800 mm wide; or

(b) in patient care areas in a horizontal exit — 1250 mm; or

(c) the unobstructed width of each exit provided to comply with D2D8(1), (2), (3) or (4), minus 250 mm; or

(d) in a Class 9c building, 800 mm, except—

(i) in resident use areas the minimum unobstructed width must be 870 mm; and

(ii) for doorways leading from a public corridor to a sole-occupancy unit the minimum unobstructed width must be 1070 mm; and

(iii) where the doorway is fitted with two leaves and one leaf is secured in the closed position in accordance with D3D26(3)(e), the other leaf must permit an unobstructed opening not less than 870 mm wide in resident use areas and 800 mm wide in non-resident use area; or

(e) in any other case except where it opens to a sanitary compartment or bathroom — 750 mm wide.

D2D10 Exit width not to diminish in direction of travel

[2019: D1.6(g)]

The unobstructed width of a required exit must not diminish in the direction of travel to a road or open space, except where the width is increased in accordance with D2D7(b) or D2D8(a).
D2D11 Determination and measurement of exits and paths of travel to exits

For the purposes of D2D7 to D2D10 the following apply:

(a) The required width of a stairway or ramp in a required exit or path of travel to an exit must—
 (i) be measured clear of all obstructions such as handrails, projecting parts of barriers and the like; and
 (ii) extend without interruption, except for ceiling cornices, to a height not less than 2 m vertically above a line along the nosings of the treads or the floor surface of the ramp or landing.

(b) To determine the aggregate unobstructed width, the number of persons accommodated must be calculated according to D2D18.

D2D12 Travel via fire-isolated exits

(1) A doorway from a room must not open directly into a stairway, passageway or ramp that is required to be fire-isolated unless it is from—
 (a) a public corridor, public lobby or the like; or
 (b) a sole-occupancy unit occupying all of a storey; or
 (c) a sanitary compartment, airlock or the like.

(2) Each fire-isolated stairway or fire-isolated ramp must provide independent egress from each storey served and discharge directly, or by way of its own fire-isolated passageway—
 (a) to a road or open space; or
 (b) to a point—
 (i) in a storey or space, within the confines of the building, that is used only for pedestrian movement, car parking or the like and is open for at least \(\frac{3}{4} \) of its perimeter; and
 (ii) from which an unimpeded path of travel, not further than 20 m, is available to a road or open space; or
 (c) into a covered area that—
 (i) adjoins a road or open space; and
 (ii) is open for at least \(\frac{1}{3} \) of its perimeter; and
 (iii) has an unobstructed clear height throughout, including the perimeter openings, of not less than 3 m; and
 (iv) provides an unimpeded path of travel from the point of discharge to the road or open space of not more than 6 m.

(3) Where a path of travel from the point of discharge of a fire-isolated exit necessitates passing within 6 m of any part of an external wall of the same building, measured horizontally at right angles to the path of travel, the following applies:
 (a) That part of the wall must have—
 (i) an FRL of not less than 60/60/60; and
 (ii) any openings protected internally in accordance with C4D5; and
 (b) The protection required by (a) must extend for a distance of 3 m above or below, as appropriate, the level of the path of travel, or for the height of the wall, whichever is the lesser.

(4) If more than 2 access doorways, not from a sanitary compartment or the like, open to a required fire-isolated exit in the same storey—
 (a) a smoke lobby in accordance with D3D7 must be provided; or
 (b) the exit must be pressurised in accordance with AS 1668.1.

(5) A ramp must be provided at any change in level less than 600 mm in a fire-isolated passageway in a Class 9 building.
D2D13 External stairways or ramps in lieu of fire-isolated exits

[2019: D1.8]

(1) An external stairway or ramp may serve as a required exit in lieu of a fire-isolated exit serving a storey below an effective height of 25 m, if the stairway or ramp is—

(a) non-combustible throughout; and

(b) protected in accordance with (3) if it is within 6 m of, and exposed to, any part of the external wall of the building it serves.

(2) For the purposes of this clause—

(a) exposure under (1)(b), is measured in accordance with S5C2, as if the exit was a building element and the external wall of the building was a fire-source feature to the exit, except that the FRL required in S5C2(1)(a) must not be less than 60/60/60; and

(b) the plane formed at the construction edge or perimeter of an unenclosed building or part such as an open-deck carpark, open spectator stand or the like, is deemed to be an external wall; and

(c) openings in an external wall and openings under (3) and (4), are determined in accordance with C4D2.

(3) The protection referred to in (1)(b), must adequately protect occupants using the exit from exposure to a fire within the building, in accordance with one of the following methods:

(a) The part of the external wall of the building to which the exit is exposed must have—

(i) an FRL of not less than 60/60/60; and

(ii) no openings less than 3 m from the exit (except a doorway serving the exit protected by a –/60/30 fire door in accordance with C4D9(1)); and

(iii) any opening 3 m or more but less than 6 m from the exit, protected in accordance with C4D5 and if wall wetting sprinklers are used, they are located internally.

(b) The exit must be protected by construction of a wall, roof, floor or other shielding element as appropriate in accordance with (4) from—

(i) any part of the external wall of the building having an FRL of less than 60/60/60; and

(ii) any openings in the external wall.

(4) The wall, roof, floor or other shielding element required by (3)(b) must—

(a) have an FRL of not less than 60/60/60; and

(b) have no openings less than 3 m from the external wall of the building (except a doorway serving the exit protected by a –/60/30 fire door in accordance with C4D9(1)); and

(c) have any opening 3 m or more but less than 6 m from any part of the external wall of the building protected in accordance with C4D5 and if wall wetting sprinklers are used, they are located on the side exposed to the external wall.

D2D14 Travel by non-fire-isolated stairways or ramps

[2019: D1.9]

(1) A non-fire-isolated stairway or non-fire-isolated ramp serving as a required exit must provide a continuous means of travel by its own flights and landings from every storey served to the level at which egress to a road or open space is provided.

(2) In a Class 2, 3 or 4 building, the distance between the doorway of a room or sole-occupancy unit and the point of egress to a road or open space by way of a stairway or ramp that is not fire-isolated and is required to serve that room or sole-occupancy unit must not exceed—

(a) 30 m in a building of Type C construction; or

(b) 60 m in all other cases.

(3) In a Class 5, 6, 7, 8 or 9 building, the distance from any point on a floor to a point of egress to a road or open space by way of a required non-fire-isolated stairway or non-fire-isolated ramp must not exceed 80 m.
(4) In a Class 2, 3 or 9a building, a required non-fire-isolated stairway or non-fire-isolated ramp must discharge at a point not more than—
 (a) 15 m from a doorway providing egress to a road or open space or from a fire-isolated passageway leading to a road or open space; or
 (b) 30 m from one of 2 such doorways or passageways if travel to each of them from the non-fire-isolated stairway or non-fire-isolated ramp is in opposite or approximately opposite directions.

(5) In a Class 5 to 8 or 9b building, a required non-fire-isolated stairway or non-fire-isolated ramp must discharge at a point not more than—
 (a) 20 m from a doorway providing egress to a road or open space or from a fire-isolated passageway leading to a road or open space; or
 (b) 40 m from one of 2 such doorways or passageways if travel to each of them from the non-fire-isolated stairway or non-fire-isolated ramp is in opposite or approximately opposite directions.

(6) In a Class 2 or 3 building, if 2 or more exits are required and are provided by means of internal non-fire-isolated stairways or non-fire-isolated ramps each exit must—
 (a) provide separate egress to a road or open space; and
 (b) be suitably smoke-separated from each other at the level of discharge.

SA D2D14(7)

D2D15 Discharge from exits

[2019: D1.10]

(1) An exit must not be blocked at the point of discharge and where necessary, suitable barriers must be provided to prevent vehicles from blocking the exit, or access to it.

(2) If a required exit leads to an open space, the path of travel to the road must have an unobstructed width throughout of not less than—
 (a) the minimum width of the required exit; or
 (b) 1 m,
 whichever is the greater.

(3) If an exit discharges to open space that is at a different level than the public road to which it is connected, the path of travel to the road must be by—
 (a) a ramp or other incline having a gradient not steeper than 1:8 at any part, or not steeper than 1:14 if required by the Deemed-to-Satisfy Provisions of Part D4; or
 (b) except if the exit is from a Class 9a building, a stairway complying with the Deemed-to-Satisfy Provisions of the BCA.

(4) The discharge point of alternative exits must be located as far apart as practical.

(5) In a Class 9b building which is an open spectator stand that accommodates more than 500 persons, a required stairway or required ramp must not discharge to the ground in front of the stand.

NSW D2D15(6)

(6) In a Class 9b building containing an auditorium which accommodates more than 500 persons, not more than \(\frac{2}{3} \) of the required width of exits must be located in the main entrance foyer.

(7) The number of persons accommodated must be calculated according to D2D18.

D2D16 Horizontal exits

[2019: D1.11]

(1) Horizontal exits must not be counted as required exits—
 (a) between sole-occupancy units; or
 (b) for the purposes of Part D2 in a Class 9b building used as an early childhood centre, primary or secondary school.
(2) In a Class 9a health-care building or Class 9c building, horizontal exits may be counted as required exits if the path of travel from a fire compartment leads by one or more horizontal exits directly into another fire compartment which has at least one required exit which is not a horizontal exit.

(3) In cases other than in (2), horizontal exits must not comprise more than half of the required exits from any part of a storey divided by a fire wall.

(4) Horizontal exits must have a clear area on the side of the wall to which occupants are evacuating, to accommodate the total number of persons (calculated under D2D18) served by the horizontal exit of not less than—

(a) 2.5 m2 per patient/resident in a Class 9a health-care building or Class 9c aged care building; and

(b) 0.5 m2 per person in any other case.

(5) Where a fire compartment is provided with only two exits, and one of those exits is a horizontal exit, the clear area required by (4) is to be of a size that accommodates all occupants from the fire compartment being evacuated.

(6) In a Class 9b early childhood centre, the clear area required by (4) is to be of a size that accommodates all occupants of the early childhood centre.

(7) The clear area required by (4) must be connected to the horizontal exit by an unobstructed path that has at least the dimensions required for the horizontal exit and may include the area of the unobstructed path.

D2D17 Non-required stairways, ramps or escalators

[2019: D1.12]

An escalator, moving walkway or non-required non fire-isolated stairway or pedestrian ramp—

(a) must not be used between storeys in—

(i) a patient care area in a Class 9a health-care building; or

(ii) a resident use area in a Class 9c building; and

(b) may connect any number of storeys if it is—

(i) in an open spectator stand or indoor sports stadium; or

(ii) in a carpark or an atrium; or

(iii) outside a building; or

(iv) in a Class 5 or 6 building that is sprinklered throughout, where the escalator, walkway, stairway or ramp complies with Specification 14; and

(c) except where permitted in (b) must not connect more than—

(i) 3 storeys if each of those storeys is provided with a sprinkler system (other than a FPAA101D system) complying with Specification 17 throughout; or

(ii) 2 storeys, provided that in each case, those storeys must be consecutive, and one of those storeys is situated at a level at which there is direct egress to a road or open space; and

(d) except where permitted in (b) or (c), must not connect, directly or indirectly, more than 2 storeys at any level in a Class 5, 6, 7, 8 or 9 building and those storeys must be consecutive.

D2D18 Number of persons accommodated

[2019: D1.13]

For the purposes of the Deemed-to-Satisfy Provisions, the number of persons accommodated in a storey, room or mezzanine must be determined with consideration to the purpose for which it is used and the layout of the floor area by—

(a) calculating the sum of the numbers obtained by dividing the floor area of each part of the storey by the number of square metres per person listed in Table D2D18 according to the use of that part, excluding spaces set aside for—

(i) lifts, stairways, ramps and escalators, corridors, hallways, lobbies and the like; and

(ii) service ducts and the like, sanitary compartments or other ancillary uses; or

(b) reference to the seating capacity in an assembly building or room; or
(c) any other suitable means of assessing its capacity.

NSW Table D2D18

Area per person according to use

<table>
<thead>
<tr>
<th>Type of use</th>
<th>Area per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art gallery, exhibition area, museum</td>
<td>4 m²</td>
</tr>
<tr>
<td>Bar — standing</td>
<td>0.5m²</td>
</tr>
<tr>
<td>Bar — other</td>
<td>1 m²</td>
</tr>
<tr>
<td>Board room</td>
<td>2 m²</td>
</tr>
<tr>
<td>Boarding house</td>
<td>15 m²</td>
</tr>
<tr>
<td>Cafe, church, dining room</td>
<td>1 m²</td>
</tr>
<tr>
<td>Carpark</td>
<td></td>
</tr>
<tr>
<td>Computer room</td>
<td>25 m²</td>
</tr>
<tr>
<td>Court room — judicial area</td>
<td>10 m²</td>
</tr>
<tr>
<td>Court room — public seating</td>
<td>1 m²</td>
</tr>
<tr>
<td>Dance floor</td>
<td>0.5 m²</td>
</tr>
<tr>
<td>Dormitory</td>
<td>5 m²</td>
</tr>
<tr>
<td>Early childhood centre</td>
<td>4 m²</td>
</tr>
<tr>
<td>Factory — machine shop, fitting shop or like place for cutting, grading,</td>
<td>5 m²</td>
</tr>
<tr>
<td>finishing or fitting of metals or glass, except in the fabrication of</td>
<td></td>
</tr>
<tr>
<td>structural steelwork or manufacture of vehicles or bulky products</td>
<td></td>
</tr>
<tr>
<td>Factory — areas used for fabrication and processing other than a machine</td>
<td>50 m²</td>
</tr>
<tr>
<td>shop, fitting shop or the like</td>
<td></td>
</tr>
<tr>
<td>Factory — a space in which the layout and natural use of fixed plant or</td>
<td></td>
</tr>
<tr>
<td>equipment determines the number of persons who will occupy the space during</td>
<td>Area per person</td>
</tr>
<tr>
<td>working hours</td>
<td>determined by</td>
</tr>
<tr>
<td></td>
<td>the use of the</td>
</tr>
<tr>
<td></td>
<td>plant or</td>
</tr>
<tr>
<td></td>
<td>equipment</td>
</tr>
<tr>
<td>Gymnasium</td>
<td>3 m²</td>
</tr>
<tr>
<td>Hostel, hotel, motel, guest house</td>
<td>15 m²</td>
</tr>
<tr>
<td>Indoor sports stadium — arena</td>
<td>10 m²</td>
</tr>
<tr>
<td>Kiosk</td>
<td>1 m²</td>
</tr>
<tr>
<td>Kitchen, laboratory, laundry</td>
<td>10 m²</td>
</tr>
<tr>
<td>Library — reading space</td>
<td>2 m²</td>
</tr>
<tr>
<td>Library — storage space</td>
<td>30 m²</td>
</tr>
<tr>
<td>Office, including one for typewriting or document copying</td>
<td>10 m²</td>
</tr>
<tr>
<td>Patient care areas</td>
<td></td>
</tr>
<tr>
<td>Plant room — ventilation, electrical or other service units</td>
<td>30 m²</td>
</tr>
<tr>
<td>Plant room — boilers or power plant</td>
<td>50 m²</td>
</tr>
<tr>
<td>Reading room</td>
<td>2 m²</td>
</tr>
<tr>
<td>Restaurant</td>
<td>1 m²</td>
</tr>
<tr>
<td>School — general classroom</td>
<td>2 m²</td>
</tr>
<tr>
<td>School — multi-purpose hall</td>
<td>1 m²</td>
</tr>
<tr>
<td>School — staff room</td>
<td>10 m²</td>
</tr>
<tr>
<td>School — trade and practical area — primary</td>
<td>4 m²</td>
</tr>
<tr>
<td>School — trade and practical area — secondary</td>
<td>As for workshop</td>
</tr>
<tr>
<td>Shop — space for sale of goods — at a level entered</td>
<td>3 m²</td>
</tr>
</tbody>
</table>
Table Notes:

Bar standing is an area used by the standing patrons and extends not less than 1.5 m wide from the outside edge of the bar top for the length of the serving area of the bar.

<table>
<thead>
<tr>
<th>Type of use</th>
<th>Area per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shop — space for sale of goods — all other levels</td>
<td>5 m²</td>
</tr>
<tr>
<td>Showroom — display area, covered mall or arcade</td>
<td>5 m²</td>
</tr>
<tr>
<td>Skating rink, based on rink area</td>
<td>1.5 m²</td>
</tr>
<tr>
<td>Spectator stand, audience viewing area — standing viewing area</td>
<td>0.3 m²</td>
</tr>
<tr>
<td>Spectator stand, audience viewing area — removable seating</td>
<td>1 m²</td>
</tr>
<tr>
<td>Spectator stand, audience viewing area — fixed seating</td>
<td>Per number of seats</td>
</tr>
<tr>
<td>Spectator stand, audience viewing area — bench seating</td>
<td>450 mm/person</td>
</tr>
<tr>
<td>Storage space</td>
<td>30 m²</td>
</tr>
<tr>
<td>Swimming pool, based on pool area</td>
<td>1.5 m²</td>
</tr>
<tr>
<td>Switch room, transformer room</td>
<td>30 m²</td>
</tr>
<tr>
<td>Telephone exchange — private</td>
<td>30 m²</td>
</tr>
<tr>
<td>Theatre and public hall</td>
<td>1 m²</td>
</tr>
<tr>
<td>Theatre dressing room</td>
<td>4 m²</td>
</tr>
<tr>
<td>Transport terminal</td>
<td>2 m²</td>
</tr>
<tr>
<td>Workshop — for maintenance staff</td>
<td>30 m²</td>
</tr>
<tr>
<td>Workshop — for manufacturing processes</td>
<td>As for factory</td>
</tr>
</tbody>
</table>

D2D19 Measurement of distances

[2019: D1.14]

The nearest part of an exit means in the case of—

(a) a fire-isolated stairway, fire-isolated passageway, or fire-isolated ramp, the nearest part of the doorway providing access to them; and

(b) a non-fire-isolated stairway, the nearest part of the nearest riser; and

(c) a non-fire-isolated ramp, the nearest part of the junction of the floor of the ramp and the floor of the storey; and

(d) a doorway opening to a road or open space, the nearest part of the doorway; and

(e) a horizontal exit, the nearest part of the doorway.

D2D20 Method of measurement

[2019: D1.15]

The following rules apply:

(a) In the case of a room that is not a sole-occupancy unit in a Class 2 or 3 building or Class 4 part of a building, the distance includes the straight-line measurement from any point on the floor of the room to the nearest part of a doorway leading from it, together with the distance from that part of the doorway to the single required exit or point from which travel in different directions to 2 required exits is available.

(b) Subject to (d), the distance from the doorway of a sole-occupancy unit in a Class 2 or 3 building or a Class 4 part of a building is measured in a straight line to the nearest part of the required single exit or point from which travel in different directions to 2 required exits is available.

(c) Subject to (d), the distance between exits is measured in a straight line between the nearest parts of those exits.

(d) Only the shortest distance is taken along a corridor, hallway, external balcony or other path of travel that curves
or changes direction.

(e) If more than one corridor, hallway, or other internal path of travel connects required exits, for the purposes of D2D6(c) the measurement is along the path of travel through the point at which travel in different directions to those exits is available, as determined in accordance with D2D5.

(f) If a wall (including a demountable internal wall) that does not bound a room, corridor, hallway or the like causes a change of direction in proceeding to a required exit, the distance is measured along the path of travel past that wall.

(g) If permanent fixed seating is provided, the distance is measured along the path of travel between the rows of seats.

(h) In the case of a non-fire-isolated stairway or non-fire-isolated ramp, the distance is measured along a line connecting the nosings of the treads, or along the slope of the ramp, together with the distance connecting those lines across any intermediate landings.

D2D21 Plant rooms, lift machine rooms and electricity network substations:

Concession

[2019: D1.16]

(1) A ladder may be used in lieu of a stairway to provide egress from—

(a) a plant room with a floor area of not more than 100 m²; or

(b) all but one point of egress from a plant room, a lift machine room or a Class 8 electricity network substation with a floor area of not more than 200 m².

(2) A ladder permitted under (1)—

(a) may—

(i) form part of an exit provided that in the case of a fire-isolated stairway it is contained within the shaft; or

(ii) discharge within a storey in which case it must be considered as forming part of the path of travel; and

(b) for a plant room or a Class 8 electricity network substation, must comply with AS 1657; and

(c) for a lift machine room, where access is provided from within a machine room to a secondary floor, a fixed rung type ladder complying with AS 1657 may be used, provided that—

(i) the height between the floors is not more than 2800 mm; and

(ii) the ladder is inclined at an angle to the horizontal not less than 65 degrees nor more than 75 degrees; and

(iii) the distance between the front face of the ladder and any adjacent obstruction is not less than—

(A) 960 mm, where the ladder is inclined 65 degrees to the horizontal; or

(B) 760 mm, where the ladder is inclined 75 degrees to the horizontal; or

(C) a distance that is determined by interpolating the values in (A) and (B), where the ladder is inclined at any angle between 65 degrees and 75 degrees to the horizontal; and

(iv) a clear space not less than 600 mm exists between the foot of the ladder and any equipment.

SA D2D21(3)

D2D22 Access to lift pits

[2019: D1.17]

Access to lift pits must—

(a) where the pit depth is not more than 3 m, be through the lowest landing doors; or

(b) where the pit depth is more than 3 m, be provided through an access doorway complying with the following:

(i) In lieu of D2D7 to D2D11, the doorway must be level with the pit floor and not be less than 600 mm wide by 1980 mm high clear opening, which may be reduced to 1500 mm where it is necessary to comply with (ii).

(ii) No part of the lift car or platform must encroach on the pit doorway entrance when the car is on a fully
compressed buffer.

(iii) Access to the doorway must be by a stairway complying with AS 1657.

(iv) In lieu of D3D26, doors fitted to the doorway must be—

(A) of the horizontal sliding or outwards opening hinged type; and

(B) self-closing and self-locking from the outside; and

(C) marked on the landing side with the letters not less than 35 mm high:

DANGER LIFTWELL – ENTRY OF UNAUTHORIZED PERSONS PROHIBITED – KEEP CLEAR AT ALL TIMES

D2D23 Egress from early childhood centres and primary schools

[2019: D1.18]

(1) Every part of a Class 9b early childhood centre or primary school must be wholly within a storey that provides direct egress to a road or open space.

(2) The requirements of (1) do not apply in a building with a rise in storeys of not more than 2, where the Class 9b early childhood centre is the only use in that building.

(3) The requirements of (1) do not apply to a building with a rise in storeys of not more than 4 used only as a school.

Explanatory Information:

D2D23(1) recognises the difficulties associated with evacuation of early childhood centres and primary schools. Should an early childhood centre or primary school be proposed within a storey that does not meet the requirements of D2D23(1), a Performance Solution is to be used to demonstrate compliance with the relevant Performance Requirements.
Part D3 Construction of exits

Introduction to this Part

This Part contains Deemed-to-Satisfy Provisions for Part D1. It covers safety aspects of parts of a building including stairways, ramps, handrails, balustrades, fall prevention barriers and operation of doors that are part of an exit. It also covers fall prevention requirements for openable windows.

Deemed-to-Satisfy Provisions

D3D1 Deemed-to-Satisfy Provisions

[2019: D2.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements D1P1 to D1P6, D1P8 and D1P9 are satisfied by complying with—
 (a) D2D2 to D2D23, D3D2 to D3D30 and D4D2 to D4D13; and
 (b) in a building containing an atrium, Part G3; and
 (c) in a building in an alpine area, Part G4; and
 (d) for a building containing an occupiable outdoor area, Part G6; and
 (e) for additional requirements for Class 9b buildings, Part I1; and
 (f) for public transport buildings, Part I2; and
 (g) for farm sheds, Part I3.

(2) Where a Performance Solution is proposed the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

(3) Performance Requirement D1P7 must be complied with if lifts are to be used to assist occupants to evacuate a building.

Notes:

There are no Deemed-to-Satisfy Provisions for D1P7 in respect of using lifts.

NSW D3D2

D3D2 Application of Part

[2019: D2.1]

Except for—

(a) D3D14, D3D15(a), D3D17, D3D18, D3D19, D3D20, D3D22(5), D3D22(6), D3D26 and D3D29, the Deemed-to-Satisfy Provisions of this Part do not apply to the internal parts of a sole-occupancy unit in a Class 3 building; and

(b) D3D14, D3D15(a), D3D17, D3D18, D3D19, D3D20, D3D22(5), D3D22(6), D3D23 and D3D29, the Deemed-to-Satisfy Provisions of this Part do not apply to the internal parts of a sole-occupancy unit in a Class 2 building or Class 4 part of a building.
D3D3 Fire-isolated stairways and ramps

[2019: D2.2]

A stairway or ramp (including any landings) that is required to be within a fire-resisting shaft must be constructed—

(a) of non-combustible materials; and

(b) so that if there is local failure it will not cause structural damage to, or impair the fire-resistance of, the shaft.

D3D4 Non-fire-isolated stairways and ramps

[2019: D2.3]

In a building having a rise in storeys of more than 2, required stairs and ramps (including landings and any supporting building elements) which are not required to be within a fire-resisting shaft, must be constructed according to D3D3, or only of—

(a) reinforced or prestressed concrete; or

(b) steel in no part less than 6 mm thick; or

(c) timber that—

(i) has a finished thickness of not less than 44 mm; and

(ii) has an average density of not less than 800 kg/m³ at a moisture content of 12%; and

(iii) has not been joined by means of glue unless it has been laminated and glued with resorcinol formaldehyde or resorcinol phenol formaldehyde glue.

D3D5 Separation of rising and descending stair flights

[2019: D2.4]

If a stairway serving as an exit is required to be fire-isolated—

(a) there must be no direct connection between—

(i) a flight rising from a storey below the lowest level of access to a road or open space; and

(ii) a flight descending from a storey above that level; and

(b) any construction that separates or is common to the rising and descending flights must be—

(i) non-combustible; and

(ii) smoke proof in accordance with S11C2.

D3D6 Open access ramps and balconies

[2019: D2.5]

Where an open access ramp or balcony is provided to meet the smoke hazard management requirements of E2D4 to E2D13, it must—

(a) have ventilation openings to the outside air which—

(i) have a total unobstructed area not less than the floor area of the ramp or balcony; and

(ii) are evenly distributed along the open sides of the ramp or balcony; and

(b) not be enclosed on its open sides above a height of 1 m except by an open grille or the like having a free air space of not less than 75% of its area.
D3D7 Smoke lobbies

A smoke lobby **required** by D2D12 or C3D6(3)(c)(ii) must—

(a) have a **floor area** not less than 6 m²; and

(b) be separated from the occupied areas in the **storey** by walls which are impervious to smoke, and—

(i) have an FRL of not less than 60/60/– (which may be fire-protective grade plasterboard, gypsum block with set plaster, face brickwork, glass blocks or glazing); and

(ii) extend from slab to slab, or to the underside of a ceiling with a **resistance to the incipient spread of fire** of 60 minutes which covers the lobby; and

(iii) any construction joints between the top of the walls and the floor slab, roof or ceiling must be smoke sealed with intumescent putty or other suitable material; and

(c) at any opening from the occupied areas, have smoke doors complying with S12C3 and S12C4 except that the smoke sensing device need only be located on the approach side of the opening; and

(d) **if the exit is required to be pressurised under E2D3**, be pressurised—

(i) **as part of the exit if the exit is required to be pressurised under E2D3**.

(ii) **for smoke lobbies required by D2D12, as a part of the exit**; or

(iii) **for smoke lobbies required by C3D6(3)(c)(ii)**, by a dedicated system, and—

(A) **to test the smoke lobby walls**, the door from the occupied space into the smoke lobby shall remain closed during testing; and

(B) **the pressurisation system shall achieve a differential pressure of at least 20 Pa between the smoke lobby and other parts of the storey**; and

(C) **the pressurisation system shall not result in a door opening force at the handle of the door from the occupied space into the smoke lobby of more than 110 N**.

D3D8 Installations in exits and paths of travel

(1) Access to service **shafts** and services other than to fire-fighting or detection equipment as permitted in the **Deemed-to-Satisfy Provisions** of Section E, must not be provided from a **fire-isolated stairway**, **fire-isolated passageway** or **fire-isolated ramp**.

(2) An opening to any chute or duct intended to convey hot products of combustion from a boiler, incinerator, fireplace or the like, must not be located in any part of a **required exit** or any corridor, hallway, lobby or the like leading to a **required exit**.

(3) Gas or other fuel services must not be installed in a **required exit**.

(4) Except for in a fire-isolated **exit** specified in (1), services or equipment enclosed in accordance with (5) may be installed in a **required exit**, or in any corridor, hallway, lobby or the like leading to a **required exit**, where that service or equipment comprises—

(a) electricity meters, distribution boards or ducts; or

(b) central telecommunications distribution boards or equipment; or

(c) electrical motors or other motors serving equipment in the building.

(5) An enclosure for the purposes of (4) must be—

(a) **non-combustible** construction; or

(b) a **fire-protective covering** with doorways or openings suitably sealed against smoke spreading from the enclosure.

(6) Electrical wiring may be installed in a fire-isolated **exit** if the wiring is associated with—

(a) a lighting, detection, or pressurisation system serving the **exit**; or

(b) a security, surveillance or management system serving the **exit**; or
(c) an intercommunication system or an audible or visual alarm system in accordance with D3D27; or
(d) the monitoring of hydrant or sprinkler isolating valves.

D3D9 Enclosure of space under stairs and ramps

[2019: D2.8]

(1) Fire-isolated stairways and ramps — If the space below a required fire-isolated stairway or fire-isolated ramp is within the fire-isolated shaft, it must not be enclosed to form a cupboard or similar enclosed space.

(2) Non fire-isolated stairways and ramps — The space below a required non fire-isolated stairway (including an external stairway) or non fire-isolated ramp must not be enclosed to form a cupboard or other enclosed space unless—
 (a) the enclosing walls and ceilings have an FRL of not less than 60/60/60; and
 (b) any access doorway to the enclosed space is fitted with a self-closing —/60/30 fire door.

D3D10 Width of required stairways and ramps

[2019: D2.9]

A required stairway or ramp that exceeds 2 m in width is counted as having a width of only 2 m unless it is divided by a handrail or barrier continuous between landings and each division has a width of not more than 2 m.

D3D11 Pedestrian ramps

[2019: D2.10]

(1) A fire-isolated ramp may be substituted for a fire-isolated stairway if the construction enclosing the ramp and the width and ceiling height comply with the requirements for a fire-isolated stairway.

(2) A ramp serving as a required exit must—
 (a) where the ramp is also serving as an accessible ramp under Part D4, be in accordance with AS 1428.1; or
 (b) in any other case, have a gradient not steeper than 1:8.

(3) The floor surface of a ramp must have a slip-resistance classification not less than that listed in Table D3D15 when tested in accordance with AS 4586.

D3D12 Fire-isolated passageways

[2019: D2.11]

(1) The enclosing construction of a fire-isolated passageway must have an FRL when tested for a fire outside the passageway in another part of the building of—
 (a) if the passageway discharges from a fire-isolated stairway or ramp — not less than that required for the stairway or ramp shaft; or
 (b) in any other case — not less than 60/60/60.

(2) Notwithstanding (1)(b), the top construction of a fire-isolated passageway need not have an FRL if the walls of the fire-isolated passageway extend to the underside of—
 (a) a non-combustible roof covering; or
 (b) a ceiling having a resistance to the incipient spread of fire of not less than 60 minutes separating the roof space or ceiling space in all areas surrounding the passageway within the fire compartment.

D3D13 Roof as open space

[2019: D2.12]

If an exit discharges to a roof of a building, the roof must—
(a) have an FRL of not less than 120/120/120; and
(b) not have any roof lights or other openings within 3 m of the path of travel of persons using the exit to reach a road or open space.

D3D14 Goings and risers

[2019: D2.13]

NSW D3D14(1)

(1) A stairway must have—
 (a) not more than 18 and not less than 2 risers in each flight; and
 (b) going (G), riser (R) and quantity (2R + G) in accordance with Table D3D14, except as permitted by (2) and (3); and
 (c) constant goings and risers throughout each flight, except as permitted by (2) and (3), and the dimensions of goings (G) and risers (R) in accordance with (1)(b) are considered constant if the variation between—
 (i) adjacent risers, or between adjacent goings, is no greater than 5 mm; and
 (ii) the largest and smallest riser within a flight, or the largest and smallest going within a flight, does not exceed 10 mm; and
 (d) risers which do not have any openings that would allow a 125 mm sphere to pass through between the treads; and
 (e) treads which have—
 (i) a surface with a slip-resistance classification not less than that listed in Table D3D15 when tested in accordance with AS 4586; or
 (ii) a nosing strip with a slip-resistance classification not less than that listed in Table D3D15 when tested in accordance with AS 4586; and
 (f) treads of solid construction (not mesh or other perforated material) if the stairway is more than 10 m high or connects more than 3 storeys; and
 (g) in a Class 9b building, not more than 36 risers in consecutive flights without a change in direction of at least 30°; and
 (h) in the case of a required stairway, no winders in lieu of a landing.

(2) In the case of a non-required stairway—
 (a) the stairway must have—
 (i) not more than 3 winders in lieu of a quarter landing; and
 (ii) not more than 6 winders in lieu of a half landing; and
 (b) the going of all straight treads must be constant throughout the same flight and the dimensions of goings (G) is considered constant if the variation between—
 (i) adjacent goings, is no greater than 5 mm; and
 (ii) the largest and smallest going within a flight, does not exceed 10 mm; and
 (c) the going of all winders in lieu of a quarter or half landing may vary from the going of the straight treads within the same flight provided that the going of all such winders is constant.

(3) Where a stairway discharges to a sloping public walkway or public road—
 (a) the riser (R) may be reduced to account for the slope of the walkway or road; and
 (b) the quantity (2R+G) may vary at that location.

Table D3D14: Riser and going dimensions

<table>
<thead>
<tr>
<th>Stairway location</th>
<th>Riser (R)</th>
<th>Going (G)</th>
<th>Quantity (2R + G)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Public</td>
<td>190</td>
<td>115</td>
<td>355</td>
</tr>
</tbody>
</table>
Table Notes:

1. Private stairways are—
 a. stairways in a sole-occupancy unit in a Class 2 building or Class 4 part of a building; and
 b. in any building, stairways which are not part of a required exit and to which the public do not normally have access.

2. Going and riser dimensions must be measured in accordance with Figure D3D14.

3. The going in tapered treads (except winders in lieu of a quarter or half landing) in a curved or spiral stairway is measured—
 a. 270 mm in from the outer side of the unobstructed width of the stairway if the stairway is less than 1 m wide (applicable to a non-required stairway only); and
 b. 270 mm from each side of the unobstructed width of the stairway if the stairway is 1 m wide or more.

Figure D3D14: Riser and going dimensions

Table D3D15: Landings

<table>
<thead>
<tr>
<th>Stairway location</th>
<th>Riser (R)</th>
<th>Going (G)</th>
<th>Quantity (2R + G)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Private Note 1</td>
<td>190</td>
<td>115</td>
<td>355</td>
</tr>
</tbody>
</table>

Note 1

D3D15

[2019: D2.14]

In a stairway—

(a) landings having a maximum gradient of 1:50 may be used in any building to limit the number of risers in each flight and each landing must—
 (i) be not less than 750 mm long, and where this involves a change in direction, the length is measured 500 mm from the inside edge of the landing; and
 (ii) have—
 (A) a surface with a slip-resistance classification not less than that listed in Table D3D15 when tested in accordance with AS 4586; or
 (B) a strip at the edge of the landing with a slip-resistance classification not less than that listed in Table D3D15 when tested in accordance with AS 4586, where the edge leads to a flight below; and

(b) in a Class 9a building—
 (i) the area of any landing must be sufficient to move a stretcher, 2 m long and 600 mm wide, at a gradient not more than the gradient of the stairs, with at least one end of the stretcher on the landing while changing direction between flights; or
 (ii) the stair must have a change of direction of 180°, and the landing a clear width of not less than 1.6 m and
a clear length of not less than 2.7 m.

Table D3D15: Slip-resistance classification

<table>
<thead>
<tr>
<th>Application</th>
<th>Dry Surface conditions</th>
<th>Wet surface conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp steeper than 1:14</td>
<td>P4 or R11</td>
<td>P5 or R12</td>
</tr>
<tr>
<td>Ramp steeper than 1:20 but not steeper than 1:14</td>
<td>P3 or R10</td>
<td>P4 or R11</td>
</tr>
<tr>
<td>Tread or landing surface</td>
<td>P3 or R10</td>
<td>P4 or R11</td>
</tr>
<tr>
<td>Nosing or landing edge strip</td>
<td>P3</td>
<td>P4</td>
</tr>
</tbody>
</table>

NSW D3D16

SA D3D16

D3D16 Thresholds

[2019: D2.15]

The threshold of a doorway must not incorporate a step or ramp at any point closer to the doorway than the width of the door leaf unless—

(a) in patient care areas in a Class 9a health-care building, the door sill is not more than 25 mm above the finished floor level to which the doorway opens; or

(b) in resident use areas in a Class 9c building, a ramp is provided with a maximum gradient of 1:8 for a maximum height of 25 mm over the threshold; or

(c) in a building required to be accessible by Part D4, the doorway—

(i) opens to a road or open space; and

(ii) is provided with a threshold ramp or step ramp in accordance with AS 1428.1; or

(d) in other cases—

(i) the doorway opens to a road or open space, external stair landing or external balcony; and

(ii) the door sill is not more than 190 mm above the finished surface of the ground, balcony, or the like, to which the doorway opens.

D3D17 Barriers to prevent falls

[2019: D2.16(a), (b) and (c)]

(1) A continuous barrier must be provided along the side of—

(a) a roof to which general access is provided; and

(b) a stairway or ramp; and

(c) a floor, corridor, hallway, balcony, deck, verandah, mezzanine, access bridge or the like; and

(d) any delineated path of access to a building,

if the trafficable surface is 1 m or more above the surface beneath.

(2) The requirements of (1) do not apply to—

(a) the perimeter of a stage, rigging loft, loading dock or the like; or

(b) areas referred to in D3D23; or

(c) a retaining wall unless the retaining wall forms part of, or is directly associated with a delineated path of access to a building from the road, or a delineated path of access between buildings; or

(d) a barrier provided to an openable window covered by D3D29.

(3) A barrier required by (1) must be constructed in accordance with D3D18, D3D19, D3D20 and, if a wire barrier is used, D3D21.
D3D18 Height of barriers

[2019: Table D2.16a]

NSW D3D18(1)

1. The height of a barrier required by D3D17 must be not less than the following:
 (a) For stairways or ramps with a gradient of 1:20 or steeper — 865 mm.
 (b) For landings to a stair or ramp where the barrier is provided along the inside edge of the landing and does not exceed 500 mm in length — 865 mm.
 (c) In front of fixed seating on a mezzanine or balcony within an auditorium in a Class 9b building, where the horizontal projection extends not less than 1 m outwards from the top of the barrier — 700 mm.
 (d) For all other locations — 1 m.

2. For a barrier provided under (1) —
 (a) barrier heights are measured vertically from the surface beneath, except that for stairways the height must be measured above the nosing line of the stair treads; and
 (b) a transition zone may be incorporated where the barrier height changes from 865 mm on a stair flight or ramp to 1 m at a landing or floor.

D3D19 Openings in barriers

[2019: Table D2.16a]

1. Except where allowed by (2), openings in a required barrier must not allow a 125 mm sphere to pass through.

2. In a fire-isolated stairway, fire-isolated ramp or other area used primarily for emergency purposes, or in Class 7 (other than carparks) or Class 8 buildings, openings in a required barrier—
 (a) must not allow a 300 mm sphere to pass through; or
 (b) where rails are used—
 (i) a 150 mm sphere must not be able to pass through the opening between the nosing line of the stair treads and the rail or between the rail and the floor of the landing, balcony or the like; and
 (ii) the opening between rails must not be more than 460 mm.

3. The requirements of (2) cannot be applied to external stairways, or external ramps, or fire-isolated stairways or fire-isolated ramps serving Class 9b early childhood centres.

4. For a barrier provided under (1), the maximum 125 mm barrier opening for a stairway, such as a non fire-isolated stairway, is measured above the nosing line of the stair treads.

5. Where a barrier is fixed to the face of a landing, balcony, deck or the like, the opening between the barrier and the face must not permit a 40 mm sphere to pass through.

D3D20 Barrier climbability

[2019: Table D2.16a]

1. A barrier required by D3D17, located on a floor more than 4 m above the surface beneath, must not incorporate horizontal or near horizontal elements that could facilitate climbing between 150 mm and 760 mm above the floor.

2. The requirements of (1) do not apply to—
 (a) fire-isolated stairways, fire-isolated ramps and other areas used primarily for emergency purposes, other than—
 (i) external stairways; and
 (ii) external ramps; and
 (iii) fire-isolated stairways and fire-isolated ramps serving Class 9b early childhood centres; and
 (b) Class 7 (other than carparks) and Class 8 buildings.
Where a required barrier is constructed of wire, it is deemed to meet the requirements of D3D19(1) if it is constructed in accordance with the following:

(a) For horizontal wire systems—
 (i) when measured with a strain indicator, it must be in accordance with the tension values in Table D3D21a; or
 (ii) must not exceed the maximum deflections in Table D3D21c.

(b) For non-continuous vertical wire systems, when measured with a strain indicator, must be in accordance with the tension values in Table D3D21a (see Note 4).

(c) For continuous vertical or continuous near vertical sloped wire systems—
 (i) must have wires of no more than 2.5 mm diameter with a lay of 7×7 or 7×19 construction; and
 (ii) changes in direction at support rails must pass around a pulley block without causing permanent deformation to the wire; and
 (iii) must have supporting rails, constructed with a spacing of not more than 900 mm, of a material that does not allow deflection that would decrease the tension of the wire under load; and
 (iv) when the wire tension is measured with a strain indicator, it must be in accordance with the tension values in Table D3D21b and measured in the furthermost span from the tensioning device.

Table D3D21a: Wire barrier construction – minimum required tension (N) for stainless steel horizontal wires

<table>
<thead>
<tr>
<th>Wire dia. (mm)</th>
<th>Lay</th>
<th>Wire spacing (mm)</th>
<th>Clear distance between posts (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7×7</td>
<td>60</td>
<td>800 900 1000 1200 1500 1800 2000 2500</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td>60</td>
<td>60 55 190 263 415 478 823 1080 1139 X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>382 630 730 824 1025 1288 X X X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>869 1218 1368 X X X X X</td>
</tr>
<tr>
<td>2.5</td>
<td>1×19</td>
<td>60</td>
<td>60 35 218 310 402 585 810 1125 1325 X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>420 630 735 840 1050 1400 1750 X X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>1140 1565 X X X X X</td>
</tr>
<tr>
<td>3.0</td>
<td>7×7</td>
<td>60</td>
<td>60 15 178 270 314 506 660 965 1168 1491</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>250 413 500 741 818 1083 1370 1565 X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>865 1278 1390 1639 X X X X X</td>
</tr>
<tr>
<td>3.0</td>
<td>1×19</td>
<td>60</td>
<td>60 25 183 261 340 520 790 1025 1180 X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>325 555 670 785 1015 1330 1725 1980 X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>1090 1500 1705 1910 X X X X</td>
</tr>
<tr>
<td>4.0</td>
<td>7×7</td>
<td>60</td>
<td>60 5 73 97 122 235 440 664 813 1178</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>196 422 480 524 760 1100 1358 1530 2130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>836 1182 1360 1628 1837 2381 2811 3008 X</td>
</tr>
<tr>
<td>4.0</td>
<td>1×19</td>
<td>60</td>
<td>60 5 5 10 15 20 147 593 890 1280</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>30 192 300 415 593 1105 1303 1435 1844</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>853 1308 1487 1610 2048 2608 3094 3418 3849</td>
</tr>
<tr>
<td>4.0</td>
<td>7×19</td>
<td>60</td>
<td>60 155 290 358 425 599 860 1080 1285 1540</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>394 654 785 915 1143 1485 1860 2105 2615</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>1038 1412 1598 1785 2165 2735 X X X</td>
</tr>
</tbody>
</table>
Table Notes:
1. Lay = number of strands by the number of individual wires in each strand. For example a lay of 7x19 consists of 7 strands with 19 individual wires in each strand.
2. Where a change of direction is made in a run of wire, the tensioning device is to be placed at the end of the longest span.
3. If a 3.2 mm wire is used the tension figures for 3.0 mm wire are applied.
4. This table may also be used for a set of non-continuous (single) vertical wires forming a barrier using the appropriate clear distance between posts as the vertical clear distance between the rails.
5. X = Not allowed because the required tension would exceed the safe load of the wire.
6. Tension measured with a strain indicator.

Table D3D21b: Continuous wire barrier construction – minimum required tension (N) for vertical or near-vertical stainless steel wires where the maximum clear spacing between the rails is 900mm

<table>
<thead>
<tr>
<th>Wire dia. (mm)</th>
<th>Lay</th>
<th>Widest spacing between wires (mm)</th>
<th>Required tension (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>7x19</td>
<td>80</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
<td>610</td>
</tr>
<tr>
<td>2.5</td>
<td>7x7</td>
<td>80</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
<td>500</td>
</tr>
</tbody>
</table>

Table Notes:
1. Lay = number of strands by the number of individual wires in each strand. For example a lay of 7x19 consists of 7 strands with 19 individual wires in each strand.
2. Vertical wires require two pulley blocks to each 180° change of direction in the wire.
3. Near vertical wires may only require one pulley block for each change of direction.
4. Tension measured with a strain indicator.
5. The table only includes 7x7 and 7x19 wires due to other wires not having sufficient flexibility to make the necessary turns.

Table D3D21c: Wire barrier construction – maximum permissible deflection of each wire in mm when a 2 kg mass is suspended at mid-span for stainless steel wires

<table>
<thead>
<tr>
<th>Wire dia. (mm)</th>
<th>Wire spacing (mm)</th>
<th>Clear distance between posts (mm)</th>
<th>600</th>
<th>900</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>60</td>
<td>17</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>60</td>
<td>19</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>60</td>
<td>18</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
1. Where a change of direction is made in a run of wire the 2 kg mass must be placed at the middle of the longest span.
2. If a 3.2 mm wire is used the deflection figures for 3.0 mm wire are applied.
D3D22 Handrails

[2019: D2.17]

(1) Except for handrails referred to in D3D23, and subject to (2), handrails must—

(a) be located along at least one side of the ramp or flight; and
(b) be located along each side if the total width of the stairway or ramp is 2 m or more; and
(c) in a Class 9b building used as a primary school or early childhood centre—
 (i) have one handrail fixed at a height of not less than 865 mm; and
 (ii) have a second handrail fixed at a height between 665 mm and 750 mm; and
(d) in any other case, be fixed at a height of not less than 865 mm; and
(e) be continuous between stair flight landings and have no obstruction on or above them that will tend to break a hand-hold; and
(f) in a required exit serving an area required to be accessible, be designed and constructed to comply with clause 12 of AS 1428.1, except that clause 12(d) does not apply to a handrail required by (1)(c)(ii).

(2) The height required by (1)(c) and (d) is measured above the nosings of stair treads and the floor surface of the ramp, landing or the like.

(3) Handrails—

(a) in a Class 9a health-care building must be provided along at least one side of every passageway or corridor used by patients, and must be—
 (i) fixed not less than 50 mm clear of the wall; and
 (ii) where practicable, continuous for their full length; and
(b) in a Class 9c aged care building must be provided along both sides of every passageway or corridor used by residents, and must be—
 (i) fixed not less than 50 mm clear of the wall; and
 (ii) where practicable, continuous for their full length.

(4) Handrails required to assist people with a disability must be provided in accordance with D4D2.

(5) Handrails to a stairway or ramp within a sole-occupancy unit in a Class 2 or 3 building or Class 4 part of a building must—

(a) be located along at least one side of the flight or ramp; and
(b) be located along the full length of the flight or ramp, except in the case where a handrail is associated with a barrier, the handrail may terminate where the barrier terminates; and
(c) have the top surface of the handrail not less than 865 mm vertically above the nosings of the stair treads or the floor surface of the ramp; and
(d) have no obstruction on or above them that will tend to break a handhold, except for newel posts, ball type stanchions, or the like.

(6) The requirements of (5) do not apply to—

(a) handrails referred to in D3D23; or
(b) a stairway or ramp providing a change in elevation of less than 1 m; or
(c) a landing; or
(d) a winder where a newel post is installed to provide a handhold.

SA D3D23

D3D23 Fixed platforms, walkways, stairways and ladders

[2019: D2.18]

A fixed platform, walkway, stairway and ladder and any going and riser, landing, handrail or barrier attached thereto may comply with AS 1657 in lieu of D3D14, D3D16, D3D17, D3D18, D3D19, D3D20, D3D21 and D3D22 if it only serves—

(a) machinery rooms, boiler houses, lift-machine rooms, plant-rooms, and the like; or

(b) non-**habitable rooms**, such as attics, storerooms and the like that are not used on a frequent or daily basis in the internal parts of a **sole-occupancy unit** in a Class 2 building or Class 4 part of a building.

D3D24 Doorways and doors

[2019: D2.19]

(1) A doorway in a **resident use area** of a Class 9c building must not be fitted with—

(a) a sliding fire door; or

(b) a sliding smoke door; or

(c) a revolving door; or

(d) a roller shutter door; or

(e) a tilt-up door.

NSW D3D24(2)

(2) A doorway serving as a **required exit** or forming part of a **required exit**, or a doorway in a **patient care area** of a Class 9a **health-care building**—

(a) must not be fitted with a revolving door; and

(b) must not be fitted with a roller shutter or tilt-up door unless—

(i) it serves a Class 6, 7 or 8 building or part with a **floor area** not more than 200 m²; and

(ii) the doorway is the only **required exit** from the building or part; and

(iii) it is held in the open position while the building or part is lawfully occupied; and

(c) must not be fitted with a sliding door unless—

(i) it leads directly to a road or **open space**; and

(ii) the door is able to be opened manually under a force of not more than 110 N; and

(d) if fitted with a door which is power-operated—

(i) it must be able to be opened manually under a force of not more than 110 N if there is a malfunction or failure of the power source; and

(ii) if it leads directly to a road or **open space** it must open automatically if there is a power failure to the door or on the activation of a fire or smoke alarm anywhere in the **fire compartment** served by the door.

(3) A power-operated door in a path of travel to a **required exit**, except for a door in a **patient care area** of a Class 9a **health-care building** as provided in (2), must be able to be opened manually under a force of not more than 110 N if there is a malfunction or failure of the power source.

D3D25 Swinging doors

[2019: D2.20]

SA D3D25(1)

(1) A swinging door in a **required exit** or forming part of a **required exit**—
(a) must not encroach—
 (i) at any part of its swing by more than 500 mm on the required width (including any landings) of a required stairway, ramp or passageway if it is likely to impede the path of travel of the people already using the exit; and
 (ii) when fully open, by more than 100 mm on the required width of the required exit; and
(b) must swing in the direction of egress unless—
 (i) it serves a building or part with a floor area not more than 200 m², it is the only required exit from the building or part and it is fitted with a device for holding it in the open position; or
 (ii) it serves a sanitary compartment or airlock (in which case it may swing in either direction); and
(c) must not otherwise impede the path or direction of egress.

(2) The measurement of encroachment referred to in (1)(a) in each case is to include door handles or other furniture or attachments to the door.

D3D26 Operation of latch

[2019: D2.21]

(1) A door in a required exit, forming part of a required exit or in the path of travel to a required exit must be readily openable without a key from the side that faces a person seeking egress, by—

(a) a single hand downward action on a single device which is located between 900 mm and 1.1 m from the floor and if serving an area required to be accessible by Part D4—
 (i) be such that the hand of a person who cannot grip will not slip from the handle during the operation of the latch; and
 (ii) have a clearance between the handle and the back plate or door face at the centre grip section of the handle of not less than 35 mm and not more than 45 mm; or
(b) a single hand pushing action on a single device which is located between 900 mm and 1.2 m from the floor.

(2) Where the latch operation device referred to in (1)(b) is not located on the door leaf itself—

(a) manual controls to power-operated doors must be at least 25 mm wide, proud of the surrounding surface and located—
 (i) not less than 500 mm from an internal corner; and
 (ii) for a hinged door, between 1 m and 2 m from the door leaf in any position; and
 (iii) for a sliding door, within 2 m of the doorway and clear of a surface mounted door in the open position; and
(b) braille and tactile signage complying with S15C3 and S15C6 must identify the latch operation device.

(3) The requirements of (1) and (2) do not apply to a door that—

(a) serves a vault, strong-room, sanitary compartment, or the like; or
(b) serves only, or is within—
 (i) a sole-occupancy unit in a Class 2 building or a Class 4 part of a building; or
 (ii) a sole-occupancy unit in a Class 3 building (other than an entry door to a sole-occupancy unit of a boarding house, guest house, hostel, lodging house or backpacker accommodation); or
 (iii) a sole-occupancy unit with a floor area not more than 200 m² in a Class 5, 6, 7 or 8 building; or
 (iv) a space which is otherwise inaccessible to persons at all times when the door is locked; or
(c) complies with (4) and serves—
 (i) Australian Government Security Zones 4 or 5; or
 (ii) the secure parts of a bank, detention centre, mental health facility, early childhood centre or the like; or
(d) is fitted with a fail-safe device which automatically unlocks the door upon the activation of any sprinkler system (other than a FPAA101D system) complying with Specification 17 or smoke, or any other detector system deemed suitable in accordance with AS 1670.1 installed throughout the building, and is readily openable when unlocked; or
Access and egress

NCC 2022 Volume One - Building Code of Australia

Page 198

(e) is in a Class 9a or 9c building and—

(i) is one leaf of a two-leaf door complying with D2D9(1)(a) or D2D9(1)(d) provided that it is not held closed by a locking mechanism and is readily openable; and

(ii) the door is not required to be a fire door or smoke door.

(4) A door referred to in (3)(c) must be able to be immediately unlocked—

(a) by operating a fail-safe control switch, not contained within a protective enclosure, to actuate a device to unlock the door; or

(b) by hand by a person or persons, specifically nominated by the owner, properly instructed as to the duties and responsibilities involved and available at all times when the building is lawfully occupied so that persons in the building or part may immediately escape if there is a fire.

NSW D3D26(5)

(5) The requirements of (1) and (2) do not apply in a Class 9b building (other than a school, an early childhood centre or a building used for religious purposes) to a door in a required exit, forming part of a required exit or in the path of travel to a required exit serving a storey or room accommodating more than 100 persons, determined in accordance with D2D18, in which case it must be readily openable—

(a) without a key from the side that faces a person seeking egress; and

(b) by a single hand pushing action on a single device such as a panic bar located between 900 mm and 1.2 m from the floor; and

(c) where a two-leaf door is fitted, the provisions of (a) and (b) need only apply to one door leaf if the appropriate requirements of D2D9 are satisfied by the opening of that one leaf.

NSW D3D26(6)

VIC D3D26(6)

D3D27 Re-entry from fire-isolated exits

[2019: D2.22]

(1) Doors of a fire-isolated exit must not be locked from the inside as follows:

(a) In a Class 9a health-care building.

(b) In a Class 9b early childhood centre.

(c) In a Class 9c building.

(d) In a fire-isolated exit serving any storey above an effective height of 25 m, throughout the exit.

(2) The requirements of (1)(a),(c) and (d) do not apply to a door fitted with a fail-safe device that automatically unlocks the door upon the activation of a fire alarm and—

(a) on at least every fourth storey, the doors are not able to be locked and a sign is fixed on such doors stating that re-entry is available; or

(b) an intercommunication system, or an audible or visual alarm system, operated from within the enclosure is provided near the doors and a sign is fixed adjacent to such doors explaining its purpose and method of operation.

(3) The requirements of (1)(b) do not apply to a door fitted with a fail-safe device that automatically unlocks the door serving the Class 9b early childhood centre upon the activation of a fire alarm.

D3D28 Signs on doors

[2019: D2.23]

(1) A sign, to alert persons that the operation of certain doors must not be impaired, must be installed where it can readily be seen on, or adjacent to, in accordance with (2)—

(a) a required—

(i) fire door providing direct access to a fire-isolated exit, except a door providing direct egress from a sole-occupancy unit in a Class 2 or 3 building or Class 4 part of a building; and
(ii) smoke door; and

(b) any door which is a—

(i) fire door forming part of a horizontal exit; and

(ii) smoke door that swings in both directions; and

(iii) door leading from a fire isolated exit to a road or open space.

(2) A sign required by (1)(a) must be fixed on the side of the door that faces a person seeking egress and, if the door is fitted with a device for holding it in the open position, either a sign must be fixed on the wall adjacent to the doorway, or signs must be fixed to both sides of the door.

(3) A sign required by (1)(b) must be fixed on each side of the door.

(4) A sign referred to in (1) must be in capital letters not less than 20 mm high in a colour contrasting with the background and state the following:

(a) For an automatic door held open by an automatic hold-open device—

FIRE SAFETY DOOR — DO NOT OBSTRUCT

(b) For a self-closing door—

FIRE SAFETY DOOR

DO NOT OBSTRUCT

DO NOT KEEP OPEN

(c) For a door discharging from a fire-isolated exit—

FIRE SAFETY DOOR — DO NOT OBSTRUCT

D3D29 Protection of openable windows

[2019: D.2.24]

(1) A window opening must be provided with protection, if the floor below the window is 2 m or more above the surface beneath in—

(a) a bedroom in a Class 2 or 3 building or Class 4 part of a building; or

(b) a Class 9b early childhood centre.

(2) Where the lowest level of the window opening is less than 1.7 m above the floor, a window opening covered by (1) must comply with the following:

(a) The openable portion of the window must be protected with—

(i) a device capable of restricting the window opening; or

(ii) a screen with secure fittings.

(b) A device or screen required by (a) must—

(i) not permit a 125 mm sphere to pass through the window opening or screen; and

(ii) resist an outward horizontal action of 250 N against the—

(A) window restrained by a device; or

(B) screen protecting the opening; and

(iii) have a child resistant release mechanism if the screen or device is able to be removed, unlocked or overridden.

(3) A barrier with a height not less than 865 mm above the floor is required to an openable window—

(a) in addition to window protection, when a child resistant release mechanism is required by (2)(b)(iii); and

(b) where the floor below the window is 4 m or more above the surface beneath if the window is not covered by (1).

(4) A barrier covered by (3) except for (5) must not—

(a) permit a 125 mm sphere to pass through it; and
(b) have any horizontal or near horizontal elements between 150 mm and 760 mm above the floor that facilitate climbing.

(5) A barrier required by (3) to an openable window in—
 (a) fire-isolated stairways, fire-isolated ramps and other areas used primarily for emergency purposes, excluding external stairways and external ramps; and
 (b) Class 7 (other than car parks) and Class 8 buildings and parts of buildings containing those classes, must not permit a 300 mm sphere to pass through it.

D3D30 Timber stairways: Concession

[2019: D2.25]

(1) Notwithstanding D3D3(a), timber treads, risers, landings and associated supporting framework within a required fire-isolated stairway or fire-isolated passageway may be constructed from fire-protected timber in accordance with C2D13—
 (a) if the timber—
 (i) has a finished thickness of not less than 44 mm; and
 (ii) has an average density of not less than 800 kg/m3 at a moisture content of 12%; and
 (b) subject to—
 (i) the building being protected throughout by a sprinkler system (other than a FPAA101D system) complying with Specification 17 which extends to within the fire-isolated enclosure; and
 (ii) fire protection being provided to the underside of stair flights and landings located immediately above a landing level which—
 (A) is at or near the level of egress; or
 (B) provides direct access to a carpark.

(2) Fire protection required by (1) must be not less than one layer of 13 mm fire-protective grade plasterboard fixed in accordance with the system requirements for a fire-protective covering.

NSW D3D31
Part D4 Access for people with a disability

Introduction to this Part

This Part contains Deemed-to-Satisfy Provisions for Part D1. It covers which buildings and parts of a building must be accessible; provision of accessible carparking spaces; and, provisions for braille and tactile signage, hearing augmentation, TGSI, seating in assembly buildings (e.g. cinemas) and access to swimming pools.

Deemed-to-Satisfy Provisions

D4D1 Deemed-to-Satisfy Provisions

TAS D4D1(1)

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements D1P1 to D1P6, D1P8 and D1P9 are satisfied by complying with—
(a) D2D2 to D2D23, D3D2 to D3D30 and D4D2 to D4D13; and
(b) in a building containing an atrium, Part G3; and
(c) in a building in an alpine area, Part G4; and
(d) for additional requirements for Class 9b buildings, Part I1; and
(e) for public transport buildings, Part I2.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

TAS D4D1(3)

(3) Performance Requirement D1P7 must be complied with if lifts are to be used to assist occupants to evacuate a building.

D4D2 General building access requirements

[2019: D3.1, Table D3.1]

(1) Buildings and parts of buildings must be accessible as required by this clause, unless exempted by D4D5.

(2) Access requirements for a Class 1b building are as follows:
(a) Dwellings located on one allotment and used for short-term holiday accommodation — in accordance with Table D4D2a.
(b) A boarding house, bed and breakfast, guest house, hostel or the like, other than those described in (a), to and within—
(i) 1 bedroom and associated sanitary facilities; and
(ii) not less than 1 of each type of room or space for use in common by the residents or guests, including a cooking facility, sauna, gymnasium, swimming pool, laundry, games room, eating area, or the like; and
(iii) rooms or spaces for use in common by all residents on a floor to which access by way of a ramp complying with AS 1428.1 or a passenger lift is provided.
(3) For the purposes of (2)(a), a community or strata-type subdivision or development is considered to be on a single allotment.

SA D4D2(4)

(4) For Class 2 buildings, common areas are to be accessible as follows:
(a) From a pedestrian entrance required to be accessible to at least 1 floor containing sole-occupancy units and to
the entrance doorway of each sole-occupancy unit located on that level.

(b) To and within not less than 1 of each type of room or space for use in common by the residents, including a cooking facility, sauna, gymnasium, swimming pool, common laundry, games room, individual shop, eating area, or the like.

(c) Where a ramp complying with AS 1428.1 or a passenger lift is installed—
 (i) to the entrance doorway of each sole-occupancy unit; and
 (ii) to and within rooms or spaces for use in common by the residents.

(d) The requirements of (c) only apply where the space referred to in (c)(i) or (ii) is located on a level served by the lift or ramp.

(5) For Class 3 buildings, access requirements are as follows:

(a) Common areas:
 (i) From a pedestrian entrance required to be accessible to at least 1 floor containing sole-occupancy units and to the entrance doorway of each sole-occupancy unit located on that level.
 (ii) To and within not less than 1 of each type of room or space for use in common by the residents, including a cooking facility, sauna, gymnasium, swimming pool, common laundry, games room, TV room, individual shop, dining room, public viewing area, ticket purchasing service, lunch room, lounge room, or the like.
 (iii) Where a ramp complying with AS 1428.1 or a passenger lift is installed—
 (A) to the entrance doorway of each sole-occupancy unit; and
 (B) to and within rooms or spaces for use in common by the residents.
 (iv) The requirements of (iii) only apply where the space referred to in (A) and (B) are located on the levels served by the lift or ramp.

(b) Sole-occupancy units — in accordance with Table D4D2b.

(6) For Class 5, 6, 7b, 8 and 9a buildings, access must be provided to and within all areas normally used by the occupants.

(7) For a Class 7a building — access must be provided to and within any level containing accessible carparking spaces.

(8) For Class 9b buildings, access requirements are as follows:

(a) Schools and early childhood centres — to and within all areas normally used by the occupants.

(b) An assembly building, not being a school or early childhood centre, to and within—
 (i) wheelchair seating spaces provided in accordance with D4D9; and
 (ii) all other areas normally used by the occupants, except that access need not be provided to tiers or platforms of seating areas that do not contain wheelchair seating spaces.

(9) For Class 9c buildings, access requirements are as follows:

(a) Common areas:
 (i) From a pedestrian entrance required to be accessible to at least 1 floor containing Sole-occupancy units and to the entrance doorway of each sole-occupancy unit located on that level.
 (ii) To and within not less than 1 of each type of room or space for use in common by the residents, including a cooking facility, sauna, gymnasium, swimming pool, common laundry, games room, TV room, individual shop, dining room, public viewing area, ticket purchasing service, lunch room, lounge room, or the like.
 (iii) Where a ramp complying with AS 1428.1 or a passenger lift is installed—
 (A) to the entrance doorway of each sole-occupancy unit; and
 (B) to and within rooms or spaces for use in common by the residents.
 (iv) The requirements of (iii) only apply where the space referred to in (A) and (B) are located on the levels served by the lift or ramp.

(b) Sole-occupancy units — in accordance with Table D4D2b.

(10) For Class 10 buildings, access requirements are as follows:

(a) For a Class 10a non-habitable building located in an accessible area intended for use by the public and containing a sanitary facility, change room facility or shelter, to and within—
 (i) an accessible sanitary facility; and
(ii) a change room facility; and
(iii) a public shelter or the like.

(b) For Class 10b swimming pools, to and into swimming pools with a total perimeter greater than 40 m, associated with a Class 1b, 2, 3, 5, 6, 7, 8 or 9 building that is required to be accessible, but not swimming pools for the exclusive use of occupants of a Class 1b building or a sole-occupancy unit in a Class 2 or Class 3 building.

Table D4D2a: Requirements for access for people with a disability – Sole-occupancy units in a Class 1b building

<table>
<thead>
<tr>
<th>Total number of dwellings</th>
<th>Number required to be accessible</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 to 10</td>
<td>1</td>
</tr>
<tr>
<td>11 to 40</td>
<td>2</td>
</tr>
<tr>
<td>41 to 60</td>
<td>3</td>
</tr>
<tr>
<td>61 to 80</td>
<td>4</td>
</tr>
<tr>
<td>81 to 100</td>
<td>5</td>
</tr>
<tr>
<td>More than 100</td>
<td>5 dwellings plus 1 additional dwelling for each additional 30 dwellings or part thereof in excess of 100 dwellings.</td>
</tr>
</tbody>
</table>

Table D4D2b: Requirements for access for people with a disability – Sole-occupancy units in a Class 3 or 9c building

<table>
<thead>
<tr>
<th>Total number of sole-occupancy units</th>
<th>Number required to be accessible</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 to 10</td>
<td>1</td>
</tr>
<tr>
<td>11 to 40</td>
<td>2</td>
</tr>
<tr>
<td>41 to 60</td>
<td>3</td>
</tr>
<tr>
<td>61 to 80</td>
<td>4</td>
</tr>
<tr>
<td>81 to 100</td>
<td>5</td>
</tr>
<tr>
<td>101 to 200</td>
<td>5 sole-occupancy units plus 1 additional sole-occupancy unit for each additional 25 units or part thereof in excess of 100.</td>
</tr>
<tr>
<td>201 to 500</td>
<td>9 sole-occupancy units plus 1 additional sole-occupancy unit for each additional 30 units or part thereof in excess of 100.</td>
</tr>
<tr>
<td>More than 500</td>
<td>19 sole-occupancy units plus 1 additional sole-occupancy unit for each additional 50 units or part thereof in excess of 500.</td>
</tr>
</tbody>
</table>

Table Notes:
1. In a Class 3 building not more than 2 required accessible sole-occupancy units may be located adjacent to each other.
2. In a Class 3 building where more than 2 accessible sole-occupancy units are required, they must be representative of the range of rooms available.

D4D3 Access to buildings

[2019: D3.2]

(1) An accessway must be provided to a building required to be accessible—
 (a) from the main points of a pedestrian entry at the allotment boundary; and
 (b) from another accessible building connected by a pedestrian link; and
 (c) from any required accessible carparking space on the allotment.
(2) In a building required to be accessible, an accessway must be provided through the principal pedestrian entrance, and—

 (a) through not less than 50% of all pedestrian entrances including the principal pedestrian entrance; and

 (b) in a building with a total floor area more than 500 m2, a pedestrian entrance which is not accessible must not be located more than 50 m from an accessible pedestrian entrance, except for pedestrian entrances serving only areas exempted by D4D5.

(3) Where a pedestrian entrance required to be accessible has multiple doorways—

 (a) if the pedestrian entrance consists of not more than 3 doorways — not less than 1 of those doorways must be accessible; and

 (b) if a pedestrian entrance consists of more than 3 doorways — not less than 50% of those doorways must be accessible.

(4) For the purposes of (3)—

 (a) an accessible pedestrian entrance with multiple doorways is considered to be one pedestrian entrance where—

 (i) all doorways serve the same part or parts of the building; and

 (ii) the distance between each doorway is not more than the width of the widest doorway at that pedestrian entrance (see Figure D4D3); and

 (b) a doorway is considered to be the clear, unobstructed opening created by the opening of one or more door leaves (see Figure D4D3).

(5) Where a doorway on an accessway has multiple leaves, (except an automatic opening door) one of those leaves must have a clear opening width of not less than 850 mm in accordance with AS 1428.1.

Figure D4D3: Doorways and pedestrian entrances for access purposes

D4D4 Parts of buildings to be accessible

[2019: D3.3]

In a building required to be accessible—

(a) every ramp and stairway, except for ramps and stairways in areas exempted by D4D5, must comply with—

 (i) for a ramp, except a fire-isolated ramp, clause 10 of AS 1428.1; and

 (ii) for a stairway, except a fire-isolated stairway, clause 11 of AS 1428.1; and

 (iii) for a fire-isolated stairway, clause 11.1(f) and (g) of AS 1428.1; and

(b) every passenger lift must comply with E3D7; and

(c) accessways must have—

 (i) passing spaces complying with AS 1428.1 at maximum 20 m intervals on those parts of an accessway where a direct line of sight is not available; and

 (ii) turning spaces complying with AS 1428.1—

 (A) within 2 m of the end of accessways where it is not possible to continue travelling along the accessway;
and

(B) at maximum 20 m intervals along the accessway; and

d) an intersection of accessways satisfies the spatial requirements for a passing and turning space; and

e) a passing space may serve as a turning space; and

(f) a ramp complying with AS 1428.1 or a passenger lift need not be provided to serve a storey or level other than the entrance storey in a Class 5, 6, 7b or 8 building—

(i) containing not more than 3 storeys; and

(ii) with a floor area for each storey, excluding the entrance storey, of not more than 200 m²; and

(g) clause 7.4.1(a) of AS 1428.1 does not apply and is replaced with ‘the pile height or pile thickness shall not exceed 11 mm and the carpet backing thickness shall not exceed 4 mm’; and

(h) the carpet pile height or pile thickness dimension, carpet backing thickness dimension and their combined dimension shown in Figure 8 of AS 1428.1 do not apply and are replaced with 11 mm, 4 mm and 15 mm respectively.

SA D4D5
TAS D4D5

D4D5 Exemptions

[2019: D3.4]

The following areas are not required to be accessible:

(a) An area where access would be inappropriate because of the particular purpose for which the area is used.

(b) An area that would pose a health or safety risk for people with a disability.

(c) Any path of travel providing access only to an area exempted by (a) or (b).

D4D6 Accessible carparking

[2019: D3.5, Table D3.5]

(1) Accessible carparking spaces—

(a) subject to (b), must be provided in accordance with (2) in—

(i) a Class 7a building required to be accessible; and

(ii) a carparking area on the same allotment as a building required to be accessible; and

(b) need not be provided in a Class 7a building or a carparking area where a parking service is provided and direct access to any of the carparking spaces is not available to the public; and

(c) subject to (d), must comply with AS/NZS 2890.6; and

(d) need not be identified with signage where there is a total of not more than 5 carparking spaces, so as to restrict the use of the carparking space only for people with a disability.

(2) For each Class of building to which the carpark or carparking area is associated, the number of accessible carparking spaces required is as follows:

(a) Class 1b and 3 buildings:

(i) For a boarding house, guest house, hostel, lodging house, backpackers accommodation, or the residential part of a hotel or motel, the number of accessible carparking spaces required is to be calculated by multiplying the total number of carparking spaces by the percentage of—

(A) accessible sole-occupancy units to the total number of sole-occupancy units; or

(B) accessible bedrooms to the total number of bedrooms.

(ii) For the purposes of (i), the calculated number is taken to be the next whole figure.

(iii) For a residential part of a school, accommodation for the aged, disabled or children, residential part of a health-care building which accommodates members of staff or the residential part of a detention centre —
1 *accessible* space for every 100 carparking spaces or part thereof.

(b) Class 5, 7, 8 or 9c buildings — 1 *accessible* space for every 100 carparking spaces or part thereof.

(c) Class 6 buildings—

(i) with up to 1000 carparking spaces — 1 *accessible* space for every 50 carparking spaces or part thereof; and

(ii) for each additional 100 carparking spaces or part thereof in excess of 1000 carparking spaces — 1 *accessible* space.

(d) Class 9a buildings:

(i) For a hospital (non-outpatient area) — 1 *accessible* space for every 100 carparking spaces or part thereof.

(ii) For a hospital (outpatient area)—

(A) with up to 1000 carparking spaces — 1 *accessible* space for every 50 carparking spaces or part thereof; and

(B) for each additional 100 carparking spaces or part thereof in excess of 1000 carparking spaces — 1 *accessible* space.

(iii) For a nursing home — 1 *accessible* space for every 100 carparking spaces or part thereof.

(iv) For a clinic or day surgery not forming part of a hospital — 1 *accessible* space for every 50 carparking spaces or part thereof.

(e) Class 9b buildings:

(i) For a *school* — 1 *accessible* space for every 100 carparking spaces or part thereof.

(ii) For other *assembly buildings*—

(A) with up to 1000 carparking spaces — 1 *accessible* space for every 50 carparking spaces or part thereof; and

(B) for each additional 100 carparking spaces or part thereof in excess of 1000 carparking spaces — 1 *accessible* space.

D4D7 Signage

[2019: D3.6]

(1) In a building *required* to be *accessible*—

(a) braille and tactile signage complying with *Specification 15* must—

(i) incorporate the international symbol of access or deafness, as appropriate, in accordance with AS 1428.1 and identify each—

(A) sanitary facility, except a sanitary facility associated with a bedroom in a Class 1b building or a sole-occupancy unit in a Class 3 or Class 9c building; and

(B) space with a hearing augmentation system; and

(ii) identify each door *required* by E4D5 to be provided with an *exit* sign and state—

(A) “Exit”; and

(B) “Level”; and

(C) the floor level number or floor level descriptor, or a combination of the two.

(b) signage including the international symbol for deafness in accordance with AS 1428.1 must be provided within a room containing a hearing augmentation system identifying—

(i) the type of hearing augmentation; and

(ii) the area covered within the room; and

(iii) if receivers are being used and where the receivers can be obtained; and

(c) signage in accordance with AS 1428.1 must be provided for *accessible* unisex sanitary facilities to identify if the facility is suitable for left or right handed use; and

(d) signage to identify an ambulant *accessible* sanitary facility in accordance with AS 1428.1 must be located on
the door of the facility; and

(e) where a pedestrian entrance is not accessible, directional signage incorporating the international symbol of access, in accordance with AS 1428.1, must be provided to direct a person to the location of the nearest accessible pedestrian entrance; and

(f) where a bank of sanitary facilities is not provided with an accessible unisex sanitary facility, directional signage incorporating the international symbol of access in accordance with AS 1428.1 must be placed at the location of the sanitary facilities that are not accessible, to direct a person to the location of the nearest accessible unisex sanitary facility.

(2) In a building that is subject to F2.4 and is required to be accessible, directional signage complying with Specification 15 to direct a person to the location of the nearest accessible adult change facility within that building must be provided at the location of each—

(a) bank of sanitary facilities; and

(b) accessible unisex sanitary facility, other than one that incorporates an accessible adult change facility.

D4D8 Hearing augmentation

[2019: D3.7]

(1) A hearing augmentation system must be provided where an inbuilt amplification system, other than one used only for emergency warning, is installed—

(a) in a room in a Class 9b building; or

(b) in an auditorium, conference room, meeting room or room for judicatory purposes; or

(c) at any ticket office, teller's booth, reception area or the like, where the public is screened from the service provider.

(2) If a hearing augmentation system required by (1) is—

(a) an induction loop, it must be provided to not less than 80% of the floor area of the room or space served by the inbuilt amplification system; or

(b) a system requiring the use of receivers or the like, it must be available to not less than 95% of the floor area of the room or space served by the inbuilt amplification system, and the number of receivers provided must not be less than—

(i) if the room or space accommodates up to 500 persons, 1 receiver for every 25 persons or part thereof, or 2 receivers, whichever is the greater; and

(ii) if the room or space accommodates more than 500 persons but not more than 1000 persons, 20 receivers plus 1 receiver for every 33 persons or part thereof in excess of 500 persons; and

(iii) if the room or space accommodates more than 1000 persons but not more than 2000 persons, 35 receivers plus 1 receiver for every 50 persons or part thereof in excess of 1000 persons; and

(iv) if the room or space accommodates more than 2000 persons, 55 receivers plus 1 receiver for every 100 persons or part thereof in excess of 2000 persons.

(3) The number of persons accommodated in the room or space served by an inbuilt amplification system must be calculated according to D2D18.

(4) Any screen or scoreboard associated with a Class 9b building and capable of displaying public announcements must be capable of supplementing any public address system, other than a public address system used for emergency warning purposes only.

D4D9 Tactile indicators

[2019: D3.8]

(1) For a building required to be accessible, tactile ground surface indicators must be provided to warn people who are blind or have a vision impairment that they are approaching—

(a) a stairway, other than a fire-isolated stairway; and

(b) an escalator; and

(c) a passenger conveyor or moving walk; and
(d) a ramp other than a fire-isolated ramp, step ramp, kerb ramp or swimming pool ramp; and
(e) in the absence of a suitable barrier—
 (i) an overhead obstruction less than 2 m above floor level, other than a doorway; and
 (ii) an accessway meeting a vehicular way adjacent to any pedestrian entrance to a building, excluding a pedestrian entrance serving an area referred to in D4D5, if there is no kerb or kerb ramp at that point, except for areas exempted by D4D5.

(2) Tactile ground surface indicators required by (1) must comply with sections 1 and 2 of AS/NZS 1428.4.1.

(3) A hostel for the aged, nursing home for the aged, a residential aged care building, Class 3 accommodation for the aged, Class 9a health-care building or a Class 9c aged care building need not comply with (1)(a) and (d) if handrails incorporating a raised dome button in accordance with AS/NZS 1428.4.1 are provided to warn people who are blind or have a vision impairment that they are approaching a stairway or ramp.

D4D10 Wheelchair seating spaces in Class 9b assembly buildings

[2019: D3.9]

Where fixed seating is provided in a Class 9b assembly building, wheelchair seating spaces complying with AS 1428.1 must be provided in accordance with the following:

(a) The number and grouping of wheelchair seating spaces must be in accordance with Table D4D10.

(b) In a cinema—
 (i) with not more than 300 seats — wheelchair seating spaces must not be located in the front row of seats; and
 (ii) with more than 300 seats — not less than 75% of required wheelchair seating spaces must be located in rows other than the front row of seats.

Table D4D10: Wheelchair seating spaces in Class 9b assembly buildings

<table>
<thead>
<tr>
<th>Fixed seats in a room or space</th>
<th>Wheelchair spaces</th>
<th>Grouping and location</th>
<th>Spaces must represent range of seating provided</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum spaces required</td>
<td>1 additional space required per Note 2</td>
<td>Min. single spaces</td>
</tr>
<tr>
<td>Up to 150</td>
<td>3</td>
<td>N/A Note 4</td>
<td>1</td>
</tr>
<tr>
<td>151 to 800</td>
<td>3</td>
<td>50 seats, in excess of 150 seats</td>
<td>1</td>
</tr>
<tr>
<td>801 to 10 000</td>
<td>16</td>
<td>100 seats, in excess of 800 seats</td>
<td>2</td>
</tr>
<tr>
<td>More than 10 000</td>
<td>108</td>
<td>200 seats, in excess of 10 000 seats</td>
<td>5</td>
</tr>
</tbody>
</table>

Table Notes:

(A) The total number of required wheelchair spaces is the sum of the minimum spaces required (left column) and the additional spaces required (right column).

(B) The first number referred to includes any part of that number (e.g. 1 additional space required per 50 seats, or part thereof).

(C) This means that the location of required wheelchair spaces must be representative of the range of seating provided.

(D) N/A means ‘Not Applicable’.
D4D11 Swimming pools

(1) Not less than 1 means of accessible water entry/exit in accordance with Specification 16 must be provided for each swimming pool required by D4D2 to be accessible.

(2) An accessible entry/exit must be by means of—
 (a) a fixed or movable ramp and an aquatic wheelchair; or
 (b) a zero depth entry and an aquatic wheelchair; or
 (c) a platform swimming pool lift and an aquatic wheelchair; or
 (d) a sling-style swimming pool lift.

(3) Where a swimming pool has a perimeter of more than 70 m, at least one accessible water entry/exit must be provided by a means specified in (2)(a), (b) or (c).

(4) Latching devices on gates and doors forming part of a swimming pool safety barrier need not comply with AS 1428.1.

D4D12 Ramps

On an accessway—
 (a) a series of connected ramps must not have a combined vertical rise of more than 3.6 m; and
 (b) a landing for a step ramp must not overlap a landing for another step ramp or ramp.

D4D13 Glazing on an accessway

On an accessway, where there is no chair rail, handrail or transom, all frameless or fully glazed doors, sidelights and any glazing capable of being mistaken for a doorway or opening, must be clearly marked in accordance with AS 1428.1.

TAS D4D14
S14C1 Scope

(1) This Specification contains the requirements to allow non-required stairways, ramps or escalators to connect any number of storeys in a Class 5 or 6 building.

(2) The requirements do not apply in an atrium or outside a building.

S14C2 Requirements

An escalator, moving walkway or non-required non-fire-isolated stairway or pedestrian ramp must comply with the following:

(a) The escalator, walkway, stairway or ramp must be bounded by a shaft of—

 (i) construction with an FRL of not less than 120/120/120 if loadbearing or –/120/120 if non-loadbearing and if of lightweight construction must comply with Specification 6; or

 (ii) glazed construction with an FRL of not less than –/60/30 protected by a wall wetting system in accordance with S31C2 to S31C6.

(b) The void of each non-required stairway, ramp or escalator must not connect more than 2 storeys.

(c) Rising and descending escalators, walkways, stairways and ramps within one shaft must be separated by construction with an FRL of not less than –/60/30.

(d) Openings into the shaft must be protected by fire doors with an FRL not less than –/60/30.

(e) When the fire door is in the closed position, the floor or any covering over the floor beneath the fire door must not be combustible.

(f) Fire doors must be fitted with smoke seals and the assembly must be tested in accordance with AS 1530.4.

(g) Fire doors must be—

 (i) closed and locked for security reasons; or

 (ii) held open and be automatic closing.

(h) Smoke detectors must be installed on both sides of the opening, not more than 1.5 m horizontal distance from the opening.

 (i) In the closed position, fire doors must be openable on a single hand downward action or horizontal pushing action on a single device within the shaft and by key only from outside the shaft.

 (j) A warning sign must be displayed where it can readily be seen outside the shaft near all fire doors opening to the shaft, and must comply with the details and dimensions of Figure S14C2.

(k) All doors opening into the shaft must be within 20 m of a required exit.

(l) Signs showing the direction of the nearest required exit must be installed where they can be readily seen.

(m) Materials attached to any wall, ceiling or floor within the shaft must comply with Specification 7.

(n) Emergency lighting must be installed in the shaft in accordance with E4D4.

(o) No step or ramp may be closer to the threshold of the doorway than the width of the door leaf.
Figure S14C2: Warning sign for non-required stairway, ramp or escalator

DO NOT USE THIS STAIRWAY IF THERE IS A FIRE

=20 mm

OR

Do not use this stairway if there is a fire

=16 mm
S15C1 Scope

This Specification sets out the requirements for the design and installation of braille and tactile signage as required by D3D26, D4D7 and Specification 27.

S15C2 Location of braille and tactile signs

Signs including symbols, numbering and lettering must be designed and installed as follows:

(a) Braille and tactile components of a sign must be located not less than 1200 mm and not higher than 1600 mm above the floor or ground surface.

(b) Signs with single lines of characters must have the line of tactile characters not less than 1250 mm and not higher than 1350 mm above the floor or ground surface.

(c) Signs identifying rooms containing features or facilities listed in D4D7 must be located—
 (i) on the wall on the latch side of the door with the leading edge of the sign located between 50 mm and 300 mm from the architrave; and
 (ii) where (i) is not possible, the sign may be placed on the door itself.

(d) Signs identifying a door required by E4D5 to be provided with an exit sign must be located—
 (i) on the side that faces a person seeking egress; and
 (ii) on the wall on the latch side of the door with the leading edge of the sign located between 50 mm and 300 mm from the architrave; and
 (iii) where (ii) is not possible, the sign may be placed on the door itself.

S15C3 Braille and tactile sign specification

(1) Tactile characters must be raised or embossed to a height of not less than 1 mm and not more than 1.5 mm.

(2) Title case must be used for all tactile characters, and—
 (a) upper case tactile characters must have a height of not less than 15 mm and not more than 55 mm, except that the upper case tactile characters on a sign identifying a door required by E4D5 to be provided with an exit sign must have a height of not less than 20 mm and not more than 55 mm; and
 (b) lower case tactile characters must have a minimum height of 50% of the related upper case characters.

(3) Tactile characters, symbols, and the like, must have rounded edges.

(4) The entire sign, including any frame, must have all edges rounded.

(5) The background, negative space or fill of signs must be of matt or low sheen finish.

(6) The characters, symbols, logos and other features on signs must be matt or low sheen finish.

(7) The minimum letter spacing of tactile characters on signs must be 2 mm.

(8) The minimum word spacing of tactile characters on signs must be 10 mm.

(9) The thickness of letter strokes must be not less than 2 mm and not more than 7 mm.

(10) Tactile text must be left justified, except that single words may be centre justified.

(11) Tactile text must be Arial typeface.
S15C4 Luminance contrast

The following applies to *luminance contrast*:

(a) The background, negative space, fill of a sign or border with a minimum width of 5 mm must have a *luminance contrast* with the surface on which it is mounted of not less than 30%.

(b) Tactile characters, icons and symbols must have a minimum *luminance contrast* of 30% to the surface on which the characters are mounted.

(c) *Luminance contrasts* must be met under the lighting conditions in which the sign is to be located.

S15C5 Lighting

Braille and tactile signs must be illuminated to ensure *luminance contrast* requirements are met at all times during which the sign is required to be read.

S15C6 Braille

The following applies to braille:

(a) Braille must be grade 1 braille (uncontracted) in accordance with the criteria set out by the Australian Braille Authority.

(b) Braille must be raised and domed.

(c) Braille must be located 8 mm below the bottom line of text (not including descenders).

(d) Braille must be left justified.

(e) Where an arrow is used in the tactile sign, a solid arrow must be provided for braille readers.

(f) On signs with multiple lines of text and characters, a semicircular braille locator at the left margin must be horizontally aligned with the first line of braille text.
This Specification sets out the requirements for types of accessible water entry/exit for swimming pools.

A fixed or moveable ramp must—
(a) have a slip-resistant surface; and
(b) have a maximum gradient of 1:14; and
(c) have handrails complying with the requirements for ramps in AS 1428.1, installed on both sides of the ramp; and
(d) have kerbs in accordance with the requirements for ramps in AS 1428.1; and
(e) extend to a depth of not less than 900 mm and not more than 1100 mm below the stationary water level; and
(f) have landings in accordance with the requirements for ramps in AS 1428.1, with a landing located at the bottom and top of each ramp and a landing must be located at a level between 900 mm and 1100 mm below the stationary water level.

A zero depth entry must have—
(a) a slip-resistant surface; and
(b) a maximum gradient of 1:14; and
(c) a single handrail complying with the requirements for handrails in AS 1428.1, from the top of the entry point continuous to the bottom level area; and
(d) a level area—
 (i) 1500 mm long for the width of the zero depth entry at the entry point; and
 (ii) located at the bottom of the zero depth entry at a level between 900 mm and 1100 mm below the stationary water level.

A platform swimming pool lift must be—
(a) capable of being operated from the swimming pool surround, within the swimming pool, and on the platform; and
(b) located where the water depth is not more than 1300 mm; and
(c) designed to withstand a weight capacity of not less than 160 kg and be capable of sustaining a static load of not less than 1.5 times the rated load.
S16C5 Sling-style swimming pool lift

A sling lift must comply with the following:

(a) A sling lift must be located where the water depth is not more than 1300 mm.

(b) When the sling is in the raised position and in the transfer position, the centreline of the sling must be located over the swimming pool surround and not less than 450 mm from the swimming pool edge.

(c) The surface of the swimming pool surround between the centreline of the sling and the swimming pool edge must have a gradient of not more than 1:50 and must be slip-resistant.

(d) A clear space must be provided on the swimming pool surround parallel with the swimming pool edge on the side remote from the water (see Figure S16C5a and Figure S16C5b) and must—

(i) be not less than 900 mm x 1300 mm; and

(ii) have a gradient of not more than 1:50; and

(iii) have a slip-resistant surface; and

(iv) be located so that the centreline of the space is directly below the lifting point for the sling.

(a) A sling lift must be capable of being operated from the swimming pool surround, within the swimming pool and from the sling.

(b) A sling must be designed so that it will submerge to a water depth of not less than 500 mm below the stationary water level.

(c) A sling lift must be designed to withstand a weight of not less than 136 kg and be capable of sustaining a static load not less than 1.5 times the rated load.

Figure S16C5a: Clear swimming pool surround space for sling lift in the transfer position — Plan view
Figure S16C5b: Clear swimming pool surround space for sling lift in the transfer position — Sectional elevation

An aquatic wheelchair must comply with the following:

(a) The height of the top surface of the seat must be not less than 430 mm.
(b) The seat width must not be not less than 480 mm.
(c) A footrest must be provided.
(d) Armrests must be located on both sides of the seat and must be capable of being moved away from the side of the chair to allow a person to transfer on and off the seat.
Section E Services and equipment

Part E1 Fire fighting equipment

Objectives

E1O1 Objective

Functional Statements

E1F1 Fire-fighting equipment

Performance Requirements

E1P1 Fire hose reels
E1P2 Fire extinguishers
E1P3 Fire hydrants
E1P4 Automatic fire suppression systems
E1P5 Fire-fighting services in buildings under construction
E1P6 Fire control centres

Verification Methods

E1V1 Fire Safety Verification Method

Deemed-to-Satisfy Provisions

E1D1 Deemed-to-Satisfy Provisions
E1D2 Fire hydrants
E1D3 Fire hose reels
E1D4 Sprinklers
E1D5 Where sprinklers are required: all classifications
E1D6 Where sprinklers are required: Class 2 and 3 buildings other than residential care buildings
E1D7 Where sprinklers are required: Class 3 building used as a residential care building
E1D8 Where sprinklers are required: Class 6 building
E1D9 Where sprinklers are required: Class 7a building, other than an open-deck carpark
E1D10 Where sprinklers are required: Class 9a health-care building used as a residential care building, Class 9c buildings
E1D11 Where sprinklers are required: Class 9b buildings
E1D12 Where sprinklers are required: additional requirements
E1D13 Where sprinklers are required: occupancies of excessive hazard
E1D14 Portable fire extinguishers
E1D15 Fire control centres
E1D16 Fire precautions during construction
E1D17 Provision for special hazards

Part E2 Smoke hazard management

Objectives
E2O1 Objective

Functional Statements
E2F1 Adequate safeguards

Performance Requirements
E2P1 Automatic warning for sleeping occupants
E2P2 Safe evacuation routes

Verification Methods
E2V1 Fire Safety Verification Method

Deemed-to-Satisfy Provisions
E2D1 Deemed-to-Satisfy Provisions
E2D2 Application of Part
E2D3 Air handling systems other than as part of a smoke hazard management system
E2D4 Fire-isolated exits
E2D5 Buildings more than 25 m in effective height: Class 2 and 3 buildings and Class 4 part of a building
E2D6 Buildings more than 25 m in effective height: Class 5, 6, 7b, 8 or 9b buildings
E2D7 Buildings more than 25 m in effective height: Class 9a buildings
E2D8 Buildings not more than 25 m in effective height: Class 2 and 3 buildings and Class 4 part of a building
E2D9 Buildings not more than 25 m in effective height: Class 5, 6, 7b, 8 and 9b buildings
E2D10 Buildings not more than 25 m in effective height: large isolated buildings subject to C3D4
E2D11 Buildings not more than 25 m in effective height: Class 9a and 9c buildings
E2D12 Class 7a buildings
E2D13 Basements (other than Class 7a buildings)
E2D14 Class 6 buildings – in fire compartments more than 2000 m²: Class 6 building (not containing an enclosed common walkway or mall serving more than one Class 6 sole-occupancy unit)
E2D15 Class 6 buildings – in fire compartments more than 2000 m²: Class 6 building (containing an enclosed common walkway or mall)
E2D16 Class 9b – assembly buildings: nightclubs, discotheques and the like
E2D17 Class 9b – assembly buildings: exhibition halls
E2D18 Class 9b – assembly buildings: theatres and public halls
E2D19 Class 9b – assembly buildings: theatres and public halls (not listed in E2D18) including lecture theatres and cinema/auditorium complexes
E2D20 Class 9b assembly buildings: other assembly buildings (not listed in E2D16 to E2D19) and excluding schools
Part E3

Lift installations

Objectives
E3O1 Objective

Functional Statements
E3F1 Passenger lifts
E3F2 Emergency lifts
E3F3 Emergency alerts

Performance Requirements
E3P1 Stretcher facilities
E3P2 Emergency lifts
E3P3 Emergency alerts
E3P4 Lift access for people with a disability

Verification Methods
E3V1 Fire Safety Verification Method
E3V2 Emergency alerts on the use of lifts

Deemed-to-Satisfy Provisions
E3D1 Deemed-to-Satisfy Provisions
E3D2 Lift installations
E3D3 Stretcher facility in lifts
E3D4 Warning against use of lifts in fire
E3D5 Emergency lifts
E3D6 Landings
E3D7 Passenger lift types and their limitations
E3D8 Features required by passenger lifts
E3D9 Fire service controls
E3D10 Residential care buildings
E3D11 Fire service recall control switch
E3D12 Lift car fire service drive control switch

Part E4

Visibility in an emergency, exit signs and warning systems

Objectives
E4O1 Objective

Functional Statements
E4F1 Visibility in an emergency, exit signs and warning systems

Performance Requirements
E4P1 Visibility in an emergency
E4P2 Identification of exits
E4P3 Emergency warning and intercom systems

Verification Methods
Services and equipment

Deemed-to-Satisfy Provisions

- E4D1 Deemed-to-Satisfy Provisions
- E4D2 Emergency lighting requirements
- E4D3 Measurement of distance
- E4D4 Design and operation of emergency lighting
- E4D5 Exit signs
- E4D6 Direction signs
- E4D7 Class 2 and 3 buildings and Class 4 parts: exemptions
- E4D8 Design and operation of exit signs
- E4D9 Emergency warning and intercom systems

Specification 17 Fire sprinkler systems

- S17C1 Scope
- S17C2 Application of automatic fire sprinkler standards
- S17C3 Separation of sprinklered and non-sprinklered areas
- S17C4 Protection of openings
- S17C5 Quick response sprinklers
- S17C6 Sprinkler valve enclosures
- S17C7 Water supply
- S17C8 Building occupant warning system
- S17C9 Connection to other systems
- S17C10 Anti-tamper devices
- S17C11 Sprinkler systems in carparks
- S17C12 Residential care buildings
- S17C13 Sprinkler systems in lift installations
- **Early childhood centres**

Specification 18 Class 2 and 3 buildings not more than 25m in effective height

- S18C1 Scope
- S18C2 Application
- S18C3 System requirements
- S18C4 Permitted concessions

Specification 19 Fire control centres

- S19C1 Scope
- S19C2 Application
- S19C3 Purpose and content of fire control centre
- S19C4 Location of fire control centre
- S19C5 Equipment not permitted within a fire control centre
- S19C6 Ambient sound level for a fire control centre
Specification 20 Smoke detection and alarm systems

S20C1 Scope
S20C2 Type of system
S20C3 Smoke alarm system
S20C4 Smoke detection system
S20C5 Combined smoke alarm and smoke detection system
S20C6 Smoke detection for smoke control systems
S20C7 Building occupant warning system
S20C8 System monitoring

Specification 21 Smoke exhaust systems

S21C1 Scope
S21C2 Smoke exhaust capacity
S21C3 Smoke exhaust fans
S21C4 Smoke reservoirs
S21C5 Smoke exhaust fan and vent location
S21C6 Make-up air
S21C7 Smoke exhaust system control
S21C8 Smoke detection

Specification 22 Smoke-and-heat vents

S22C1 Scope
S22C2 Adoption of AS 2665
S22C3 Controls

Specification 23 Residential fire safety systems

S23C1 Scope
S23C2 Application
S23C3 General requirements
S23C4 Local fire indicator panel
S23C5 Smoke alarms
S23C6 Signal isolation interface units
S23C7 Wiring
S23C8 Connection to monitoring service
S23C9 Indication at the fire indicator panel
Specification 24 Lift installations

S24C1 Scope
S24C2 Lift cars exposed to solar radiation
S24C3 Lift car emergency lighting
S24C4 Cooling of lift shaft
S24C5 Lift foyer access
S24C6 Emergency access doors in a single enclosed lift shaft

Specification 25 Photoluminescent exit signs

S25C1 Scope
S25C2 Application
S25C3 Illumination
S25C4 Pictorial elements
S25C5 Viewing distance
S25C6 Smoke control systems
Part E1 Fire fighting equipment

Introduction to this Part

This Part focusses on provision of fire-fighting equipment which can enable occupants to fight the fire in its early stages and/or evacuate the building safely; enable the fire brigade to fight the fire; and, minimise the risk of fire spread between buildings.

Objectives

E1O1 Objective

The Objective of this Part is to—

(a) safeguard occupants from illness or injury while evacuating during a fire; and
(b) provide facilities for occupants and the fire brigade to undertake fire-fighting operations; and
(c) prevent the spread of fire between buildings.

Functional Statements

E1F1 Fire-fighting equipment

A building is to be provided with fire-fighting equipment to safeguard against fire spread—

(a) to allow occupants time to evacuate safely without being overcome by the effects of fire; and
(b) so that occupants may undertake initial attack on a fire; and
(c) so that the fire brigade have the necessary equipment to undertake search, rescue, and fire-fighting operations; and
(d) to other parts of the building; and
(e) between buildings.

Performance Requirements

E1P1 Fire hose reels

A fire hose reel system must be installed to the degree necessary to allow occupants to safely undertake initial attack on a fire appropriate to—

(a) the size of the fire compartment; and
(b) the function or use of the building; and
(c) any other fire safety systems installed in the building; and
(d) the fire hazard.
E1P2 Fire extinguishers

Fire extinguishers must be installed to the degree necessary to allow occupants to undertake initial attack on a fire appropriate to—

(a) the function or use of the building; and
(b) any other fire safety systems installed in the building; and
(c) the fire hazard.

E1P3 Fire hydrants

A fire hydrant system must be provided to the degree necessary to facilitate the needs of the fire brigade appropriate to—

(a) fire-fighting operations; and
(b) the floor area of the building; and
(c) the fire hazard.

Applications:
E1P3 only applies to a building where a fire brigade is available to attend.

NSW E1P4

E1P4 Automatic fire suppression systems

An automatic fire suppression system must be installed to the degree necessary to control the development and spread of fire appropriate to—

(a) the size of the fire compartment; and
(b) the function or use of the building; and
(c) the fire hazard; and
(d) the height of the building.

E1P5 Fire-fighting services in buildings under construction

Suitable means of fire-fighting must be installed to the degree necessary in a building under construction to allow initial fire attack by construction workers and for the fire brigade to undertake attack on the fire appropriate to—

(a) the fire hazard; and
(b) the height the building has reached during its construction.

E1P6 Fire control centres

Suitable facilities must be provided to the degree necessary in a building to co-ordinate fire brigade intervention during an emergency appropriate to—

(a) the function or use of the building; and
(b) the floor area of the building; and
(c) the height of the building.

TAS E1P7

Verification Methods

E1V1 Fire Safety Verification Method

[2019: EV1.1]

Compliance with E1P1, E1P2, E1P3, E1P4 and E1P6 is verified when a building is designed in accordance with C1V4.

Deemed-to-Satisfy Provisions

TAS E1D1

E1D1 Deemed-to-Satisfy Provisions

[2019: E1.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements E1P1 to E1P6 are satisfied by complying with—
(a) E1D2 to E1D16; and
(b) in a building containing an atrium, Part G3; and
(c) in a building in an alpine area, Part G4; and
(d) for a building containing an occupiable outdoor area, Part G6; and
(e) for additional requirements for Class 9b buildings, Part I1; and
(f) for farm buildings and farm sheds, Part I3.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

E1D2 Fire hydrants

[2019: E1.3]

(1) A fire hydrant system must be provided to serve a building—
(a) having a total floor area greater than 500 m²; and
(b) where a fire brigade is—
 (i) no more than 50 km from the building as measured along roads; and
 (ii) equipped with equipment capable of utilising a fire hydrant.

(2) The fire hydrant system must be installed in accordance with AS 2419.1.

(3) Notwithstanding (2)—
(a) a Class 8 electricity network substation need not comply with clause 4.2 of AS 2419.1 if—
 (i) it cannot be connected to a town main supply; and
 (ii) one hour water storage is provided for fire-fighting; and
(b) where a sprinkler system is installed throughout a building in accordance with AS 2118.1, AS 2118.4, AS 2118.6, FPAA101H or FPAA101D the fire hydrant booster protection requirements of clauses 7.3(c)(ii) and 7.3(d)(iii) of AS 2419.1 do not apply; and
(c) a fire hydrant booster assembly may be located between 3.5 m and 10 m of the building, and need not comply with clause 7.3(d)(iii) of AS 2419.1 where the assembly is protected by an adjacent fire-rated freestanding wall that—

(i) achieves an FRL of not less than 90/90/90; and

(ii) extends not less than 1 m each side of the outermost fire hydrant booster risers within the assembly and is not less than 3 m wide; and

(iii) extends to a height of not less than 2 m above finished ground level.

(4) Where internal fire hydrants are provided, they must serve only the storey on which they are located except that a sole-occupancy unit—

(a) in a Class 2 or 3 building or Class 4 part of a building may be served by a single fire hydrant located at the level of egress from that sole-occupancy unit; or

(b) of not more than 2 storeys in a Class 5, 6, 7, 8 or 9 building may be served by a single fire hydrant located at the level of egress from that sole-occupancy unit provided the fire hydrant can provide coverage to the whole of the sole-occupancy unit.

SA E1D2(5)
SA E1D2(6)
SA E1D2(7)
SA E1D2(8)
SA Figure E1D2
SA Table E1D2

E1D3 Fire hose reels

[2019: E1.4]

SA E1D3(1)

(1) E1D3 does not apply to—

(a) a Class 2, 3 or 5 building or Class 4 part of a building; or

(b) a Class 8 electricity network substation; or

(c) a Class 9c building; or

(d) classrooms and associated corridors in a primary or secondary school.

(2) A fire hose reel system must be provided—

(a) to serve the whole building where one or more internal fire hydrants are installed; or

(b) where internal fire hydrants are not installed, to serve any fire compartment with a floor area greater than 500 m².

(3) The fire hose reel system must—

(a) have fire hose reels installed in accordance with AS 2441; and

(b) provide fire hose reels to serve only the storey at which they are located, except a sole-occupancy unit of not more than 2 storeys in a Class 6, 7, 8 or 9 building may be served by a single fire hose reel located at the level of egress from that sole-occupancy unit provided the fire hose reel can provide coverage to the whole of the sole-occupancy unit.

(4) Fire hose reels must be located internally, externally or in combination, to achieve the system coverage specified in AS 2441.

(5) In achieving system coverage, one or a combination of the following criteria for individual internally located fire hose reels must be met in determining the layout of any fire hose reel system:

(a) Fire hose reels must be located adjacent to an internal fire hydrant (other than one within a fire-isolated exit), except that a fire hose reel need not be located adjacent to every fire hydrant, provided system coverage can be achieved.

(b) Fire hose reels must be located within 4 m of an exit, except that a fire hose reel need not be located adjacent to every exit, provided system coverage can be achieved.
Where system coverage is not achieved by compliance with (a) and (b), additional fire hose reels may be located in paths of travel to an exit to achieve the required coverage.

Fire hose reels must be located so that the fire hose will not need to pass through doorways fitted with fire or smoke doors, except—

(a) doorways in walls referred to in C3D6(1)(e) in a Class 9a building and C3D6(5)(d) in a Class 9c building, separating ancillary use areas of high potential fire hazard; and

(b) doorways in walls referred to in C3D13 or C3D14 separating equipment or electrical supply systems; and

(c) doorways in walls referred to in C3D6(1)(e) in a Class 9a building and C3D6(5)(d) in a Class 9c building, separating ancillary use areas of high potential fire hazard.

(6) Where the normal water supply cannot achieve the flow and pressures required by AS 2441, or is unreliable—

(a) a pump; or

(b) water storage facility; or

(c) both a pump and water storage facility,

must be installed to provide the minimum flow and pressures required by clause 6.1 of AS 2441.

NSW E1D4

E1D4 Sprinklers

A sprinkler system must—

(a) be installed in a building or part of a building when required by E1D5 to E1D12 as applicable; and

(b) comply with Specification 17 and Specification 18 as applicable.

E1D5 Where sprinklers are required: all classifications

Sprinklers are required throughout all buildings if any part of the building has an effective height of more than 25 m—

(a) including an open-deck carpark within a multi-classified building; but

(b) excluding—

(i) an open-deck carpark being a separate building; and

(ii) a Class 8 electricity network substation, with a floor area not more than 200 m², located within a multi-classified building.

Notes:

(1) See Specification 5 for use of sprinklers in Class 2 buildings and carparks generally.

(2) See Part E2 for use of sprinklers to satisfy smoke hazard management provisions.

(3) See C2D13 and Specification 5 for use of sprinklers in Class 2, 3 and 5 buildings containing fire-protected timber.

E1D6 Where sprinklers are required: Class 2 and 3 buildings other than residential care buildings

Sprinklers are required throughout a Class 2 or 3 building, or any other class of building containing a Class 2 or 3 part, if any part of the building has—

(a) a rise in storeys of 4 or more; and

(b) an effective height of not more than 25 m.
(2) The requirements of (1) do not apply to a *residential care building*.

VIC E1D7

E1D7 Where sprinklers are required: Class 3 building used as a residential care building

Sprinklers are *required* throughout —

(a) a Class 3 building used as a *residential care building*; and
(b) any *fire compartment* containing a Class 3 part used for residential care.

E1D8 Where sprinklers are required: Class 6 building

In a Class 6 building, sprinklers are *required* in *fire compartments* where either of the following apply:

(a) A *floor area* of more than 3500 m2.
(b) A *volume* of more than 21000 m3.

E1D9 Where sprinklers are required: Class 7a building, other than an open-deck carpark

In a Class 7a building, other than an *open-deck carpark*, sprinklers are *required* in *fire compartments* where more than 40 vehicles are accommodated.

NT E1D10

E1D10 Where sprinklers are required: Class 9a health-care building used as a residential care building, Class 9c buildings

(1) In a Class 9a *health-care building* used as a *residential care building*, sprinklers are *required* throughout the building and in any *fire compartment* containing a Class 9a part used for residential care.

(2) In a Class 9c building, sprinklers are *required* throughout the building and in any *fire compartment* containing a Class 9c part.

E1D11 Where sprinklers are required: Class 9b buildings

(1) In a Class 9b building, *other than an early childhood centre*, see Part I1.

(2) In a Class 9b *early childhood centre* and any other class of building containing a Class 9b *early childhood centre* part, sprinklers are required throughout the whole building, including any part of another class, unless the *early childhood centre* is wholly within a *storey* that provides direct egress to a road or *open space*.

E1D12 Where sprinklers are required: additional requirements

(1) For sprinkler requirements for *atriums*, see Part G3.
(2) For sprinkler requirements for large isolated buildings, see C3D5.

E1D13 Where sprinklers are required: occupancies of excessive hazard

[2019: Table E1.5 (Note 4)]

(1) In occupancies of excessive hazard, sprinklers are required in fire compartments where either of the following apply:

 (a) A floor area of more than 2000 m².
 (b) A volume of more than 12000 m³.

VIC E1D13(2)

(2) For the purposes of (1), occupancies of excessive fire hazard comprise buildings which contain—

 (a) hazardous processes or storage including the following:
 (i) Aircraft hangars.
 (ii) Cane furnishing manufacture, processing and storage.
 (iii) Fire-lighter and fireworks manufacture and warehousing.
 (iv) Foam plastic and foam plastic goods manufacture, processing and warehousing e.g. furniture factory.
 (v) Hydrocarbon based sheet product, manufacture, processing and warehousing e.g. vinyl floor coverings.
 (vi) Woodwool and other flammable loose fibrous material manufacture.

 (b) combustible goods with an aggregate volume exceeding 1000 m³ and stored to a height greater than 4 m including the following:
 (i) Aerosol packs with flammable contents.
 (ii) Carpets and clothing.
 (iii) Electrical appliances.
 (iv) Combustible compressed fibreboards (low and high density) and plywoods.
 (v) Combustible cartons, irrespective of content.
 (vi) Esparto and other fibrous combustible material.
 (vii) Furniture including timber, cane and composite, where foamed rubber or plastics are incorporated.
 (viii) Paper storage (all forms of new or waste) e.g. bales, sheet, horizontal or vertical rolls, waxed coated or processed.
 (ix) Textiles raw and finished, e.g., rolled cloth, clothing and manchester
 (x) Timber storage including sheets, planks, boards, joists and cut sizes.
 (xi) Vinyl, plastic, foamed plastic, rubber and other combustible sheets, offcuts and random pieces and rolled material storage, e.g. carpet, tar paper, linoleum, wood veneer and foam mattresses.
 (xii) All materials having wrappings or preformed containers of foamed plastics.

E1D14 Portable fire extinguishers

[2019: E1.6 and Table E1.6]

(1) Portable fire extinguishers must be—

 (a) provided as listed in (3) and (4); and
 (b) for a Class 2, 3 or 5 building or Class 4 part of a building, provided—
 (i) to serve the whole Class 2, 3 or 5 building or Class 4 part of a building where one or more internal fire hydrants are installed; or
 (ii) where internal fire hydrants are not installed, to serve any fire compartment with a floor area greater than 500 m², and for the purposes of this clause, a sole-occupancy unit in a Class 2 or 3 building or Class 4 part of a building is considered to be a fire compartment; and
 (c) subject to (2), selected, located and distributed in accordance with Sections 1, 2, 3 and 4 of AS 2444.
(2) Portable fire extinguishers provided in a Class 2 or 3 building or Class 4 part of a building must be—
(a) an ABE type fire extinguisher; and
(b) a minimum size of 2.5 kg; and
(c) distributed outside a sole-occupancy unit—
 (i) to serve only the storey at which they are located; and
 (ii) so that the travel distance from the entrance doorway of any sole-occupancy unit to the nearest fire extinguisher is not more than 10 m.

(3) In Class 2 to 9 buildings (except within sole-occupancy units of a Class 9c building), portable fire extinguishers must be provided as follows:
(a) To cover Class AE or E fire risks associated with emergency services switchboards.
(b) To cover Class F fire risks involving cooking oils and fats in kitchens.
(c) To cover Class B fire risks in locations where flammable liquids in excess of 50 litres are stored or used (not including that held in fuel tanks of vehicles).
(d) To cover Class A fire risks in normally occupied fire compartments less than 500 m\(^2\) not provided with fire hose reels (excluding open-deck carparks).
(e) To cover Class A fire risks in classrooms and associated corridors in primary and secondary schools not provided with fire hose reels.
(f) To cover Class A fire risks associated with a Class 2, 3 or 5 building or Class 4 part of a building.

(4) In addition to the requirements of (3), portable fire extinguishers must be provided to cover Class A and E fire risks in the following occupancies in buildings, or parts of a building:
(a) A class 9a health-care building, including a Class 9a building used as a residential care building.
(b) Class 3 parts of detention and correctional occupancies.
(c) Class 3 accommodation for children, aged persons and people with disabilities, including a Class 3 building used as a residential care building.
(d) A class 9c building.

(5) For the purposes of (3) and (4):
(a) Fire risks are defined in accordance with AS 2444.
(b) An emergency services switchboard is one which sustains emergency equipment operating in the emergency mode.
(c) A Class E fire extinguisher need only be located at each nurses’ station, supervisors’ station or the like.
(d) Additional extinguishers may be required to cover fire risks in relation to special hazards provided for in E1D17.
(e) The fire risks in a Class 2 or 3 building or Class 4 part of a building must include risks within any sole-occupancy units, however portable fire extinguishers are not required to be located within a sole-occupancy unit unless the sole-occupancy unit has a floor area greater than 500 m\(^2\).

SA E1D14(6)
SA E1D14(7)

E1D15 Fire control centres

[2019: E1.8]

A fire control centre facility in accordance with Specification 19 must be provided for—
(a) a building with an effective height of more than 25 m; and
(b) a Class 6, 7, 8 or 9 building with a total floor area of more than 18000 m\(^2\).
E1D16 Fire precautions during construction

[2019: E1.9]

In a building under construction—

(a) not less than one fire extinguisher to suit Class A, B and C fires and electrical fires must be provided at all times on each storey adjacent to each required exit or temporary stairway or exit; and

(b) after the building has reached an effective height of 12 m—

(i) the required fire hydrants and fire hose reels must be operational in at least every storey that is covered by the roof or the floor structure above, except the 2 uppermost storeys; and

(ii) any required booster connections must be installed.

E1D17 Provision for special hazards

[2019: E1.10]

Suitable additional provision must be made if special problems of fighting fire could arise because of—

(a) the nature or quantity of materials stored, displayed or used in a building or on the allotment; or

(b) the location of the building in relation to a water supply for fire-fighting purposes.

TAS E1D17

Explanatory Information: Cross-volume considerations

Part B4 of NCC Volume Three sets out the requirements for access for maintenance for fire-fighting water services.
Part E2 Smoke hazard management

Introduction to this Part

This Part is intended to reduce the risk of injury or loss of life for occupants due to smoke inhalation if a fire occurs in a building. It provides for automatic warning of the presence of smoke, and measures to ensure conditions within evacuation routes remain tenable long enough for occupants to evacuate safely.

Objectives

E2O1 Objective

The Objective of this Part is to—

(a) safeguard occupants from illness or injury by warning them of a fire so that they may safely evacuate; and

(b) safeguard occupants from illness or injury while evacuating during a fire.

Functional Statements

E2F1 Adequate safeguards

Building is to be provided with safeguards so that—

(a) occupants are warned of a fire in the building so that they may safely evacuate; and

(b) occupants have time to safely evacuate before the environment in any evacuation route becomes untenable from the effects of fire.

Performance Requirements

E2P1 Automatic warning for sleeping occupants

In a building providing sleeping accommodation, occupants must be provided with automatic warning on the detection of smoke so they may evacuate in the event of a fire to a safe place.

Applications:
E2P1 only applies to a Class 2, 3, 9a or 9c building or Class 4 part of a building.

E2P2 Safe evacuation routes

(1) In the event of a fire in a building the conditions in any evacuation route must be maintained for the period of time occupants take to evacuate the part of the building so that—

(a) the temperature will not endanger human life; and
(b) the level of visibility will enable the evacuation route to be determined; and
(c) the level of toxicity will not endanger human life.

(2) The period of time occupants take to evacuate referred to in (1) must be appropriate to—
(a) the number, mobility and other characteristics of the occupants; and
(b) the function or use of the building; and
(c) the travel distance and other characteristics of the building; and
(d) the fire load; and
(e) the potential fire intensity; and
(f) the fire hazard; and
(g) any active fire safety systems installed in the building; and
(h) fire brigade intervention.

Limitations:
E2P2 does not apply to an open-deck carpark or open spectator stand.

Verification Methods

E2V1 Fire Safety Verification Method

Compliance with E2P1 and E2P2 is verified when a building is designed in accordance with C1V4.

Deemed-to-Satisfy Provisions

E2D1 Deemed-to-Satisfy Provisions

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements E2P1 to E2P2 are satisfied by complying with—
(a) E2D2 to E2D21; and
(b) in a building containing an atrium, Part G3; and
(c) in a building in an alpine area, Part G4; and
(d) for additional requirements for Class 9b buildings, Part I1.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

E2D2 Application of Part

(1) In addition to the Deemed-to-Satisfy Provisions of E2D3 to E2D13, the following specific Deemed-to-Satisfy Provisions also apply to certain Class 6 and Class 9b buildings:
(a) For Class 6 buildings, in fire compartments more than 2000 m²—
 (i) not containing an enclosed common walkway or mall serving more than one Class 6 sole-occupancy unit — must comply with E2D14; or
 (ii) containing an enclosed common walkway or mall serving more than one Class 6 sole-occupancy unit —
must comply with E2D15.

(b) For Class 9b assembly buildings:
 (i) Nightclubs, discotheques and the like — must comply with E2D16.
 (ii) Exhibition halls — must comply with E2D17.
 (iii) Theatres and public halls — must comply with E2D18.
 (iv) Theatres and public halls (not covered by E2D18) including lecture theatres and cinema/auditorium complexes — must comply with E2D19.
 (v) Other assembly buildings (not listed in (i) to (iv)) and excluding schools — must comply with E2D20.

(2) The Deemed-to-Satisfy Provisions of this Part do not apply to—
 (a) any open-deck carpark; or
 (b) any open spectator stand; or
 (c) a Class 8 electricity network substation with a floor area not more than 200 m2, located within a multi-classified building.

(3) The smoke exhaust and smoke-and-heat vent provisions of this Part do not apply to any area not used by occupants for an extended period of time such as a storeroom with a floor area less than 30 m2, sanitary compartment, plant room or the like.

E2D3
Air handling systems other than as part of a smoke hazard management system

[2019: E2.2]

(1) An air-handling system which does not form part of a smoke hazard management system in accordance with this Part and which recycles air from one fire compartment to another fire compartment or operates in a manner that may unduly contribute to the spread of smoke from one fire compartment to another fire compartment must, subject to (2), be designed and installed—
 (a) to operate as a smoke control system in accordance with AS 1668.1; or
 (b) such that it—
 (i) incorporates smoke dampers where the air-handling ducts penetrate any elements separating the fire compartments served; and
 (ii) is arranged such that the air-handling system is shut down and the smoke dampers are activated to close automatically by smoke detectors complying with clause 7.5 of AS 1670.1.

(2) For the purposes of (1), each sole-occupancy unit in a Class 2 or 3 building is treated as a separate fire compartment.

(3) Miscellaneous air-handling systems covered by Sections 5 and 6 of AS 1668.1 serving more than one fire compartment (other than a carpark ventilation system) and not forming part of a smoke hazard management system must comply with that Section of the Standard.

(5) A smoke detection system must be installed in accordance with S20C6 to operate AS 1668.1 systems that are provided for zone pressurisation and automatic air pressurisation for fire-isolated exits.

E2D4
Fire-isolated exits

[2019: Table E2.2a]

(1) A part of a building listed in (2) must be provided with—
 (a) an automatic air pressurisation system for fire-isolated exits in accordance with AS 1668.1; or
 (b) open access ramps or balconies in accordance with D3D6.

(2) The requirements of (1) apply to—
 (a) a required fire-isolated stairway, including any associated fire-isolated passageway or fire-isolated ramp serving—
 (i) any storey above an effective height of 25 m; or
(ii) more than 2 below ground storeys, not counted in the rise in storeys in accordance with C2D3; or
(iii) an atrium to which Part G3 applies; or
(iv) a Class 9a building with a rise in storeys of more than 2; or
(v) a Class 9c building with a rise in storeys of more than 2; or
(vi) a Class 3 building used as a residential care building with a rise in storeys of more than 2; and
(b) a required fire-isolated passageway or fire-isolated ramp with a length of travel more than 60 m to a road or open space.

(3) An automatic air pressurisation system for a fire-isolated exit must serve the entire exit.

Notes:
Refer D2D12(4) for pressurisation of a fire-isolated exit having more than 2 access doorways from within the same storey.

E2D5 Buildings more than 25 m in effective height: Class 2 and 3 buildings and Class 4 part of a building

[2019: Table E2.2a]

An automatic smoke detection and alarm system complying with Specification 20 must be provided to the following:

(a) A Class 2 or 3 building which is more than 25 m effective height.
(b) A Class 2 or 3 part of a building, or a Class 4 part of a building in a building which is more than 25 m in effective height.

Notes:
Refer C3D15 for division of public corridors greater than 40 m in length.

E2D6 Buildings more than 25 m in effective height: Class 5, 6, 7b, 8 or 9b buildings

[2019: Table E2.2a]

(1) A Class 5, 6, 7b, 8 or 9b building or part of a building must be provided with a zone pressurisation system between vertically separated fire compartments in accordance with AS 1668.1, if the building is more than 25 m in effective height.

(2) The requirements of (1) do not apply to a building that has a fire compartment containing a Class 5, 6, 7b, 8 or 9b part (or a combination of these classes in the same fire compartment) where there is only one fire compartment containing these classifications in an otherwise Class 2, 3, 9a or 9c building.

(3) For the purposes of (1), ‘vertically separated fire compartments’ are fire compartments above and below each other, and not fire compartments within the same storey.

Notes:
Refer E2D14 to E2D20 for specific provisions applicable to a Class 6 (in a fire compartment having a floor area of more than 2000 m²) and Class 9b building or part of a building.

E2D7 Buildings more than 25 m in effective height: Class 9a buildings

[2019: Table E2.2a]

(1) A Class 9a building must be provided with—

(a) an automatic smoke detection and alarm system complying with Specification 20; and
E2D7 Services and equipment

(b) a zone pressurisation system between vertically separated compartments in accordance with AS 1668.1, if the building is more than 25 m in effective height.

(2) For the purposes of (1), ‘vertically separated fire compartments’ are fire compartments above and below each other, and not fire compartments within the same storey.

Notes:
A building more than 25 m in effective height requires a sprinkler system under E1D4.

E2D8 Buildings not more than 25 m in effective height: Class 2 and 3 buildings and Class 4 part of a building

In a Class 2 and 3 building or part of a building and Class 4 part of a building, if the building is not more than 25 m in effective height—

(a) it must be provided with an automatic smoke detection and alarm system complying with Specification 20; and

(b) where a required fire-isolated stairway serving the Class 2 or 3 parts also serves one or more storeys of Class 5, 6, 7 (other than an open-deck carpark), 8 or 9b parts—

(i) the fire-isolated stairway, including any associated fire-isolated passageway or fire-isolated ramp, must be provided with an automatic air pressurisation system for fire-isolated exits in accordance with AS 1668.1; or

(ii) the Class 5, 6, 7 (other than an open-deck carpark), 8 and 9b parts must be provided with—

(A) an automatic smoke detection and alarm system complying with Specification 20; or

(B) a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17;

and

(c) where a required fire-isolated stairway serving the Class 4 part also serves one or more storeys of Class 5, 6, 7 (other than an open-deck carpark), 8 or 9b parts—

(i) a system complying with (b)(i) or (b)(ii) must be installed; or

(ii) a smoke alarm or detector system complying with Specification 20 must be provided except that alarms or detectors need only be installed adjacent to each doorway into each fire-isolated stairway (set back horizontally from the doorway by a distance of not more than 1.5 m) to initiate a building occupant warning system for the Class 4 part.

Notes:
(1) Refer C3D15 for division of public corridors greater than 40 m in length.

(2) Refer E2D14 to E2D20 for specific provisions applicable to a Class 6 (in a fire compartment having a floor area of more than 2000 m²) and Class 9b building or part of a building.

E2D9 Buildings not more than 25 m in effective height: Class 5, 6, 7b, 8 and 9b buildings

[2019: Table E2.2a]

(1) A—

(a) Class 5 or 9b school building or part of a building having a rise in storeys of more than 3; or

(b) Class 6, 7b, 8 or 9b building (other than a school) or part of a building having a rise in storeys of more than 2; or

(c) building not more than 25 m in effective height, with a rise in storeys of more than 2, and containing—

(i) a Class 5 or 9b school part; and
(ii) a Class 6, 7b, 8 or 9b (other than a school) part,
must meet the requirements of (2).

(2) A building referred to in (1) must be provided with—

(a) in each required fire-isolated stairway, including any associated fire-isolated passageway or fire-isolated ramp, an automatic air pressurisation system for fire-isolated exits in accordance with AS 1668.1; or

(b) a zone pressurisation system between vertically separated fire compartments in accordance with AS 1668.1, if the building has more than one fire compartment; or

(c) an automatic smoke detection and alarm system complying with Specification 20; or

(d) a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17.

(3) For the purposes of (2), vertically separated fire compartments are fire compartments above and below each other, and not fire compartments within the same storey.

E2D10 Buildings not more than 25 m in effective height: large isolated buildings subject to C3D4

[2019: Table E2.2a]

NSW E2D10(1)

(1) In a Class 7 or 8 building of not more than 25 m in effective height, and which does not exceed 18 000 m² in floor area nor exceed 108 000 m³ in volume, the building must be provided with—

(a) a sprinkler system complying with Specification 17, and provided with perimeter vehicular access complying with C3D5(2); or

(b) an automatic fire detection and alarm system complying with AS 1670.1 and monitored in accordance with S20C8; or

(c) an automatic smoke exhaust system in accordance with Specification 21; or

(d) automatic smoke-and-heat vents in accordance with Specification 22; or

(e) natural smoke venting, with ventilation openings distributed as evenly as practicable and comprising permanent openings at roof level with a free area not less than 1.5% of floor area and low level openings which may be permanent or readily openable with a free area not less than 1.5% of floor area.

(2) In a Class 5, 6, 7, 8 or 9 building of not more than 25 m in effective height, and which exceeds 18 000 m² in floor area or 108 000 m³ in volume, the building must be provided with—

(a) if the ceiling height of the fire compartment is not more than 12 m—

(i) an automatic smoke exhaust system in accordance with Specification 21; or

(ii) automatic smoke-and-heat vents in accordance with Specification 22; or

(b) if the ceiling height of the fire compartment is more than 12 m, an automatic smoke exhaust system in accordance with Specification 21.

(3) For the purposes of (1) and (2), reference to “the building” being provided with specified measures, means to the nominated classes within the building.

Notes:

(1) Refer E2D14 to E2D20 for specific provisions applicable to a Class 6 (in a fire compartment having a floor area of more than 2000 m²) and Class 9b building or part of a building.

(2) Refer E2D5 and E2D8 where a Class 5, 6, 7b, 8 and 9b building contains a Class 2, 3 or 4 part.

E2D11 Buildings not more than 25 m in effective height: Class 9a and 9c buildings

[2019: Table E2.2a]

(1) A Class 9a health-care building or a Class 9c building, or a building containing a part thereof, which is not more than 25 m in effective height, must be provided throughout with—
(a) an automatic smoke detection and alarm system complying with Specification 20; and
(b) automatic shutdown of any air-handling system which does not form part of a zone pressurisation system (other than individual room units with a capacity not more than 1000 L/s, systems serving critical treatment areas and miscellaneous exhaust air systems installed in accordance with Sections 5 and 6 of AS 1668.1) on the activation of—
 (i) smoke detectors installed in accordance with (a); and
 (ii) any other installed fire detection and alarm system including a sprinkler system complying with Specification 17; and
(c) in a building having a rise in storeys of more than 2 and not more than 25 m effective height (not being a Class 9c building)—
 (i) a zone pressurisation system between vertically separated fire compartments in accordance with AS 1668.1; or
 (ii) a sprinkler system complying with Specification 17 throughout with residential sprinkler heads in patient care areas.

(2) For the purposes of (1), ‘vertically separated fire compartments’ are fire compartments above and below each other, and not fire compartments within the same storey.

Notes:
Refer to S11C2 for the provisions for smoke dampers.

E2D12 Class 7a buildings

A Class 7a building, including a basement, provided with a mechanical ventilation system in accordance with AS 1668.2, must comply with clause 5.5 of AS 1668.1, except that—
(a) fans with metal blades suitable for operation at normal temperature may be used; and
(b) the electrical power and control cabling need not be fire rated.

E2D13 Basements (other than Class 7a buildings)

(1) A basement, other than a Class 7a basement, not counted in the rise in storeys in accordance with C2D3, must—
 (a) comply with measures in accordance with this Part applicable to the building generally; and
 (b) where the basement has a total floor area of more than 2000 m², be provided with—
 (i) if not more than 2 below ground storeys—
 (A) a zone pressurisation system between vertically separated fire compartments in accordance with AS 1668.1, if the basement has more than one fire compartment; or
 (B) an automatic smoke detection and alarm system complying with Specification 20; or
 (C) a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17; or
 (ii) if more than 2 below ground storeys, a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17.

(2) For the purposes of (1), vertically separated fire compartments are fire compartments above and below each other, and not fire compartments within the same storey.

Notes:
(1) Refer E2D14 to E2D20 for specific provisions applicable to a Class 6 (in a fire compartment having a floor area of more than 2000 m²) and Class 9b building or part of a building.
(2) Basements with more than 3 below ground storeys or containing Class 6 or 9b occupancies with a large number
of occupants may require special consideration in accordance with E2D9.

E2D14 Class 6 buildings – in fire compartments more than 2000 m2: Class 6 building (not containing an enclosed common walkway or mall serving more than one Class 6 sole-occupancy unit)

[2019: Table E2.2b]

(1) This clause applies to Class 6 buildings not containing an enclosed common walkway or mall serving more than one Class 6 sole-occupancy unit, except for—

(a) a Class 6 sole-occupancy unit that—
 (i) has a floor area of not more than 2000 m2; and
 (ii) is single story with a main public entrance opening to a road or open space; and
 (iii) is separated from other parts of the fire compartment by construction, including openings, penetrations and junctions with other building elements, that prevents the free passage of smoke; and

(b) parts of any other classification that are smoke separated from a Class 6 part by construction complying with (a)(iii).

(2) Where the floor area of a Class 6 part of a fire compartment referred to in (1) is more than 2000 m2, the fire compartment must be provided with—

(a) an automatic smoke exhaust system complying with Specification 21; or

(b) automatic smoke-and-heat vents complying with Specification 22, if the building is single story; or

(c) if the floor area of the fire compartment is not more than 3500 m2 and the building—
 (i) is single story, an automatic smoke detection and alarm system complying with Specification 20; or
 (ii) has a rise in storeys of not more than 2, a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17.

E2D15 Class 6 buildings – in fire compartments more than 2000 m2: Class 6 building (containing an enclosed common walkway or mall)

[2019: Table E2.2b]

(1) This clause applies to Class 6 buildings containing an enclosed common walkway or mall serving more than one Class 6 sole-occupancy unit, except for—

(a) a Class 6 sole-occupancy unit that—
 (i) opens onto the enclosed common walkway or mall if the Class 6 sole-occupancy unit has a floor area of not more than 1000 m2; or
 (ii) does not open onto the enclosed common walkway or mall if the Class 6 sole-occupancy unit—
 (A) has a floor area of not more than 2000 m2; and
 (B) is single story with a main entrance opening to a road or open space; and
 (C) is separated from other parts of the fire compartment by construction, including openings, penetrations and junctions with other building elements, that prevents the free passage of smoke; and

(b) parts of any other classification that are smoke separated from a Class 6 part by construction complying with (a)(ii)(C).

(2) Where the floor area of a Class 6 part of a fire compartment referred to in (1) is more than 2000 m2, the fire compartment, including the enclosed common walkway or mall, must be provided with—

(a) an automatic smoke exhaust system complying with Specification 21; or

(b) automatic smoke-and-heat vents complying with Specification 22, if the building is single story; or

(c) if the floor area of the fire compartment is not more than 3500 m2 and the building has a rise in storeys of not more than 2, a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification
17.

Notes:
A fire compartment having a floor area of more than 3500 m² in a Class 6 building requires a sprinkler system under E1D4.

NSW E2D16

E2D16 Class 9b – assembly buildings: nightclubs, discotheques and the like

[2019: Table E2.2b]

A Class 9b assembly building which is a nightclub, discotheque and the like, must be provided with—

(a) automatic shutdown of any air-handling system (other than miscellaneous exhaust air systems installed in accordance with Sections 5 and 6 of AS 1668.1) which does not form part of the smoke hazard management system, on the activation of—
 (i) smoke detectors installed complying with S20C6; and
 (ii) any other installed fire detection and alarm system, including a sprinkler system complying with Specification 17; and

(b) at least one of the following:
 (i) An automatic smoke exhaust system complying with Specification 21.
 (ii) Automatic smoke-and-heat vents complying with Specification 22, if the building is single storey.
 (iii) A sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17 with quick response sprinkler heads.

NSW E2D17

E2D17 Class 9b – assembly buildings: exhibition halls

[2019: Table E2.2b]

A Class 9b assembly building which is an exhibition hall must be provided with—

(a) automatic shutdown of any air-handling system (other than miscellaneous exhaust air systems installed in accordance with Sections 5 and 6 of AS 1668.1) which does not form part of the smoke hazard management system, on the activation of—
 (i) smoke detectors installed complying with Specification 20; and
 (ii) any other installed fire detection and alarm system, including a sprinkler system complying with Specification 17; and

(b) where the floor area is more than 2000 m² and not more than 3500 m²—
 (i) an automatic smoke exhaust system complying with Specification 21; or
 (ii) automatic smoke-and-heat vents complying with Specification 22, if the building is single storey; or
 (iii) a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17; and

(c) where the floor area is more than 3500 m², a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17 and—
 (i) an automatic smoke exhaust system complying with Specification 21; or
 (ii) automatic smoke-and-heat vents complying with Specification 22, if the building is single storey.
E2D18
Class 9b – assembly buildings: theatres and public halls

[2019: Table E2.2b]

(1) This clause applies to a Class 9b assembly building where the building or part of the building is used as a theatre or public hall which—

(a) is a school assembly, church or community hall, and has a stage and any backstage area with a total floor area of more than 300 m\(^2\); or

(b) is not a school assembly, church or community hall, and has a stage and any backstage area with a total floor area of more than 200 m\(^2\); or

(c) has a stage with an associated rigging loft.

(2) A building or part of a building referred to in (1) must be provided with—

(a) an automatic smoke exhaust system complying with Specification 21; or

(b) automatic smoke-and-heat vents complying with Specification 22, if the building is single storey.

E2D19
Class 9b – assembly buildings: theatres and public halls (not listed in E2D18) including lecture theatres and cinema/auditorium complexes

[2019: Table E2.2b]

(1) This clause applies to a Class 9b assembly building where the building or part of the building is used as a theatre or public hall not listed in E2D18 and including a cinema/auditorium complex.

(2) A building or part of a building referred to in (1)—

(a) must be provided with automatic shutdown of any air-handling system (other than miscellaneous exhaust air systems installed in accordance with Sections 5 and 6 of AS 1668.1) which does not form part of the smoke hazard management system, on the activation of—

(i) smoke detectors installed complying with Specification 20; and

(ii) any other installed fire detection and alarm system, including a sprinkler system complying with Specification 17; and

(b) other than in the case of a school lecture theatre, where the floor area of the fire compartment is more than 2000 m\(^2\)—

(i) an automatic smoke exhaust system complying with Specification 21; or

(ii) automatic smoke-and-heat vents complying with Specification 22, if the building is single storey; or

(iii) if the floor area of the fire compartment is not more than 5000 m\(^2\) and the building has a rise in storeys of not more than 2—

(A) an automatic smoke detection and alarm system complying with Specification 20; or

(B) a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17.

E2D20
Class 9b assembly buildings: other assembly buildings (not listed in E2D16 to E2D19) and excluding schools

[2019: Table E2.2b]

(1) The requirements of (2)—

(a) apply to a Class 9b assembly building where the building or part of the building is used for a purpose other than—

(i) as described in E2D16 to E2D19; or

(ii) a school; and
(b) do not apply to—
 (i) sporting complexes (including sports halls, gymnasiums, swimming pools, ice and roller rinks, and the like) other than an indoor sports stadium with a total spectator seating for more than 1000; or
 (ii) churches and other places used solely for religious worship.

(2) Each fire compartment, other than one in a building referred to in (1), having a floor area of more than 2000 m² must be provided with—
 (a) an automatic smoke exhaust system complying with Specification 21; or
 (b) automatic smoke-and-heat vents complying with Specification 22, if the building is single storey; or
 (c) if the floor area of the fire compartment is not more than 5000 m² and the building has a rise in storeys of not more than 2—
 (i) an automatic smoke detection and alarm system complying with Specification 20; or
 (ii) a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17.

(3) A building containing a Class 9b early childhood centre, which is not wholly within a storey that provides direct egress to a road or open space, must be provided with an automatic smoke detection and alarm system complying with Specification 20 throughout the whole building, including any part of another class.

E2D21 Provision for special hazards

[2019: E2.3]

Additional smoke hazard management measures may be necessary due to the—
 (a) special characteristics of the building; or
 (b) special function or use of the building; or
 (c) special type or quantity of materials stored, displayed or used in a building; or
 (d) special mix of classifications within a building or fire compartment,

which are not addressed in E2D4 to E2D20.
Part E3 Lift installations

Introduction to this Part

This part is intended to ensure that lifts are safe to use, including by people with a disability and emergency services personnel. This part is also intended to ensure occupants know when lifts should not be used (e.g. during a fire) and, in the event of lift malfunction, conditions in a lift car remain tenable and occupants are able to call for assistance.

Objectives

E3O1 Objective

The Objective of this Part is to—

(a) facilitate the safe movement of occupants; and
(b) facilitate access for emergency services personnel to carry out emergency procedures and assist in the evacuation of occupants.

Functional Statements

E3F1 Passenger lifts

Where a passenger lift is provided, it is to facilitate safe and easy—

(a) movement for occupants with a disability; and
(b) evacuation of occupants, who due to illness or injury need stretcher assistance.

E3F2 Emergency lifts

A building is to be provided with one or more passenger lifts to facilitate—

(a) the safe access for emergency services personnel; and
(b) safe and easy evacuation of occupants who due to illness, injury or disability cannot use stairways in the event of an emergency.

Applications:

E3F2 only applies to—

(a) a building with an effective height of more than 25 m; and
(b) a Class 9a building in which patient care area are located above a level with direct access to a road or open space.

E3F3 Emergency alerts

A building having a passenger lift is to be provided with measures to alert occupants about the use of the lift in an
Performance Requirements

E3P1 Stretcher facilities

Stretcher facilities must be provided, to the degree necessary—

(a) in at least one emergency lift required by E3P2; or
(b) where an emergency lift is not required and a passenger lift is provided, in at least one lift, to serve each floor in the building served by the passenger lift.

E3P2 Emergency lifts

One or more passenger lifts fitted as emergency lifts to serve each floor served by the lifts in a building must be installed to facilitate the activities of the fire brigade and other emergency services personnel.

Applications:
E3P2 only applies to—

(a) a building with an effective height of more than 25 m; and
(b) a Class 9a building in which patient care areas are located at a level that does not have direct access to a road or open space.

E3P3 Emergency alerts

Signs or other means must be provided to alert occupants about the use of a lift during an emergency.

E3P4 Lift access for people with a disability

When a passenger lift is provided in a building required to be accessible, it must be suitable for use by people with a disability.

Verification Methods

E3V1 Fire Safety Verification Method

Compliance with E3P2 is verified when a building is designed in accordance with C1V4.

E3V2 Emergency alerts on the use of lifts

(1) Compliance with Performance Requirement E3P3 is verified when building occupants are provided with automatic warning that lifts must not be used during a fire emergency.
(2) The automatic warning must—
 (a) be initiated by a smoke hazard management system complying with Part E2; and
 (b) be provided via a sound system complying with the relevant provisions of AS 1670.4; and
 (c) have a flashing warning sign installed in accordance with AS 1670.4 clause 4.3.9 displaying the words “do not use lift”.

Deemed-to-Satisfy Provisions

E3D1 Deemed-to-Satisfy Provisions

[2019: E3.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements E3P1 to E3P4 are satisfied by complying with—
 (a) E3D2 to E3D12; and
 (b) for a building containing an occupiable outdoor area, Part G6; and
 (c) for public transport buildings, Part I2.

(2) Where a Performance Solution is proposed, the relevant performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

E3D2 Lift installations

[2019: E3.1]

An electric passenger lift installation and an electrohydraulic passenger lift installation must comply with Specification 24.

E3D3 Stretcher facility in lifts

[2019: E3.2]

(1) A stretcher facility in accordance with (2) must be provided—
 (a) in at least one emergency lift required by E3D5; or
 (b) where an emergency lift is not required, if passenger lifts are installed to serve any storey above an effective height of 12 m, in at least one of those lifts to serve each floor served by the lifts.

(2) A stretcher facility must accommodate a raised stretcher with a patient lying on it horizontally by providing a clear space not less than 600 mm wide x 2000 mm long x 1400 mm high above the floor level.

E3D4 Warning against use of lifts in fire

[2019: E3.3]

(1) A warning sign must be displayed where it can be readily seen near every call button for a passenger lift or group of lifts throughout a building.

(2) The requirements of (1) do not apply to a small lift such as a dumb-waiter or the like that is for the transport of goods only.

(3) Each warning sign required by (1) must comply with the details and dimensions of Figure E3D4 and consist of—
 (a) incised, inlaid or embossed letters on a metal, wood, plastic or similar plate securely and permanently attached to the wall; or
 (b) letters incised or inlaid directly into the surface of the material forming the wall.
E3D5 Emergency lifts

(1) At least one emergency lift complying with (4) must be installed in—
 (a) a building which has an effective height of more than 25 m; and
 (b) a Class 9a building in which patient care areas are located at a level that does not have direct egress to a road or open space.

(2) An emergency lift may be combined with a passenger lift and must serve those storeys served by the passenger lift so that all storeys of the building served by passenger lifts are served by at least one emergency lift.

(3) Where two or more passenger lifts are installed and serve the same storeys, excluding a lift that is within an atrium and not contained wholly within a shaft—
 (a) at least two emergency lifts must be provided to serve those storeys; and
 (b) if located within different shafts, at least one emergency lift must be provided in each shaft.

(4) An emergency lift must—
 (a) be contained within a fire-resisting shaft in accordance with C3D11; and
 (b) in a Class 9a building serving a patient care area—
 (i) have minimum dimensions, measured clear of all obstructions, including handrails, etc complying with Table E3D5; and
 (ii) be connected to a standby power supply system where installed; and
 (c) if the building has an effective height of more than 75 m, have a rating of at least—
 (i) 600 kg if not provided with a stretcher facility; or
 (ii) 900 kg if provided with a stretcher facility.

Table E3D5: Minimum emergency lift dimensions in Class 9a buildings

<table>
<thead>
<tr>
<th>Lift component</th>
<th>Minimum dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum depth of car</td>
<td>2280</td>
</tr>
<tr>
<td>Minimum width of car</td>
<td>1600</td>
</tr>
</tbody>
</table>
E3D6 Landings

[2019: E3.5]

Access and egress to and from lift well landings must comply with the Deemed-to-Satisfy Provisions of Parts D2, D3 and D4.

E3D7 Passenger lift types and their limitations

[2019: E3.6, Table E3.6a, Table E3.6b]

(1) In an accessible building, every passenger lift must be one of the following lift types, subject to the limitations (if any) of each lift type:

(a) There are no limitations on the use of electric passenger lifts, electrohydraulic passenger lifts or inclined lifts.

(b) Stairway platform lifts must not—

(i) be used to serve a space in a building accommodating more than 100 persons calculated according to D2D18; or
(ii) be used in a high traffic public use area such as a theatre, cinema, auditorium, transport interchange, shopping centre or the like; or
(iii) be used where it is possible to install another type of passenger lift; or
(iv) connect more than 2 storeys; or
(v) where more than 1 stairway lift is installed, serve more than 2 consecutive storeys; or
(vi) when in the folded position, encroach on the minimum width of a stairway required by D2D8 to D2D11.

(c) A low-rise platform lift must not travel more than 1000 mm.

(d) A low-rise, low-speed constant pressure lift must not—

(i) for an enclosed type, travel more than 4 m; or
(ii) for an unenclosed type, travel more than 2 m; or
(iii) be used in a high traffic public use areas in buildings such as a theatre, cinema, auditorium, transport interchange, shopping complex or the like.

(e) A small-sized, low-speed automatic lift must not travel more than 12 m.

(2) A passenger lift referred to in (1) must not rely on a constant pressure device for its operation if the lift car is fully enclosed.

E3D8 Features required by passenger lifts

[2019: Table E3.6a, Table E3.6b]

In an accessible building, every passenger lift must have the following features where applicable:

(a) A handrail complying with the provisions for a mandatory handrail in AS 1735.12 for all lifts except—

(i) a stairway platform lift; and
(ii) a low-rise platform lift.

(b) Lift floor dimensions of not less than 1400 mm wide x 1600 mm deep for all lifts which travel more than 12 m.

(c) Lift floor dimensions of not less than 1100 mm wide x 1400 mm deep for all lifts which travel not more than 12 m, except a stairway platform lift.

Table E3.6a

<table>
<thead>
<tr>
<th>Lift component</th>
<th>Minimum dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum floor to ceiling height</td>
<td>2300</td>
</tr>
<tr>
<td>Minimum door height</td>
<td>2100</td>
</tr>
<tr>
<td>Minimum door width</td>
<td>1300</td>
</tr>
</tbody>
</table>
(d) Lift floor dimensions of not less than 810 mm wide x 1200 mm deep for a stairway platform lift.
(e) Minimum clear door opening complying with AS 1735.12 for all lifts except a stairway platform lift.
(f) Passenger protection system complying with AS 1735.12 for all lifts with power-operated doors.
(g) Lift landing doors at the upper landing for all lifts except a stairway platform lift.
(h) Lift car and landing control buttons complying with AS 1735.12 for all lifts except—
 (i) a stairway platform lift; and
 (ii) a low-rise platform lift.
(i) Lighting in accordance with AS 1735.12 for all enclosed lift cars.
(j) For all lifts serving more than 2 levels—
 (i) automatic audible information within the lift car to identify the level each time the car stops; and
 (ii) audible and visual indication at each lift landing to indicate the arrival of the lift car; and
 (iii) audible information and audible indication required by (i) and (ii) is to be provided in a range of between 20 - 80 dB(A) at a maximum frequency of 1500 Hz.
(k) Emergency hands-free communication, including a button that alerts a call centre of a problem and a light to signal that the call has been received, for all lifts except a stairway platform lift.

E3D9 Fire service controls

[2019: E3.7]

Where lifts serve any storey above an effective height of 12 m, the following must be provided:

(a) A fire service recall control switch complying with E3D11 for—
 (i) a group of lifts; or
 (ii) a single lift not in a group that serves the storey.
(b) A lift car fire service drive control switch complying with E3D12 for every lift.

E3D10 Residential care buildings

[2019: E3.8]

(1) Where residents in a Class 9c residential care building are on levels which do not have direct access to a road or open space, the building must be provided with either—
 (a) at least one lift to accommodate a stretcher in accordance with E3D3(2); or
 (b) a ramp in accordance with AS 1428.1.
(2) The lift or ramp required by (1) must discharge at a level providing direct access to a road or open space.

E3D11 Fire service recall control switch

[2019: E3.9]

(1) Each group of lifts must be provided with one fire service recall control switch required by E3D10 that activates the fire service recall operation at (6).
(2) The switch required by (1) must—
 (a) be located at the landing nominated by the appropriate authority; and
 (b) be labelled “FIRE SERVICE” in indelible white lettering on a red background; and
 (c) have two positions with an “OFF” and an “ON” position identified; and
 (d) be operable only by the use of a key that is removable in either the “OFF” position or the “ON” position.
(3) Adhesive labels must not be used for compliance with (2)(b) and (c).
(4) The key in (2)(d) must be able to turn all fire service recall control switches in the building and must have a different
key combination to other keys used for lifts in the building.

(5) The fire service recall operation must be activated by—
(a) switching the fire service recall control switch in (1) to “ON”; or
(b) a signal from a fire management system approved by the appropriate authority.

(6) The activation of the fire service recall operation at (5) must—
(a) cancel all registered car and landing calls; and
(b) inactivate all door reopening devices that may be affected by smoke; and
(c) ensure lift cars travelling toward the nominated floor continue to the nominated floor without stopping; and
(d) ensure lift cars travelling away from the nominated floor stop at or before the next available floor without opening the doors (either automatically or by the door open button), reverse direction and travel without stopping to the nominated floor; and
(e) for lifts stopped at a floor other than the nominated floor, close the doors and travel without stopping to the nominated floor; and
(f) ensure that lifts stay at the nominated floor with doors open; and
(g) permit all lifts to return to normal service if the fire service recall control switch at (1) is switched to the “OFF” position during or after the fire service recall operation.

(7) The requirements of (6) do not apply to lifts on inspection service or when the lift car fire service control switch required by E3D12 is in the “ON” position.

(8) Lifts having manual controls must signal an alert to the lift for the lift to return to the nominated floor containing the recall switch that activated the signal.

E3D12 Lift car fire service drive control switch

[2019: E3.10]

(1) The lift car fire service drive control switch required by E3D10 must be activated from within the lift car.

(2) The switch must—
(a) be located between 600 mm and 1500 mm above the lift car floor; and
(b) be labelled “FIRE SERVICE” by indelible white lettering on a red background; and
(c) have two positions with an “OFF” and an “ON” position identified; and
(d) operate only by the use of a key that is removable in either the “OFF” position or the “ON” position.

(3) Adhesive labels must not be used for compliance with (2)(b) or (c).

(4) When the lift car fire service drive control switch at (1) is turned to the “ON” position, the lift must—
(a) not respond to the fire service recall control switch; and
(b) cancel all registered lift car and landing calls; and
(c) override all lift car call access control systems; and
(d) inactivate all door reopening devices that may be affected by smoke; and
(e) allow the registration of lift car call by lift car call buttons, however the lift doors must not close in response to the registration of lift car calls; and
(f) activate door closing by constant pressure being applied on the “door close” button unless the button is released before the doors are fully closed, in which case the doors must reopen and any registered lift car calls must be cancelled; and
(g) when the doors are closed, move the lift in response to registered lift car calls while allowing additional lift car calls to also be registered; and
(h) travel to the first possible floor in response to registered lift car calls and cancel all registered lift car calls after the lift stops; and
(i) ensure doors do not open automatically, rather by constant pressure being applied on the “door open” button unless the button is released before the doors are fully open, in which case the doors must re-close.
(5) The requirements of (4)(a) to (i) do not apply to a lift operating on inspection service.

(6) A multi-deck lift installation must have systems in place that—

(a) are able to communicate to the fire officer that the fire service drive control switch will not operate until all decks have been cleared of passengers; and

(b) ensure there is an appropriate method of clearing all deck landings of passengers; and

(c) maintain all doors to deck landings not containing the fire service control switch closed and inoperative while the lift is on fire service drive control.
Part E4 Visibility in an emergency, exit signs and warning systems

Introduction to this Part

This Part is intended to provide a minimum level of visibility in evacuation routes in an emergency, including emergency lighting and signage to assist in locating and identifying exits. This part also includes requirements for emergency warning and intercom systems to alert occupants and assist evacuation.

Objectives

E4O1 Objective

The Objective of this Part is, in an emergency, to safeguard occupants from injury by—

(a) having adequate visibility; and
(b) having adequate identification of exits and paths of travel to exits; and
(c) being made aware of the emergency.

Functional Statements

E4F1 Visibility in an emergency, exit signs and warning systems

A building is to be provided with—

(a) adequate visibility upon failure of normal artificial lighting during an emergency; and
(b) adequate means—

(i) of warning occupants to evacuate; and
(ii) to manage the evacuation process; and
(iii) to identify exits and paths of travel to an exit.

Performance Requirements

E4P1 Visibility in an emergency

To facilitate safe evacuation in an emergency, a building must be provided with a system that—

(a) ensures a level of visibility sufficient to enable exits, paths of travel to exits and any obstacles along a path of travel to an exit to be identified; and
(b) activates instantaneously upon the failure of an artificial lighting system, to the degree necessary, appropriate to—

(i) the function or use of the building; and
(ii) the floor area of the building; and
(iii) the distance of travel to an exit.
Limitations:
E4P1 does not apply to the internal parts of a sole-occupancy unit in a Class 2, 3 or 9c building or Class 4 part of a building.

E4P2 Identification of exits

To facilitate evacuation, suitable signs or other means of identification must, to the degree necessary—
(a) be provided to identify the location of exits; and
(b) guide occupants to exits; and
(c) be clearly visible to occupants; and
(d) operate in the event of a power failure of the main lighting system for sufficient time for occupants to safely evacuate.

Limitations:
E4P2 does not apply to the internal parts of a sole-occupancy unit in a Class 2, 3 or 9c building or Class 4 part of a building.

E4P3 Emergency warning and intercom systems

To warn occupants of an emergency and assist evacuation of a building, an emergency warning and intercom system must be provided, to the degree necessary, appropriate to—
(a) the floor area of the building; and
(b) the function or use of the building; and
(c) the height of the building.

Verification Methods

E4V1 Emergency lighting

(1) Compliance with E4P1 is verified for the level of visibility for safe evacuation in an emergency and instantaneous activation, when an emergency lighting system satisfies the requirements of (2) to (5).

(2) The calculated horizontal illuminance is not less than—
(a) 0.2 lux at floor level in the path of travel to an exit; and
(b) 1 lux at each floor level or tread in every required—
 (i) fire-isolated stairway; or
 (ii) fire-isolated passageway; or
 (iii) fire-isolated ramp; or
 (iv) non-fire-isolated stairway; or
 (v) non-fire-isolated ramp.

(3) The emergency lighting provides a level of illuminance not less than—
(a) 10% of that required by (2) within 1 second of energisation; and
(b) 80% of that required by (2) within 15 seconds of energisation.
(4) The full level of illumination required by (2) must be achieved within 60 seconds of energisation.

(5) An emergency lighting system must operate at not less than the minimum required level of illuminance for not less than 90 minutes.

E4V2 Fire Safety Verification Method

[2019: EV4.2]

Compliance with E4P1, E4P2 and E4P3 is verified when a building is designed in accordance with C1V4.

Deemed-to-Satisfy Provisions

E4D1 Deemed-to-Satisfy Provisions

[2019: E4.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements E4P1 to E4P3 are satisfied by complying with—

(a) E4D2 to E4D9; and

(b) in a building containing an atrium, Part G3; and

(c) in a building in an alpine area, Part G4; and

(d) for a building containing an occupiable outdoor area, Part G6; and

(e) for additional requirements for Class 9b buildings, Part I1; and

(f) for farm buildings and farm sheds, Part I3.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

SA E4D2

E4D2 Emergency lighting requirements

[2019: E4.2]

An emergency lighting system must be installed—

(a) in every fire-isolated stairway, fire-isolated passageway or fire-isolated ramp; and

(b) in every storey of a Class 5, 6, 7, 8 or 9 building where the storey has an area more than 300 m\(^2\)—

(i) in every passageway, corridor, hallway, or the like, that is part of the path of travel to an exit; and

(ii) in any room having a floor area more than 100 m\(^2\) that does not open to a corridor or space that has emergency lighting or to a road or open space; and

(iii) in any room having a floor area more than 300 m\(^2\); and

(c) in every passageway, corridor, hallway, or the like, having a length of more than 6 m from the entrance doorway of any sole-occupancy unit in a Class 2 or 3 building or Class 4 part of a building to the nearest doorway opening directly to—

(i) a fire-isolated stairway, fire-isolated passageway or fire-isolated ramp; or

(ii) an external stairway serving instead of a fire-isolated stairway under D2D13; or

(iii) an external balcony leading to a fire-isolated stairway, fire-isolated passageway or fire-isolated ramp; or

(iv) a road or open space; and

(d) in every required non-fire-isolated stairway; and

(e) in a sole-occupancy unit in a Class 5, 6 or 9 building if—

(i) the floor area of the unit is more than 300 m\(^2\); and
(ii) an exit from the unit does not open to a road or open space or to an external stairway, passageway, balcony or ramp, leading directly to a road or open space; and

(f) in every room or space to which there is public access in every storey in a Class 6 or 9b building if—
 (i) the floor area in that storey is more than 300 m²; or
 (ii) any point on the floor of that storey is more than 20 m from the nearest doorway leading directly to a stairway, ramp, passageway, road or open space; or
 (iii) egress from that storey involves a vertical rise within the building of more than 1.5 m, or any vertical rise if the storey concerned does not admit sufficient light; or
 (iv) the storey provides a path of travel from any other storey required by (i), (ii) or (iii) to have emergency lighting; and

(g) in a Class 9a health-care building—
 (i) in every passageway, corridor, hallway, or the like, serving a treatment area or a ward area; and
 (ii) in every room having a floor area of more than 120 m² in a patient care area; and

(h) in every Class 9c building excluding within sole-occupancy units; and

(i) in every required fire control centre.

E4D3 Measurement of distance

[2019: E4.3]

Distances, other than vertical rise, must be measured along the shortest path of travel whether by straight lines, curves or a combination of both.

E4D4 Design and operation of emergency lighting

[2019: E4.4]

Every required emergency lighting system must comply with AS/NZS 2293.1.

SA E4D5

E4D5 Exit signs

[2019: E4.5]

An exit sign must be clearly visible to persons approaching the exit, and must be installed on, above or adjacent to each—

(a) door providing direct egress from a storey to—
 (i) an enclosed stairway, passageway or ramp serving as a required exit; and
 (ii) an external stairway, passageway or ramp serving as a required exit; and
 (iii) an external access balcony leading to a required exit; and

(b) door from an enclosed stairway, passageway or ramp at every level of discharge to a road or open space; and

(c) horizontal exit; and

(d) door serving as, or forming part of, a required exit in a storey required to be provided with emergency lighting in accordance with E4D2.

NSW E4D6

E4D6 Direction signs

[2019: E4.6]

If an exit is not readily apparent to persons occupying or visiting the building then exit signs must be installed in appropriate positions in corridors, hallways, lobbies, and the like, indicating the direction to a required exit.
E4D7 Class 2 and 3 buildings and Class 4 parts: exemptions

[E4.7]

E4D5 does not apply to—

(a) a Class 2 building in which every door referred to is clearly and legibly labelled on the side remote from the exit or balcony—
 (i) with the word “EXIT” in capital letters 25 mm high in a colour contrasting with that of the background; or
 (ii) by some other suitable method; and
(b) an entrance door of a sole-occupancy unit in a Class 2 or 3 building or Class 4 part of a building.

SA E4D8

E4D8 Design and operation of exit signs

[E4.8]

Every required exit sign must—

(a) comply with—
 (i) AS/NZS 2293.1; or
 (ii) for a photoluminescent exit sign, Specification 25; and
(b) be clearly visible at all times when the building is occupied by any person having the right of legal entry to the building.

E4D9 Emergency warning and intercom systems

[E4.9]

An emergency warning and intercom system complying where applicable with AS 1670.4 must be installed—

(a) in a building with an effective height of more than 25 m; and
(b) in a Class 3 building having a rise in storeys of more than 2 and used as—
 (i) the residential part of a primary or secondary school; or
 (ii) accommodation for the aged, children or people with a disability; and
(c) in a Class 3 building used as a residential care building, except that the system—
 (i) must be arranged to provide a warning for occupants; and
 (ii) in areas used by the residents, may have its alarm adjusted in volume and content to minimise trauma consistent with the type and condition of residents; and
(d) in a Class 9a building having a floor area of more than 1000 m2 or a rise in storeys of more than 2, and the system—
 (i) must be arranged to provide a warning for occupants; and
 (ii) in a ward area, may have its alarm adjusted in volume and content to minimise trauma consistent with the type and condition of patients; and
(e) in a Class 9b building—
 (i) used as a school and having a rise in storeys of more than 3; or
 (ii) used as a theatre, public hall, or the like, having a floor area more than 1000 m2 or a rise in storeys of more than 2.
S17C1 Scope

This Specification sets out requirements for the design and installation of fire sprinkler systems.

VIC S17C2

S17C2 Application of automatic fire sprinkler standards

Subject to this Specification, an automatic fire sprinkler system must comply with—

(a) for all building classifications: AS 2118.1; or
(b) for a Class 2 or 3 building with an effective height of not more than 25 m and a rise in storeys of 4 or more: Specification 18 and the relevant provisions of this Specification as applicable; or
(c) for Class 5, 6, 7, 8, 9a (other than a residential care building) or 9b (other than a Class 9b early childhood centre which is not wholly within a storey that provides direct egress to a road or open space) parts of a building with an effective height not more than 25 m, which also contains Class 2 or 3 parts: a sprinkler system in accordance with Specification 18 as for a Class 2 or 3 building and the relevant provisions of this Specification except—
 (i) a FPAA101D sprinkler system cannot be used where the Class 5, 6, 7, 8, 9a (other than a residential care building) or 9b parts—
 (A) contain more than 2 storeys; or
 (B) are more than 25% of the total floor area of the building; or
 (C) are located above the fourth storey; and
 (ii) a FPAA101D or FPAA101H sprinkler system cannot be used where the Class 7a part (other than an open-deck carpark) accommodates more than 40 vehicles; or
(d) for a combined sprinkler and fire hydrant system: AS 2118.6; or
(e) for a Class 9a health-care building used as a residential care building: AS 2118.4 as applicable; or
(f) for a Class 2, 3 or 9c building: AS 2118.4 as applicable.

S17C3 Separation of sprinklered and non-sprinklered areas

Where a part of a building is not protected with sprinklers, the sprinklered and non-sprinklered parts must be fire-separated with a wall or floor which must—

(a) comply with any specific requirement of the Deemed-to-Satisfy Provisions of the BCA; or
(b) where there is no specific requirement, comply with the relevant part of AS 2118, FPAA101D or FPAA101H.

S17C4 Protection of openings

Any openings, including those for service penetrations, in construction separating sprinklered and non-sprinklered parts of a building, including the construction separating the areas nominated for omitted protection in AS 2118.1, must be protected in accordance with the Deemed-to-Satisfy Provisions of Part C4.
S17C5 Quick response sprinklers
[2019: Spec E1.5: 5]

Quick response sprinklers may be installed only if they are suitable for the type of application proposed and it is
demonstrated that the sprinkler system is designed to accommodate their use.

S17C6 Sprinkler valve enclosures
[2019: Spec E1.5: 6]

(1) Sprinkler alarm valves must be located in a secure room or enclosure which has direct egress to a road or open
space.

(2) All sprinkler valve rooms and enclosures must be secured with a system suitable for use by the fire brigade.

S17C7 Water supply
[2019: Spec E1.5: 7]

(1) A required sprinkler system must be provided with at least one water supply.

(2) A required sprinkler system in a building greater than 25 m in effective height must be provided with dual water supply
except that a secondary water supply storage capacity of 25,000 litres may be used if—

 (a) the storage tank is located at the topmost storey of the building; and

 (b) the building occupancy is classified as no more hazardous than Ordinary Hazard 2 (OH2) under AS 2118.1; and

 (c) an operational fire brigade service is available to attend a building fire.

S17C8 Building occupant warning system
[2019: Spec E1.5: 8]

A required sprinkler system, except a FPAA101D sprinkler system, must be connected to and activate a building occupant
warning system complying with S20C7.

S17C9 Connection to other systems
[2019: Spec E1.5: 9]

Where a smoke hazard management system is installed and is actuated by smoke detectors, the sprinkler system must,
wherever practicable, be arranged to also activate the smoke hazard management system.

S17C10 Anti-tamper devices
[2019: Spec E1.5: 10]

(1) Where a sprinkler system is installed—

 (a) over any stage area in a theatre, public hall or the like, visual and audible status indication of sprinkler valves
 must be provided at the location normally used by the stage manager; or

 (b) in a space housing lift electrical and control equipment (including machine rooms, secondary floors and sheave
 rooms), any valves provided to control sprinklers in these spaces must be located adjacent to the space.

(2) Any valves provided to control sprinklers required by (1) must be fitted with anti-tamper monitoring devices connected
to a monitoring panel.
S17C11 Sprinkler systems in carparks

A sprinkler system protecting a carpark complying with S5C19(3) in a multi-classified building must—

(a) be independent of the sprinkler system protecting any part of the building not used as a carpark; or

(b) if forming part of a sprinkler system protecting a part of the building not used as a carpark, be designed such that the section protecting the non-carpark part can be isolated without interrupting the water supply or otherwise affecting the effective operation of the section protecting the carpark.

S17C12 Residential care buildings

(1) In addition to the provisions of AS 2118.4, a sprinkler system in—

(a) a Class 3 building used as a residential care building; or

(b) a Class 9a health-care building used as a residential care building; or

(c) a Class 9c building,

must comply with subclause (2).

(2) Any sprinkler system referred to in (1) must—

(a) be provided with a monitored main stop valve in accordance with AS 2118.1; and

(b) be permanently connected with a direct data link or other approved monitoring system to a fire station or fire station dispatch centre.

S17C13 Sprinkler systems in lift installations

(1) Where sprinklers are installed in a space housing lift electrical and control equipment, including machine rooms, secondary floors and sheave rooms, sprinklers in these spaces must—

(a) have heads protected from accidental damage by way of a guard that will not impair the performance of the head; and

(b) be capable of being isolated and drained, either separately or collectively, without isolating any other sprinklers within the building.

(2) Valves provided to control sprinklers referred to in (1) must be installed in accordance with S17C10(2).

S17C14 Early childhood centres

An automatic fire sprinkler system in a Class 9b early childhood centre which is not wholly within a storey that provides direct egress to a road or open space must use quick response sprinklers.
This Specification sets out requirements for the design and installation of fire sprinkler systems, and concessions for Class 2 and 3 buildings provided with an automatic fire sprinkler system in accordance with S17C2(b) and (c), not more than 25m in effective height with a rise in storeys of 4 or more.

The Deemed-to-Satisfy Provisions of this Specification take precedence where there is a difference to the Deemed-to-Satisfy Provisions of Sections C, D and E.

A required automatic fire sprinkler system installed in a Class 2 or 3 building with an effective height of not more than 25 m and a rise in storeys of 4 or more must comply with—

(a) AS 2118.1; or
(b) AS 2118.4, as applicable; or
(c) FPAA101D, except for residential care buildings; or
(d) FPAA101H, except for residential care buildings.

A Class 2 or 3 building not more than 25 m in effective height with a rise in storeys of 4 or more provided with an automatic fire sprinkler system under (1)(a) or (1)(b) may be constructed in accordance with S18C4(1), as applicable, provided—

(i) the automatic fire sprinkler system is permanently connected to a fire alarm monitoring system connected to a fire station or fire station dispatch centre in accordance with Specification 23 if—

(ii) in the case of a residential care building, the building will accommodate more than 32 residents; and

(b) the automatic fire sprinkler system is fitted with sprinklers complying with clauses 4.4, 4.5 and 5.5.2 of AS 2118.4 in bedrooms; and

(c) an automatic smoke detection and alarm system is installed in accordance with Specification 20 except that it need not be connected to a fire alarm monitoring system connected to a fire station or fire station dispatch centre, and in the case of a residential care building it must be installed in accordance with—

(i) S20C4; or
(ii) both—

(A) S20C3, provided S20C3(1)(b) is applied as if the building was not protected with a sprinkler system; and

(B) Specification 23; and

(d) in a residential care building, the automatic smoke detection and alarm system and the automatic fire sprinkler system are connected to a local fire indicator panel provided in accordance with Specification 23; and

(e) fire orders are provided in a Class 3 building in accordance with G4D8 as for a building in an alpine area.
(1) The following concessions are permitted for Class 2 and 3 buildings, and Class 5, 6, 7, 8, 9a (other than residential care buildings) or 9b parts of a building which also contain Class 2 or 3 parts, provided with a required automatic fire sprinkler system in accordance with S18C3(1)(a) or (1)(b):

(a) The FRL for self-closing fire doors, as required by C4D9 and C4D12, may be reduced to not less than –/30/30.

(b) The FRL for—

(i) all non-loadbearing internal wall and shafts constructed of fire-protected timber, as required by Specification 5 to have FRLs greater than –/60/60, may be reduced to –/60/60 and service penetrations through non-loadbearing internal wall and shafts constructed of fire-protected timber, required by C4D15, may be reduced to not less than –/60/15; and

(ii) all other non-loadbearing internal wall, as required by Specification 5, may be reduced to –/45/45 and the FRL for service penetrations through internal non-loadbearing walls and shafts, as required by C4D15, may be reduced to –/45/15.

(c) The FRL for fire-isolated stairways enclosed with non-loadbearing construction, as required by D2D4, may be reduced to –/45/45.

(d) Except in a residential care building, the maximum distance of travel, as required by D2D5(1)(a)(i), may be increased from 6 m to 12 m.

(e) The maximum distance of travel from a single exit serving the storey at the level of egress to a road or open space, as required by D2D5(1)(a)(ii), may be increased from 20 m to 30 m.

(f) The maximum distance between alternative exits, as required by D2D6(c)(i), may be increased from 45 m to 60 m.

(g) Internal fire hydrants in accordance with E1D2 are not required where—

(i) the building is served by external fire hydrants that provide compliant coverage installed in accordance with E1D2, except that in a residential care building the nozzle at the end of the length of hose need only reach the entry door of any sole-occupancy unit to be considered as covering the area within the sole-occupancy unit; or

(ii) a dry fire hydrant system that otherwise complies with AS 2419.1 is installed in the building and—

(A) each fire hydrant head is located in accordance with E1D2 and fitted with a blank end cap or plug; and

(B) the pipework is installed in accordance with E1D2 (as for a required fire main) except that it need not be connected to a water supply; and

(C) a hydrant booster inlet connection is provided in accordance with E1D2; and

(D) an external street or feed hydrant capable of providing the required system flow is located within 60 m of the hydrant booster connection.

(h) An emergency warning and intercom system need not be provided in a residential care building in accordance with E4D9 if a warning system with an override public address facility is installed in accordance with Specification 23.

(2) The following concessions are permitted for Class 2 and 3 buildings, and Class 5, 6, 7, 8, 9a (other than residential care buildings) or 9b parts of a building which also contain Class 2 or 3 parts, provided with a required automatic fire sprinkler system in accordance with S18C3(1)(c):

(a) Window openings need not be protected in accordance with C4D12(8) provided the room served by the window is sprinkler protected.

(b) The FRL for—

(i) service penetrations through non-loadbearing internal wall and shafts, as required by C4D15, may be reduced to –/60/15; and

(ii) non-loadbearing fire-resisting lift and stair shafts, as required by Specification 5, may be reduced to –/60/60.

(c) The maximum distance of travel, as required by D2D5(1)(a)(i), may be increased from 6 m to 12 m.

(d) The maximum distance of travel from a single exit serving the storey at the level of egress to a road or open space, as required by D2D5(1)(a)(ii), may be increased from 20 m to 30 m.
(e) The maximum distance between alternative exits, as required by D2D6(c)(i), may be increased from 45 m to 60 m.

(f) Internal fire hydrants in accordance with E1D2 are not required where—

(i) the building is served by external fire hydrants that provide compliant coverage installed in accordance with E1D2; or

(ii) a dry fire hydrant system that otherwise complies with AS 2419.1 is installed in the building except—

(A) the system pipework is not connected to the water supply; and

(B) an on-site fire pumpset is not required; and

(C) the minimum fire hydrant outlet flow of 6 L/s may be achieved when boosted by a fire brigade pumping appliance; and

(D) the minimum pipe sizes specified in AS 2419.1 do not apply.

(g) Where a dry fire hydrant system is installed for the purposes of (f)—

(i) each fire hydrant head must be located in accordance with E1D2 and fitted with a blank end cap or plug; and

(ii) a hydrant booster inlet connection must be provided in accordance with E1D2; and

(iii) an external street or feed hydrant capable of providing the required system flow must be located within 60 m of the hydrant booster connection.

(3) The following concessions are permitted for Class 2 and 3 buildings, and Class 5, 6, 7, 8, 9a (other than residential care buildings) or 9b parts of a building which also contain Class 2 or 3 parts, provided with a required automatic fire sprinkler system in accordance with S18C3(1)(d):

(a) Window openings need not be protected in accordance with C4D12(8) provided the room served by the window is sprinkler protected.

(b) The FRL for—

(i) service penetrations through non-loadbearing internal wall and shafts, as required by C4D15, may be reduced to –/60/15; and

(ii) non-loadbearing fire-resisting lift and stair shafts, as required by Specification 5, may be reduced to –/60/60.

(c) The maximum distance of travel, as required by D2D5(1)(a)(i), may be increased from 6 m to 12 m.

(d) The maximum distance of travel from a single exit serving the storey at the level of egress to a road or open space, as required by D2D5(1)(a)(ii), may be increased from 20 m to 30 m.

(e) The maximum distance between alternative exits, as required by D2D6(c)(i), may be increased from 45 m to 60 m.
S19C1 Scope

(1) This Specification describes the construction and content of required fire control centres and rooms.

(2) A fire control room is a fire control centre in a dedicated room with additional specific requirements.

S19C2 Application

(1) S19C3 to S19C6 apply to fire control centres (including fire control rooms).

(2) S19C7 to S19C13 apply additional requirements to fire control rooms.

S19C3 Purpose and content of fire control centre

A fire control centre must—

(a) provide an area from which fire-fighting operations or other emergency procedures can be directed or controlled; and

(b) contain controls, panels, telephones, furniture, equipment and the like associated with the required fire services in the building; and

(c) not be used for any purpose other than the control of—

(i) fire-fighting activities; and

(ii) other measures concerning the occupant safety or security.

S19C4 Location of fire control centre

A fire control centre must be so located in a building that egress from any part of its floor, to a road or open space, does not involve changes in level which in aggregate exceed 300 mm.

S19C5 Equipment not permitted within a fire control centre

An internal combustion engine, pumps, sprinkler control valves, pipes and pipe fittings must not be located in a fire control centre, but may be located in rooms accessed through the fire control centre.

S19C6 Ambient sound level for a fire control centre

(1) The ambient sound level within the fire control centre measured when all fire safety equipment is operating in the manner in which it operates in an emergency must not exceed 65 dB(A).

(2) The measurement must be taken for a sufficient time to characterise the effects of all sound sources.

(3) Where there is not a great variation in noise level, a measurement time of 60 seconds may be used.
S19C7 Construction of a fire control room

A fire control centre in a building more than 50 m in effective height must be in a separate room where—

(a) the enclosing construction is of concrete, masonry or the like, sufficiently impact resistant to withstand the impact of any likely falling debris, and with an FRL of not less than 120/120/120; and

(b) any material used as a finish, surface, lining or the like within the room complies with the requirements of Specification 7; and

(c) services, pipes, ducts and the like that are not directly required for the proper functioning of the fire control room do not pass through it; and

(d) openings in the walls, floors or ceiling which separate the room from the interior of the building are confined to doorways, ventilation and other openings for services necessary for the proper functioning of the facility.

S19C8 Protection of openings in a fire control room

Openings permitted by S19C7 must be protected as follows:

(a) Openings for windows, doorways, ventilation, service pipes, conduits and the like, in an external wall of the building that faces a road or open space, must be protected in accordance with the Deemed-to-Satisfy Provisions of Part C4.

(b) Openings in the floors, ceilings and internal walls enclosing a fire control room must, except for doorways, be protected in accordance with the Deemed-to-Satisfy Provisions of Part C4.

(c) A door opening in the internal walls enclosing a fire control room, must be fitted with a self-closing –/120/30 smoke sealed fire door.

(d) Openings associated with natural or mechanical ventilation must—
 (i) not be made in any ceiling or floor immediately above or below the fire control room; and
 (ii) be protected by a –/120/-- fire damper if the opening is for a duct through a wall required to have an FRL, other than an external wall.

S19C9 Doors to a fire control room

(1) Required doors to a fire control room must open into the room, be lockable and located so that persons using escape routes from the building will not obstruct or hinder access to the room.

(2) The fire control room must be accessible via two paths of travel—
 (a) one from the front entrance of the building; and
 (b) one direct from a public place or fire-isolated passageway which leads to a public place and has a door with an FRL of not less than –/120/30.

S19C10 Size and contents of a fire control room

(1) A fire control room must contain—
 (a) a Fire Indicator Panel and necessary control switches and visual status indication for all required fire pumps, smoke control fans and other required fire safety equipment installed in the building; and
 (b) a telephone directly connected to an external telephone exchange; and
 (c) a blackboard or whiteboard not less than 1200 mm wide x 1000 mm high; and
(d) a pin-up board not less than 1200 mm wide \(\times \) 1000 mm high; and
(e) a raked plan layout table of a size suitable for laying out the plans provided under (f); and
(f) colour-coded, durable, tactical fire plans.

(2) In addition, a fire control room may contain—
(a) master emergency control panels, lift annunciator panels, remote switching controls for gas or electrical supplies and emergency generator backup; and
(b) building security, surveillance and management systems if they are completely segregated from all other systems.

(3) A fire control room must—
(a) have a floor area of not less than 10 m\(^2\) and the length of any internal side must be not less than 2.5 m; and
(b) if only the minimum prescribed equipment is installed — have a net floor area of not less than 8 m\(^2\) with a clear space of not less than 1.5 m\(^2\) in front of the Fire Indicator Panel; and
(c) if additional equipment is installed — have an additional area of not less than 2 m\(^2\) net floor area for each additional facility and a clear space of not less than 1.5 m\(^2\) in front of each additional control or indicator panel; and
(d) be constructed such that the area required for any path of travel through the room to other areas is provided in addition to the requirements (b) and (c).

S19C11 Ventilation and power supply for a fire control room

[2019: Spec E1.8: 10]

(1) A fire control room must be ventilated by—
(a) natural ventilation from a window or doorway in an external wall of the building which opens directly into the fire control room from a road or open space; or
(b) a pressurisation system that only serves the fire control room, and—
 (i) is installed in accordance with AS 1668.1 as though the room is a fire-isolated stairway; and
 (ii) is activated automatically by operation of the fire alarm, or sprinkler system complying with Specification 17, installed in the building and manually by an over-riding control in the room; and
 (iii) provides a flow of fresh air through the room of not less than 30 air changes per hour when the system is operating and any door to the room is open; and
 (iv) has fans, motors and ductwork that form part of the system but not contained within the fire control room protected by enclosing construction with an FRL of not less than 120/120/120; and
 (v) has any electrical supply to the fire control room or equipment necessary for its operation connected to the supply side of the main disconnection switch for the building.

(2) No openable devices other than necessary doorways, pressure controlled relief louvres and windows that are openable by a key, must be constructed in the fire control room.

S19C12 Sign for a fire control room

[2019: Spec E1.8: 11]

The external face of the door to the fire control room must have a sign with the words—

FIRE CONTROL ROOM

in letters not less than 50 mm high and of a colour which contrasts with that of the background.

S19C13 Lighting for a fire control room

[2019: Spec E1.8: 12]

Emergency lighting in accordance with the Deemed-to-Satisfy Provisions of Part E4. must be provided in a fire control
room, except that an illumination level of not less than 400 lux must be maintained at the surface of the plan table.
S20C1 Scope

This Specification describes the installation and operation of automatic smoke detection and alarm systems.

S20C2 Type of system

A required automatic smoke detection and alarm system must be provided in accordance with the following:

(a) Class 2 buildings and Class 4 parts of a building—
 (i) a smoke alarm system complying with S20C3; or
 (ii) a smoke detection system complying with S20C4; or
 (iii) a combination of a smoke alarm system and a smoke detection system complying with S20C5.

(b) Class 3 buildings—
 (i) with a Class 3 part located more than 2 storeys above ground level — a smoke detection system complying with S20C4; or
 (ii) which accommodate more than 20 residents and are the residential part of a school, accommodation for the aged, children or people with a disability — a smoke detection system complying with S20C4; or
 (iii) all other Class 3 buildings—
 (A) a smoke alarm system complying with S20C3; or
 (B) a smoke detection system complying with S20C4; or
 (C) a combination of a smoke alarm system and a smoke detection system complying with S20C5.

(c) Class 5, 6, 7, 8, 9b and 9c buildings — a smoke detection system complying with S20C4

(d) Class 9a health-care buildings—
 (i) where more than 6 bed patients are accommodated — a smoke detection system complying with S20C4; or
 (ii) where 6 or less bed patients are accommodated—
 (A) a smoke alarm system complying with S20C3; or
 (B) a smoke detection system complying with S20C4.

S20C3 Smoke alarm system

(1) All Class 2 - 9 buildings:
 (a) A smoke alarm system must—
 (i) consist of smoke alarms complying with AS 3786; and
 (ii) be powered from the consumer mains source.
 (b) In kitchens and other areas where the use of the area is likely to result in smoke alarms causing spurious signals, subject to (c)—
 (i) any other alarm deemed suitable in accordance with AS 1670.1 may be installed provided that smoke alarms are installed elsewhere in the sole-occupancy unit in accordance with (2)(a) and (2)(b); or
 (ii) an alarm acknowledgement facility may be installed.
(c) Where a kitchen or other area referred to in (b) is in a building protected with a sprinkler system complying with Specification 17 (other than a FPAA101D system), alarms need not be installed in the kitchen or other area likely to result in spurious signals.

(2) Class 2 or 3 buildings or Class 4 parts of a building — In a Class 2 or 3 building or Class 4 part of a building provided with a smoke alarm system, the following applies:

(a) Alarms must be installed within each sole-occupancy unit, and located on or near the ceiling in any storey—
 (i) containing bedrooms—
 (A) between each part of the sole-occupancy unit containing bedrooms and the remainder of the sole-occupancy unit; and
 (B) where bedrooms are served by a hallway, in that hallway; and
 (ii) not containing any bedrooms, in egress paths.

(b) Where there is more than one alarm installed within a sole-occupancy unit, alarms must be interconnected within that sole-occupancy unit.

(c) Subject to (d), alarms must be—
 (i) installed in public corridors and other internal public spaces, located in accordance with the requirements for smoke detectors in AS 1670.1; and
 (ii) connected to activate a building occupant warning system in accordance with S20C7.

(d) In a Class 2 or 3 building or Class 4 part of a building protected with a sprinkler system complying with Specification 17 (other than a FPAA101D system), alarms are not required in public corridors and other internal public spaces.

(3) Class 9a buildings — Smoke alarms must be—

(a) installed in every room, public corridor and other internal public space; and
(b) located in accordance with the requirements for smoke detectors in AS 1670.1; and
(c) interconnected to provide a common alarm; and
(d) have manual call points installed in evacuation routes so that no point on a floor is more than 30 m from a manual call point.

S20C4 Smoke detection system

[2019: Spec E2.2a: 4]

(1) All Class 2 - 9 buildings:

(a) A smoke detection system must—
 (i) subject to (2) and (3), comply with AS 1670.1; and
 (ii) activate a building occupant warning system in accordance with S20C7.

(b) In kitchens and other areas where the use of the area is likely to result in smoke detectors causing spurious signals, subject to (c)—
 (i) any other detector deemed suitable in accordance with AS 1670.1 may be installed provided that smoke detectors are installed elsewhere in the sole-occupancy unit in accordance with the requirements for alarms in S20C3(2)(a) and (2)(b); or
 (ii) an alarm acknowledgement facility may be installed.

(c) Where a kitchen or other area referred to in (b) is in a building protected with a sprinkler system complying with Specification 17 (other than a FPAA101D or FPAA101H system), detectors need not be installed in the kitchen or other areas likely to result in spurious signals.

(2) Class 2 or 3 buildings or Class 4 parts of a building — In a Class 2 or 3 building or Class 4 part of a building provided with a smoke detection system, the following applies:

(a) Smoke detectors must be installed—
 (i) within each sole-occupancy unit, in accordance with the requirements for alarms in S20C3(2)(a) and (2)(b); and
Services and equipment

(ii) subject to (b), in *public corridors* and other internal public spaces.

(b) In a Class 2 or 3 building or Class 4 part of a building protected with a sprinkler system complying with *Specification 17* (other than a FPAA101D or FPAA101H system), smoke detectors are not *required* in *public corridors* and other internal public spaces.

(3) Class 9a *health-care buildings* — The following applies in a Class 9a *health-care building*:

(a) Except as provided in (b)—
 (i) photoelectric type smoke detectors must be installed in *patient care areas* and in paths of travel to *exits* from *patient care areas*; and
 (ii) in areas other than *patient care areas* and paths of travel to *exits* from *patient care areas*, where the use of the area is likely to result in smoke detectors causing spurious signals, any other detector deemed suitable in accordance with AS 1670.1 may be installed in lieu of smoke detectors.

(b) The requirements of (a) do not apply where an area is protected with a sprinkler system complying with *Specification 17*, smoke detectors need not be installed where the use of the area is likely to result in spurious signals.

(c) Manual call points must be installed in *evacuation routes* so that no point on a floor is more than 30 m from a manual call point.

VIC S20C4(4)

(4) Class 9c buildings — In a Class 9c building—

(a) remote automatic indication of each zone must be given in each smoke compartment by means of—
 (i) mimic panels with an illuminated display; or
 (ii) annunciator panels with alpha numeric display; and

(b) if the building accommodates more than 20 residents, manual call points must be installed in paths of travel so that no point on a floor is more than 30 m from a manual call point.

S20C5 Combined smoke alarm and smoke detection system

[2019: Spec E2.2a: 5]

(1) A Class 2 or 3 building or Class 4 part of a building provided with a combination of a smoke alarm system and smoke detection system in accordance with S20C2 must—

(a) be provided with a smoke alarm system complying with S20C3 within *sole-occupancy units*; and

(b) subject to (2), be provided with a smoke detection system complying with S20C4 in areas not within *sole-occupancy units*.

(2) In a Class 2 or 3 building or Class 4 part of a building protected with a sprinkler system complying with *Specification 17* (other than a FPAA101D or FPAA101H system), smoke detectors are not *required* in *public corridors* and other internal public spaces.

S20C6 Smoke detection for smoke control systems

[2019: Spec E2.2a: 6]

(1) Smoke detectors *required* to activate air pressurisation systems for fire-isolated *exits* and zone pressurisation systems must—

(a) be installed in accordance with AS 1670.1; and

(b) have additional smoke detectors installed adjacent to each bank of lift landing doors set back horizontally from the door openings by a distance of not more than 3 m.

(2) Smoke detectors *required* to activate—

(a) *automatic* shutdown of air-handling systems in accordance with E2D14 to E2D20; or

(b) a smoke exhaust system in accordance with *Specification 21*,

must comply with the requirements of (3).
(3) Smoke detectors referred to in (2) must—
 (a) be spaced—
 (i) not more than 20 m apart and not more than 10 m from any wall, bulkhead or smoke curtain; and
 (ii) in enclosed malls and walkways in a Class 6 building not more than 15 m apart and not more than 7.5 m from any wall, bulkhead or curtain; and
 (b) have a sensitivity—
 (i) in accordance with AS 1670.1 in areas other than a multi-storey walkway and mall in a Class 6 building; and
 (ii) not exceeding 0.5% smoke obscuration per metre with compensation for external airborne contamination as necessary, in a multi-storey walkway and mall in a Class 6 building.

(4) Smoke detectors provided to activate a smoke control system must—
 (a) either—
 (i) form part of a building fire or smoke detection system complying with AS 1670.1; or
 (ii) be a separate dedicated system incorporating control and indicating equipment complying with AS 1670.1; and
 (b) activate a building occupant warning system complying with S20C7, except that smoke detectors provided solely to initiate automatic shutdown of air-handling systems in accordance with (2)(a) need not activate a building occupant warning system.

S20C7 Building occupant warning system

Subject to E4D9, a building occupant warning system provided as part of a smoke hazard management system must comply with clause 3.22 of AS 1670.1 to sound through all occupied areas except—
 (a) in a Class 2 and 3 building or Class 4 part of a building provided with a smoke alarm system in accordance with S20C3(2)(c)—
 (i) the sound pressure level need not be measured within a sole-occupancy unit if a level of not less than 85 dB(A) is provided at the door providing access to the sole-occupancy unit; and
 (ii) the inbuilt sounders of the smoke alarms may be used to wholly or partially meet the requirements; and
 (b) in a Class 2 and 3 building or Class 4 part of a building provided with a smoke detection system in accordance with S20C4(2), the sound pressure level from a building occupant warning system need not be measured within a sole-occupancy unit if a level of not less than 100 dB(A) is provided at the door providing access to the sole-occupancy unit; and
 (c) in a Class 3 building used as a residential care building, the system—
 (i) must be arranged to provide a warning for occupants; and
 (ii) in areas used by residents, may have its alarm adjusted in volume and content to minimise trauma consistent with the type and condition of residents; and
 (d) in a Class 9a health-care building, in a patient care area, the system—
 (i) must be arranged to provide a warning for occupants; and
 (ii) in a ward area, may have its alarm adjusted in volume and content to minimise trauma consistent with the type and condition of the patients; and
 (e) in a Class 9c building, the system—
 (i) must be arranged to provide a warning for occupants; and
 (ii) must notify staff caring for the residents of the building; and
 (iii) in areas used by residents, may have its alarm adjusted in volume and content to minimise trauma consistent with the type and condition of residents.
The following installations must be connected to a fire alarm monitoring system connected to a fire station or fire station dispatch centre in accordance with AS 1670.3:

(a) A smoke detection system in a Class 3 building provided in accordance with S20C2(b)(i) or S20C2(b)(ii).

(b) A smoke detection system in a Class 9a *health-care building*, if the building accommodates more than 20 patients.

(c) A smoke detection system in a Class 9c building.

(d) Smoke detection in accordance with S20C6 provided to activate—
 (i) a smoke exhaust system in accordance with Specification 21; or
 (ii) *smoke-and-heat vents* in accordance with Specification 22.

(e) An *automatic* fire detection and alarm system *required* by E2D10 for large isolated buildings subject to C3D4.
S21C1 Scope

This Specification describes the requirements for mechanical smoke exhaust systems.

S21C2 Smoke exhaust capacity

(1) Smoke exhaust fans must have a sufficient capacity to contain the smoke layer—
(a) within a smoke reservoir formed in accordance with S21C4 and not less than 2 m above the highest floor level; and
(b) above the top of any openings interconnecting different smoke reservoirs.

(2) Exhaust rates must be determined in accordance with Figure S21C2, with the height measurement taken from the lowest floor level to the underside of the smoke layer and the fire load determined in accordance with Table S21C2.

Table S21C2: Fire load (MW)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Fire load (MW) for unsprinklered buildings</th>
<th>Fire load (MW) for sprinklered buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 2, 3 or 5</td>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>Class 6</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Class 7 or 8</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Class 9 — generally</td>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>Class 9b buildings covered by Part I1 (see Note) or exhibition halls</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Table Notes:

If the smoke reservoir above the stage is smoke separated from the audience area, the fire load specified applies to the stage area only and the fire load for the audience area is as per Class 9 generally.
Each smoke exhaust fan, complete with its drive, flexible connections, control gear and wiring must—

(a) be constructed and installed so that it is capable of continuous operation (exhausting the required volumetric flow rate at the installed system resistance) at a temperature of 200°C for a period of not less than 1 hour; and

(b) in a building not fitted with a sprinkler system, be capable of continuous operation at a temperature of 300°C for a period of not less than 30 minutes; and

(c) be rated to handle the required volumetric flow rate at ambient temperature to be capable of exhausting cool smoke during the early stages of a fire and to allow routine testing; and
(d) have any high temperature overload devices installed, automatically overridden during the smoke exhaust operation.

S21C4 Smoke reservoirs

[2019: Spec E2.2b: 4]

1. A fire compartment must be divided at ceiling level into smoke reservoirs formed by smoke baffles/curtains of non-combustible and non-shatterable construction.

2. The horizontal area of a smoke reservoir must not exceed 2000 m² and in enclosed walkways and malls of a Class 6 building must not exceed 60 m in length.

3. Smoke reservoirs must be of sufficient depth to contain the smoke layer and must not be less than 500 mm below an imperforate ceiling or roof.

4. Within a multi-storey fire compartment—
 (a) a non-combustible bulkhead or smoke baffle/curtain must be provided around the underside of each opening into a building void to minimise the spread of smoke to other storeys; and
 (b) the depth of the bulkhead or smoke baffle must be not less than the depth of the smoke reservoir provided under (3) plus an additional 400 mm.

S21C5 Smoke exhaust fan and vent location

[2019: Spec E2.2b: 5]

Smoke exhaust fans and vents must be located—

(a) such that each smoke reservoir is served by one or more fans with the maximum exhaust rate at any one point limited to avoiding extract air from below the smoke layer; and

(b) to prevent the formation of stagnant regions resulting in excessive cooling and downward mixing of smoke; and

(c) at natural collection points for the hot smoky gases within each smoke reservoir having due regard to the ceiling geometry and its effect on the migratory path of the smoke; and

(d) away from the intersection of walkways or malls; and

(e) to ensure that any voids containing escalators and/or stairs commonly used by the public are not used as a smoke exhaust path; and

(f) to discharge directly to outdoor with a velocity of not less than 5 m/s, at a suitable point not less than 6 m from any air intake point or exit.

S21C6 Make-up air

[2019: Spec E2.2b: 6]

1. Low level make-up air must be provided either automatically or via permanent ventilation openings to replace the air exhausted so as to minimise—
 (a) any disturbance of the smoke layer due to turbulence created by the incoming air; and
 (b) the risk of smoke migration to areas remote from the fire due to the effect of make-up air on the air balance of the total system.

2. The velocity of make-up air through doorways must not exceed 2.5 m/s.

3. Within a multi-storey fire compartment, make-up air must be provided across each vertical opening from a building void to the fire-affected storey at an average velocity of 1 m/s so as to minimise the spread of smoke from the fire-affected storey to other storeys.
S21C7 Smoke exhaust system control

(1) Each smoke exhaust fan must be activated sequentially by smoke detectors complying with Specification 20 and arranged in zones to match the smoke reservoir served by the fan(s).

(2) Subject to (3) and (4), an air handling system (other than individual room units less than 1000 L/s and miscellaneous exhaust air systems installed in accordance with Sections 5 and 6 of AS 1668.1) which does not form part of the smoke hazard management system must be automatically shut down on the activation of the smoke exhaust system.

(3) In a single storey fire compartment, air handling systems in all non fire-affected zones may operate on 100% outdoor air to provide make-up air to the fire-affected zone.

(4) Within a multi-storey fire compartment air handling systems in all non fire-affected zones and storeys must operate at 100% outdoor air to provide make-up air to the fire-affected storey via building voids connecting storeys.

(5) Manual override control and indication together with operating instructions for use by emergency personnel must be provided adjacent to the fire indicator panel in accordance with the requirements of clauses 4.11 and 4.13 of AS 1668.1.

(6) Manual control for the smoke exhaust system must also be provided at a location normally used by the stage manager in a theatre.

(7) Power supply wiring to exhaust fans together with detection, control, and indication circuits (and where necessary to automatic make-up air supply arrangements) must comply with AS 1668.1.

S21C8 Smoke detection

A smoke detection system must be installed in accordance with Specification 20 to activate the smoke exhaust system.
S22C1 Scope

This Specification contains requirements for automatic smoke-and-heat vents.

S22C2 Adoption of AS 2665

[2019: Spec E2.2c: 1]

Automatic smoke-and-heat vents must be installed as a system complying with AS 2665 except that permanently open vents may form part of the smoke/heat venting system provided they comply with the relevant criteria for automatic smoke-and-heat vents in AS 2665.

S22C3 Controls

[2019: Spec E2.2c: 2]

Where a smoke-and-heat vent system is installed to comply with E2D14 to E2D20, then, in addition to thermally released link operation, smoke-and-heat vents must also be initiated by smoke detection complying with S20C6 and S20C8 and arranged in zones to match the smoke reservoirs.
S23C1 Scope

This Specification describes the requirements for residential fire safety systems referenced in Specification 18.

S23C2 Application

(1) Clauses S23C3 to S23C7—
 (a) apply to Class 3 residential care buildings; and
 (b) cover installation requirements for local fire indicator panels (or alarm panels) that provide information to staff when a fire alarm is activated.

(2) Clauses S23C8 and S23C9 describe requirements for connecting residential sprinkler systems in Class 2 and 3 buildings, or a residential care building, to a fire station or other approved monitoring service.

S23C3 General requirements

(1) The installation of a residential local fire alarm system must consist of a system of smoke alarms powered either—
 (a) directly from the low voltage supply mains; or
 (b) from an extra-low voltage power source originating at a local fire indicator panel with a battery back-up facility.

(2) A smoke detector complying with AS 1670.1 Clause 2.1.2(a)(ii), (xi) or (xv) may be substituted for a smoke alarm, provided an audible alarm device is associated with each detector.

(3) The sound pressure level provided by a warning device must be equivalent to that required in Clause 3.22 of AS 1670.1, except that the sound pressure level need not be measured inside a sole-occupancy unit, provided that a level of not less than 85 dB(A) is attained at the access door to the unit.

(4) The alarm system must be wired for low voltage or extra-low voltage wiring.

(5) The system must be designed so—
 (a) an audible alarm is given in the area in which the smoke alarm activates; and
 (b) visible and audible indication of an alarm is provided at the local fire indicator panel; and
 (c) an audible alarm is given in any area (including sleeping quarters and staff outbuildings) set aside for staff use.

(6) The maximum number of smoke alarms on any one alarm zone must—
 (a) be determined by the maximum current output rating of the system source; and
 (b) not exceed 10.

(7) Each alarm zone must be located around a single central access passageway, corridor or similar thoroughfare, to enable staff to readily identify the source of the alarm.

(8) Where the smoke alarm is functionally dependent on an external power source—
 (a) an audible fault signal must sound at the local fire indicator panel if that power source fails; and
 (b) the local fire indicator panel must be permanently connected to a reliable 240 V separate low voltage final sub-circuit; and
 (c) source power must be protected by a separate circuit breaker, or fuse, supplied from the live side of the main switch.

(9) The smoke alarm system is not required to be connected to a fire alarm monitoring system (refer to S18C3(2)(c)).
S23C4 Local fire indicator panel

[2019: Spec E2.2d: 2(b)]

(1) The local fire indicator panel must be located in a central area, such as a reception area, so that it is readily accessible by staff at all times.

(2) The local fire indicator panel must be fixed wired.

(3) The local fire indicator panel must incorporate the following:

 (a) A suitable mains power supply with battery back-up (capable of operating the system for 12 hours) for the local fire indicator panel and extra-low voltage smoke alarms supplied directly from the local fire indicator panel.

 (b) Terminals for input signal conductors from the smoke alarm and residential sprinkler system and, if the signal source is from a low voltage smoke alarm, external isolation must be provided.

 (c) Visible indication of the alarm zone in which the actuating device is located.

 (d) Automatic audible and visible indication of the following faults:

 (i) A break in the wiring of any circuit between smoke alarms or sprinkler alarm switch and the local fire indicator panel.

 (ii) Low battery condition.

 (e) Automatic visible indication of mains power failure.

 (f) Initiation of any ancillary control facilities such as smoke door release or air-conditioning shut-down.

 (g) Local operation of individual smoke alarms, in the event of alarm zone isolation at the local fire indicator panel.

(4) If the local fire indicator panel is also used for other non-fire related purposes such as security, then these functions—

 (a) must be on separate and distinct circuits; and

 (b) when disabled or isolated, must not interfere with the operation of fire alarm circuitry.

(5) The local fire indicator panel must comply with AS 1670.1.

(6) The local fire indicator panel must have the capacity to incorporate heat detectors deemed suitable in accordance with AS 1670.1 on either the same or separate alarm zones as the smoke alarms.

S23C5 Smoke alarms

[2019: Spec E2.2d: 2(c)]

(1) Extra-low voltage smoke alarms must be compatible with the local fire indicator panel.

(2) Low voltage smoke alarms must be configured to send an output alarm signal to the local fire indicator panel.

(3) Unless there is internal isolation of the signal output conductors, they must at all times be treated as low voltage conductors.

S23C6 Signal isolation interface units

[2019: Spec E2.2d: 2(d)]

(1) Signal isolation interface units must isolate any low voltage connected to the smoke alarms from the local fire indicator panel.

(2) Signal isolation interface units must be certified by an Accredited Testing Laboratory as compatible with the specific types of smoke alarms used in the system.

(3) Signal isolation interface units must be accepted by the electricity supply authority.

(4) Units must be marked in a clearly visible location, with letters greater than or equal to 35 mm containing the following information:

 SMOKE ALARM SIGNAL ISOLATION UNIT WARNING – 240 V

 Isolate power supply before removing cover
S23C7 Wiring

(1) Smoke alarms and associated equipment must be fixed wired for low voltage or extra-low voltage wiring systems, as applicable.

(2) All extra-low voltage wiring must be red sheathed 0.6/1 kV stranded, with conductors having a cross sectional area of not less than 0.75 mm2.

(3) Clear and concise “as-installed” single line drawings to a suitable scale, showing rooms, external and internal walls, fixed partitions, doorways etc., are to be provided for each installation at the local fire indicator panel.

(4) Drawings must also include the actual location of fire alarms, smoke alarms, sprinkler flow switches (where installed), alarm connection points and local fire indicator panel, to enable easy identification of alarm system elements and their relationship to the building layout.

(5) Symbols used in the drawings referred to in (4) must be as shown in Figures S23C7a to S23C7f.

Figure S23C7a: Flow switch symbol

![Flow switch symbol](image)

Figure S23C7b: Heat detector symbol

![Heat detector symbol](image)

Figure S23C7c: Smoke detector symbol

![Smoke detector symbol](image)

Figure S23C7d: End-of-line device symbol

![End-of-line device symbol](image)
Figure S23C7e: Fire indicator panel symbol

Figure S23C7f: Smoke alarm symbol

S23C8 Connection to monitoring service

[2019: Spec E2.2d: 3(a)]

(1) Connection of a residential sprinkler system to a fire station or other approved monitoring service must be via a sprinkler alarm switch, connected to alarm signalling equipment.

(2) The connection from the alarm signalling equipment must be in accordance with AS 1670.3.

(3) The alarm signalling equipment must be installed—
 (a) in a secure, accessible position; and
 (b) in a weatherproof housing, if located externally; and
 (c) not more than 500 mm from the system flow switch.

S23C9 Indication at the fire indicator panel

[2019: Spec E2.2d: 3(b)]

The fire signal from the alarm signalling equipment must be mimicked by an audible and visible signal at the fire indicator panel.
S24C1 Scope

This Specification contains requirements for electric passenger lift installations and electrohydraulic passenger lift installations.

S24C2 Lift cars exposed to solar radiation

(1) A lift car exposed to solar radiation directly, or indirectly by re-radiation, must have—
 (a) mechanical ventilation at a rate of one air change per minute; or
 (b) mechanical cooling.

(2) A 2 hour alternative power source for ventilation or mechanical cooling at (1) must be provided in the event of normal power loss.

S24C3 Lift car emergency lighting

A lift car must have an emergency lighting system designed—
 (a) to come on automatically upon failure of the normal lighting supply; and
 (b) to provide at least 20 lux of lighting for 2 hours on the alarm initiation button.

S24C4 Cooling of lift shaft

While a lift in a lift shaft is in service, the cooling of the lift shaft must—
 (a) ensure that the dry bulb air temperature in the lift shaft does not exceed 40°C; and
 (b) if the cooling is by a ventilation system, be provided with an air change rate determined using a temperature rise of no more than 5 K.

S24C5 Lift foyer access

Where there is a security foyer in a building, access may be via locked security doors provided—
 (a) security doors revert to the unlocked state in the event of—
 (i) power failure; or
 (ii) fire alarm; and
 (b) locked foyer areas are monitored by closed circuit television and intercom system to a 24 hour staffed location.

S24C6 Emergency access doors in a single enclosed lift shaft

(1) Where a lift is installed in a single enclosed lift shaft having a distance between normal landing entrances greater
than 12.2 m, emergency access doors must be provided and constructed as follows:

(a) The clear opening size of emergency doors must be not less than 600 mm wide x 980 mm high.
(b) Hinged doors must not open towards the interior of the lift *shaft*.
(c) Doors must be *self-closing* and self-locking.
(d) Doors must be marked on the landing side with the letters not less than 35 mm high:

DANGER LIFTWELL ACCESS

KEEP FURNITURE AND FIXTURES CLEAR

(e) Doors from the landing side must only be openable by a tool.
(f) Each emergency door must be provided with a positive breaking electrical contact, wired into the control circuit to prevent movement of the lift until the emergency door is both closed and locked.

(2) Emergency egress from the lift car must be provided in single enclosed lift *shafts* where—

(a) ropes are installed; and
(b) the vertical distance between the lift car sill and the landing door head is less than 600 mm; and
(c) the counterweight is resting on its fully compressed buffer.

(3) Emergency egress *required* by (2) must be in the form of an interlocked door with clear opening dimensions not less than 600 mm x 600 mm, accessible from the lift car entrance or the lift car roof (where the door is located in the wall of the lift *shaft*).
Specification 25 Photoluminescent exit signs

S25C1 Scope

This Specification contains requirements for photoluminescent exit signs.

S25C2 Application

A photoluminescent exit sign must comply with Section 5 and Appendix D of AS/NZS 2293.1, except where varied by this Specification.

S25C3 Illumination

A photoluminescent exit sign must—

(a) be maintained in a continuously charged state by a minimum illumination of 100 lux at the face of the sign by a dedicated light source with a colour temperature not less than 4000 K; and

(b) in the event of a power failure, continue to provide a minimum luminance of 30 mcd/m² for not less than 90 minutes; and

(c) have its performance verified by testing in accordance with ASTM E2073-10, except the activation illumination in clause 8.3 is replaced with 54 lux.

S25C4 Pictorial elements

Pictorial elements on a photoluminescent exit sign must—

(a) where the colour white is used, be replaced with a photoluminescent material; and

(b) be not less than 1.3 times larger than that specified in Table 5.1 of AS/NZS 2293.1; and

(c) have a border of photoluminescent material that extends not less than 15 mm beyond the pictorial elements.

S25C5 Viewing distance

The maximum viewing distance in clause 5.6 of AS/NZS 2293.1 must not be more than 24 m.

S25C6 Smoke control systems

Smoke control systems required by clause 5.3 of AS/NZS 2293.1 do not apply to a photoluminescent exit sign.
Part F1

Damp and weatherproofing

Objectives

F101

Functional Statements

F1F1 Protection from redirected surface water

F1F2 Resistance to rain, surface water and ground water

Performance Requirements

F1P1 Managing rainwater impact on adjoining properties

F1P2 Preventing rainwater from entering buildings

F1P3 Rainwater drainage systems

F1P54 Rising damp

Deemed-to-Satisfy Provisions

F1D1 Deemed-to-Satisfy Provisions

F1D2 Stormwater drainage

F1D3 External above ground membranes

F1D3 Provision of drainage and grading to external areas

F1D4 Substrate materials

F1D5 Self draining finishes

F1D6 Exposed joints

F1D7 External waterproofing membranes

F1D78 Damp-proofing

F1D89 Damp-proofing of floors on the ground

F1D10 Subfloor ventilation

Part F2

Wet areas and overflow protection

Objectives

F201

Functional Statements

F2F1 Wet areas

F1F2F2 Overflow from bathrooms and laundries

Performance Requirements

F1P6F2P1 Wet area overflows

F1P7F2P2 Wet areas

Verification Methods

F1V2F2V1 Overflow protection

Deemed-to-Satisfy Provisions

F2D1 Deemed-to-Satisfy Provisions
Part **F3**

Roof and wall cladding

Objectives

F3O1 Objective

Functional Statements

F3F1 Roof and wall cladding

Performance Requirements

F1P4F3P1 Weatherproofing

Verification Methods

F1V4F3V1 Weatherproofing

Deemed-to-Satisfy Provisions

F3D1 Deemed-to-Satisfy Provisions

- **F1D4F3D2** Roof coverings
- **F1D5F3D3** Sarking
- **E1D1F3D4** Glazed assemblies
- **F3D5** Wall cladding

Part **F2F4**

Sanitary and other facilities

Objectives

F2O1F4O1 Objectives

Functional Statements

- **F2F1F4F1** Sanitary facilities
- **F2F2F4F2** Laundry facilities
- **F2F3F4F3** Food preparation facilities
- **F2F4F4F4** Removal of unconscious occupant

Performance Requirements

- **F2P1F4P1** Personal hygiene facilities
- **F2P2F4P2** Laundry facilities
- **F2P3F4P3** Kitchen facilities
- **F2P4F4P4** Disposal of contaminated water from containers
- **F2P5F4P5** Construction of sanitary compartments to allow removal of unconscious people
- **F2P6F4P6** Microbial control for water systems

Verification Methods

- **F2V4F4V1** Sanitary facilities

Deemed-to-Satisfy Provisions

- **F2D1F4D1** Deemed-to-Satisfy Provisions
- **F2D2F4D2** Facilities in residential buildings
- **F2D3F4D3** Calculation of number of occupants and facilities
Facilities in Class 3 to 9 buildings
Accessible sanitary facilities
Accessible unisex sanitary compartments
Accessible unisex showers
Construction of sanitary compartments
Interpretation: urinals and washbasins
Microbial (legionella) control
Waste management
Accessible adult change facilities

Part F3

Room heights

Objectives

Objective

Functional Statements

Room or space heights

Performance Requirements

Room or space heights

Verification Methods

Room or space heights

Deemed-to-Satisfy Provisions

Deemed-to-Satisfy Provisions

Height of rooms and other spaces

Part F4

Light and ventilation

Objectives

Objective

Functional Statements

Natural light
Artificial light
Ventilation

Performance Requirements

Natural lighting
Artificial lighting
Outdoor air supply
Mechanical ventilation to control odours and contaminants
Disposal of contaminated air

Verification Methods

Verification of suitable indoor air quality
Verification of suitable indoor air quality for carparks
Verification of suitable provision of natural light

Deemed-to-Satisfy Provisions
Sound transmission and insulation

Objectives
F5O1F7O1 Objective

Functional Statements
F5E1F7F1 Sound transmission and insulation

Performance Requirements
F5P1F7P1 Sound transmission through floors
F5P2F7P2 Sound transmission through walls
F5P3 Sound transmission through floor and wall penetrations and door assemblies
F5P3F7P3 Sound transmission through floors in a residential care building
F5P4F7P4 Sound transmission through walls in a residential care building
F5P6 Sound transmission through floor and wall penetrations in residential care buildings

Verification Methods
F5V1F7V1 Sound transmission through floors [F57P1 and F5P3]
F5V2F7V2 Sound transmission through walls [F57P2(1)(a) and (2) and F5P3]
F5V3F7V3 Sound transmission through floors [F57P4 and F5P6]
F5V4F7V4 Sound transmission through walls [F57P4(1)(a) and (2) and F5P6]

Deemed-to-Satisfy Provisions
F5D1F7D1 Deemed-to-Satisfy Provisions
F5D2F7D2 Application of Part
F5D3F7D3 Determination of airborne sound insulation ratings
F5D4F7D4 Determination of impact sound insulation ratings
F5D5F7D5 Sound insulation rating of floors
F5D6F7D6 Sound insulation rating of walls
F5D7F7D7 Sound insulation rating of internal services
F5D8F7D8 Sound isolation of pumps
Part F6

Condensation management

Objectives

Objective

Functional Statements

Condensation

Performance Requirements

Condensation and water vapour management

Verification Methods

Condensation management

Deemed-to-Satisfy Provisions

Deemed-to-Satisfy Provisions

Application of Part

Pliable building membrane

Flow rate and discharge of exhaust systems

Ventilation of roof spaces

Specification 26 Waterproofing and water-resistance requirements for building elements in wet areas

Scope

Application

Shower area (enclosed and unenclosed)

Area outside shower area

Areas adjacent to baths and spas (other than inserted baths and spas)

Areas adjacent to inserted baths and spas

Other areas

Specification 27 Accessible adult change facilities

Scope

General requirements

Hoist

Toilet pan, seat, backrest and grabrails

Washbasin and tap

Fixtures and fittings

Change table

Changing rails

Door and door controls

Signage

Operating instructions

Specification 28 Sound insulation for building elements

Scope

Discontinuous construction
Construction Deemed-to-Satisfy

<table>
<thead>
<tr>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>S28C3</td>
</tr>
<tr>
<td>S28C4</td>
</tr>
<tr>
<td>S28C5</td>
</tr>
<tr>
<td>S28C6</td>
</tr>
<tr>
<td>S28C7</td>
</tr>
<tr>
<td>S28C8</td>
</tr>
<tr>
<td>S28C9</td>
</tr>
<tr>
<td>S28C10</td>
</tr>
</tbody>
</table>

Specification 29 Impact sound – test of equivalence

<table>
<thead>
<tr>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>S29C1</td>
</tr>
<tr>
<td>S29C2</td>
</tr>
<tr>
<td>S29C3</td>
</tr>
</tbody>
</table>
Introduction to this Part

This Part is intended to minimise the risk of water leaking into or accumulating within a building and causing musty, damp and unhealthy conditions or damaging building elements by corrosion. It is also intended to prevent water redirected away from the building damaging nearby properties.

Objectives

F1O1 Objective

The Objective of this Part is to—

(a) safeguard occupants from illness or injury and protect the building from damage caused by—

(i) surface water; and

(ii) external moisture entering a building; and

(iii) the accumulation of internal moisture in a building; and

(b) protect other property from damage caused by redirected surface water.

Functional Statements

F1F1 Protection from redirected surface water

A building including any associated sitework is to be constructed in a way that protects people and other property from the adverse effects of redirected surface water.

F1F2 Resistance to rain, surface water and ground water

A building is to be constructed to provide resistance to moisture penetrating from the outside including rising from the ground.

Performance Requirements

F1P1 Managing rainwater impact on adjoining properties

Surface water, resulting from a storm having an average recurrence interval of 20 years and which is collected or concentrated by a building or sitework, must be disposed of in a way that avoids the likelihood of damage or nuisance to any other property.
F1P2 Preventing rainwater from entering buildings

Surface water, resulting from a storm having an average recurrence interval of 100 years must not enter the building.

Limitations:
F1P2 does not apply to—
(a) a Class 7 or 8 building where in the particular case there is no necessity for compliance; or
(b) a garage, tool shed, sanitary compartment, or the like, forming part of a building used for other purposes; or
(c) an open spectator stand or open-deck carpark.

F1P3 Rainwater drainage systems

A drainage system for the disposal of surface water resulting from a storm having an average recurrence interval of—
(a) 20 years must—
(i) convey surface water to an appropriate outfall; and
(ii) avoid surface water damaging the building; and
(b) 100 years must avoid the entry of surface water into a building.

SA F1P54

F1P54 Rising damp

Moisture from the ground must be prevented from causing—
(a) undue dampness or deterioration of building elements; and
(b) unhealthy or dangerous conditions, or loss of amenity for occupants.

Limitations:
F1P54 does not apply to—
(a) a Class 7 or 8 building where in the particular case there is no necessity for compliance; or
(b) a garage, tool shed, sanitary compartment, or the like, forming part of a building used for other purposes; or
(c) an open spectator stand or open-deck carpark.

Deemed-to-Satisfy Provisions

F1D1 Deemed-to-Satisfy Provisions

(4) Performance Requirement F1P4, for the prevention of the penetration of water through external walls, must be complied with.

SA F1D1(21)
(21) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements F1P1 to F1P3, F1P4 and F1P5 to F1P7...
are satisfied by complying with F1D2 to F1D10.

(32) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

Explanatory Information:
There are no Deemed-to-Satisfy Provisions for F1P4 in respect of external walls.

Limitations:
F1D2 to F1D10 do not apply to a roof with a covering complying with F3D2(a) to (d).

Notes:
For the purposes of this Part, a tile bed, screed, topping or similar component is not considered a structural substrate.

F1D2 Stormwater drainage

Stormwater drainage, including gutters and downpipes connected to a stormwater drainage system must be designed and constructed in accordance with AS/NZS 3500.3.

F1D3 External above ground membranes

Waterproofing membranes for external above ground use must comply with AS 4654.1 and AS 4654.2.

F1D3 Provision of drainage and grading to external areas

A roof, balcony, podium or similar part of a building must have—

(a) a floor drainage system, rainwater outlet or other drainage outlet that is connected to a stormwater drainage system complying with F1D2; and

(b) the structural substrate graded with a minimum fall of 1:80 to the floor drain, rainwater outlet or other drainage outlet.

Limitations:
F1D3(b) does not apply to—

(a) structural substrates other than concrete; and

(b) the floor of planter boxes.

F1D4 Substrate materials

In a Class 2 or 3 building or Class 4 part of a building, a trafficable roof, balcony, podium, or similar part of a building must have a structural substrate consisting of—

(a) concrete complying with AS 3600; or

(b) fibre cement sheeting manufactured in accordance with AS 2908.2; or

(c) autoclaved aerated concrete in accordance with AS 5146.
The surface of structural substrates in (1) must be free of any material or variation in finish that will affect the performance of a membrane.

F1D5 Self draining finishes

[New for 2022]

In a Class 2 or 3 building or a Class 4 part of a building, the flooring or surface finish of a roof, balcony, terrace, podium or similar part of a building must be self draining.

Limitations:

F1D5 does not apply to areas subject to vehicular traffic.

F1D6 Exposed joints

[New for 2022]

Any exposed joint incorporated in the structural substrate of a roof, balcony, podium or similar part of a building must—

1. be located on the ridge line or highest point of the structural substrate; and
2. have a hob with a minimum height of 50 mm formed within the structural substrate for the full length of both sides of the exposed joint; and
3. be protected by a discontinuous membrane in accordance with section 2.9 of AS 4654.2; and
4. not be located beneath or run through a planter box, water feature or similar part of the building.

F1D7 External waterproofing membranes

[New for 2022]

1. A trafficable roof, balcony, podium, planter box or similar part of a building must be provided with a waterproofing membrane which—
 1. consists of membranes complying with AS 4654.1; and
 2. is designed and installed in accordance with AS 4654.2.

2. A membrane required by (1) must be installed directly on the structural substrate.

F1D78 Damp-proofing

[2019: F1.9]

1. Except for a building covered by (3), moisture from the ground must be prevented from reaching—
 1. the lowest floor timbers and the walls above the lowest floor joists; and
 2. the walls above the damp-proof course; and
 3. the underside of a suspended floor constructed of a material other than timber, and the supporting beams or girders.

2. Where a damp-proof course is provided, it must consist of—
 1. a material that complies with AS/NZS 2904; or
 2. impervious sheet material in accordance with AS 3660.1.

3. The following buildings need not comply with (1):
 1. A Class 7 or 8 building where in the particular case there is no necessity for compliance.
 2. A garage, tool shed, sanitary compartment, or the like, forming part of a building used for other purposes.
An open spectator stand or open-deck carpark.

F1D89 Damp-proofing of floors on the ground

[2019: F1.10]

(1) If a floor of a room is laid on the ground or on fill, moisture from the ground must be prevented from reaching the upper surface of the floor and adjacent walls by the insertion of a vapour barrier in accordance with AS 2870.

(2) The requirements of (1) do not apply where—
 (a) weatherproofing is not required; or
 (b) the floor is the base of a stair, lift or similar shaft which is adequately drained by gravitation or mechanical means.

F1D10 Subfloor ventilation

[2019: F1.12]

(1) Subfloor spaces must—
 (a) be provided with openings in external walls and internal subfloor walls in accordance with Table F1D10 for the climatic zones given in Figure F1D10; and
 (b) have clearance between the ground surface and the underside of the lowest horizontal member in the subfloor in accordance with Table F1D10.

(2) In addition to (1), a subfloor space must—
 (a) be cleared of all building debris and vegetation; and
 (b) have the ground beneath the suspended floor graded to prevent surface water ponding under the building; and
 (c) contain no dead air spaces; and
 (d) have openings evenly spaced as far as practicable; and
 (e) have openings placed not more than 600 mm in from corners.

(3) In double leaf masonry walls, openings specified in (1) must be provided in both leaves of the masonry, with openings being aligned to allow an unobstructed flow of air.

(4) Openings in internal subfloor walls specified in (1) must have an unobstructed area equivalent to that required for the adjacent external openings.

(5) Where the ground or subfloor space is excessively damp or subject to frequent flooding, in addition to the requirements of (1) to (4)—
 (a) the subfloor ventilation required in (1) must be increased by 50%; or
 (b) the ground within the subfloor space must be sealed with an impervious membrane; or
 (c) subfloor framing must be—
 (i) where above ground, above-ground durability Class 1 or 2 timbers or H3 preservative treated timbers in accordance with AS 1684.2, AS 1684.3 or AS 1684.4; or
 (ii) where in ground, in-ground durability Class 1 or 2 timbers or H5 preservative treated timbers in accordance with AS 1684.2, AS 1684.3 or AS 1684.4; or
 (iii) steel in accordance with NASH Standard ‘Residential and Low-Rise Steel Framing’ Part 2.
Table F1D10: Subfloor openings and ground clearance

<table>
<thead>
<tr>
<th>Climatic zone (see Figure F1D10)</th>
<th>Minimum aggregate subfloor ventilation openings without a membrane (mm²/m of wall)</th>
<th>Minimum aggregate subfloor ventilation openings having the ground sealed with an impervious membrane (mm²/m of wall)</th>
<th>Minimum ground clearance height where termite inspection or management system is not required (mm)</th>
<th>Minimum ground clearance height where termite inspection is required (mm) Note 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2000</td>
<td>1000</td>
<td>150</td>
<td>400</td>
</tr>
<tr>
<td>B</td>
<td>4000</td>
<td>2000</td>
<td>150</td>
<td>400</td>
</tr>
<tr>
<td>C</td>
<td>6000</td>
<td>3000</td>
<td>150</td>
<td>400</td>
</tr>
</tbody>
</table>

Table Notes:
1. 400 mm clearance required only where termite management systems are installed that need to be inspected (see B1D4).
2. On sloping sites, the 400 mm clearance required by (1) may be reduced to 150 mm within 2 m of external walls.
3. In situations where openings in external walls and internal subfloor walls are not able to be provided, additional measures must be provided to ensure that the overall level of ventilation of the subfloor space is maintained.
4. Additional measures referred to in (3) may include measures similar to those in F1D10(5), i.e. providing durability class timbers, or having the ground sealed in the subfloor space with an impervious membrane.

Figure F1D10: Climatic zones based on relative humidity

ZONE A - 9am RH < 60%
ZONE B - 9am RH > 60% and 3pm RH > 40%
ZONE C - 9am RH > 70% and 3pm RH > 60%
RH = Relative Humidity

Figure Notes:
The season with the highest relative humidity is used. Generally this will be July for southern Australia and January for northern Australia.
Introduction to this Part

This Part is intended to minimise risk of water from internal wet areas accumulating within a building and causing musty, damp or unhealthy conditions or damaging building elements by corrosion or other degradation. It is also intended to prevent water from internal parts of a building causing damage to other property or parts of a building.

Objectives

F2O1 Objective

The Objective of this Part is to—

(a) safeguard occupants from illness or injury and protect buildings from damage caused by—
 (i) internal water from wet areas; and
 (ii) the accumulation of internal moisture in the building; and
(b) protect other property from damage caused by redirected internal water from wet areas.

Functional Statements

F2F1 Wet areas

A building including any internal wet areas is to be constructed in a way that protects people, the building and other property from the adverse effects of internal water and moisture from wet areas.

F1F3F2F2 Overflow from bathrooms and laundries

A building is to be constructed to avoid the likelihood of—

(a) the creation of unhealthy or dangerous conditions; and
(b) damage to building elements,

caused by dampness or water overflow from bathrooms, laundries and the like.

Performance Requirements

SA F1P6F2P1

F4P6F2P1 Wet area overflows

Overflow from a bathroom, laundry facility or the like must be prevented from penetrating to—

(a) another sole-occupancy unit used for sleeping accommodation; and
(b) a public space.
in a storey below in the same building.

F1P7F2P2 Wet areas

To protect the structure of the building and to maintain the amenity of the occupants, water must be prevented from penetrating—

(a) behind fittings and linings; and
(b) into concealed spaces, of sanitary compartments, bathrooms, laundries and the like.

Verification Methods

F1V2F2V1 Overflow protection

Compliance with F1P6F2P1 is verified when the flow rate of the in-built overflow for all vessels in the room is greater than the flow rate of the source filling the vessel.

Applications:

F1V2F2V1 only applies to bathrooms, laundries and the like in a Class 2 or 3 building or a Class 4 part of a building.

Deemed-to-Satisfy Provisions

F2D1 Deemed-to-Satisfy Provisions

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements F2P1 and F2P2 are satisfied by complying with F2D2 to F2D4.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

F1D6F2D2 Waterproofing of wet areas in buildings Wet area construction

SA F1D6F2D2(1)

(1) In a Class 2 and 3 building and a Class 4 part of a building, building elements in wet areas must—

(a) be water resistant or waterproof in accordance with Specification 26; and

(b) comply with AS 3740—

(i) AS 3740; or

(ii) for autoclaved aerated concrete, AS 5146.

(2) Notwithstanding (1), in a Class 2 or 3 building or a Class 4 part of a building, any shower area must have a structural substrate consisting of—

(a) for floors—

(i) concrete complying with AS 3600; or

(ii) fibre cement sheeting manufactured in accordance with AS 2908.2; and
(b) for walls—
 (i) concrete complying with AS 3600 and treated to resist moisture movement; or
 (ii) masonry complying with AS 3700 which has been cement rendered; or
 (iii) fibre cement sheeting manufactured in accordance with AS 2908.2.

(3) In a Class 2 or 3 building or Class 4 part of a building, shower floors must have—
 (a) the structural substrate graded with a minimum fall of 1:80 to the floor waste; and
 (b) any required membrane installed directly on the structural substrate.

(24) In a Class 5, 6, 7, 8 or 9 building, building elements in the bathroom or shower room, a slop hopper or sink compartment, a laundry or sanitary compartment must—
 (a) be water resistant or waterproof in accordance with Specification 26; and
 (b) comply with AS 3740,
 as if they were in a Class 2 or 3 building or a Class 4 part of a building.

(3) Where a slab or stall type urinal is installed—
 (a) the floor surface of the room containing the urinal must—
 (i) be an impervious material; and
 (ii) where no step is installed—
 (A) be graded to the urinal channel for a distance of 1.5 m from the urinal channel; and
 (B) the remainder of the floor be graded to a floor waste; and
 (iii) where a step is installed—
 (A) the step must have an impervious surface and be graded to the urinal channel; and
 (B) the floor behind the step must be graded to a floor waste; and
 (b) the junction between the floor surface and the urinal channel must be impervious.

(4) Where a wall hung urinal is installed—
 (a) the wall must be surfaced with impervious material extending from the floor to not less than 50 mm above the top of the urinal and not less than 225 mm on each side of the urinal.
 (b) the floor must be surfaced with impervious material and graded to a floor waste.

(5) In a room with timber or steel-framed walls and containing a urinal—
 (a) the wall must be surfaced with an impervious material extending from the floor to not less than 100 mm above the floor surface; and
 (b) the junction of the floor surface and the wall surface must be impervious.

Limitations:
F2D2(3) does not apply to substrates other than concrete.

Notes:
For the purposes of F2D2(3), a tile bed, screed, topping or other similar component is not considered a structural substrate.
(A) be graded to the urinal channel for a distance of 1.5 m from the urinal channel; and
(B) have the remainder of the floor graded to a floor waste; and

(ii) where a step is installed—
(A) the step must have an impervious surface and be graded to the urinal channel; and
(B) the floor behind the step must be graded to a floor waste; and

(b) the junction between the floor surface and the urinal channel must be impervious.

(2) Where a wall hung urinal is installed—
(a) the wall must be surfaced with impervious material extending from the floor to the top of the urinal and not less than 225 mm on each side of the urinal; and
(b) the floor must be surfaced with an impervious material and be graded to a floor waste.

(3) In a room with timber or steel-framed walls and containing a urinal—
(a) the wall must be surfaced with an impervious material extending from the floor to not less than 100 mm above the floor surface; and
(b) the junction of the floor surface and the wall surface must be impervious.

SA F1D9F2D4

F1D9F2D4 Provision of Floor wastes

[2019: F1.11]

(1) In a Class 2 or 3 building or Class 4 part of a building, a bathroom or laundry located at any level above a sole-occupancy unit or public space must have a floor waste.

(a) a floor waste; and
(b) the floor graded to the floor waste to permit drainage of water.

(2) Where a floor waste is installed, the floor must be graded at up to 1:50 continuous fall to the floor waste to permit drainage of water.
Introduction to this Part

This Part is intended to minimise the risk of water, including surface water and rainwater, entering the building and causing musty, damp and unhealthy conditions or damaging building elements by corrosion or other degradation. It is also intended to prevent water redirected away from the outside of the building damaging nearby properties.

Objectives

F3O1 Objective

The Objective of this Part is to—

(a) safeguard occupants from illness or injury and protect buildings from damage caused by—
 (i) ingress of water from outside the building; and
 (ii) the accumulation of internal moisture in the building; and
(b) protect other property from damage caused by redirected water from the external fabric of the building.

Functional Statements

F3F1 Roof and wall cladding

A building is to be constructed to provide resistance to water and moisture from outside.

Performance Requirements

F1P4F3P1 Weatherproofing

A roof and external wall (including openings around windows and doors) must prevent the penetration of water that could cause—

(a) unhealthy or dangerous conditions, or loss of amenity for occupants; and
(b) undue dampness or deterioration of building elements.

Limitations:

F1P4F3P1 does not apply to—

(a) a Class 7 or 8 building where in the particular case there is no necessity for compliance; or
(b) a garage, tool shed, sanitary compartment, or the like, forming part of a building used for other purposes; or
(c) an open spectator stand or open-deck carpark.
Weatherproofing

(1) Compliance with F4P4F3P1 for weatherproofing of an external wall is verified when—

(a) a prototype passes the procedure described in (2); and

(b) the external wall—
 (i) has a risk score of 20 or less, when the sum of all risk factor scores are determined in accordance with Table F43V1a; and
 (ii) is not subjected to an ultimate limit state wind pressure of more than 2.5 kPa; and
 (iii) includes only windows that comply with AS 2047.

(2) The test procedure referred to in (1)(a) must be as follows:

(a) The test specimen is in accordance with the requirements of (3).

(b) The test procedure is in accordance with the requirements of (4) or (5) as applicable.

(c) The test specimen does not fail the criteria in (6).

(d) The test is recorded in accordance with the requirements of (7).

(3) Test specimen: The test specimen must incorporate—

(a) representative samples of openings and joints, including—
 (i) vertical and horizontal control joints; and
 (ii) wall junctions; and
 (iii) windows or doors; and
 (iv) electrical boxes; and
 (v) balcony drainage and parapet flashings; and
 (vi) footer and header termination systems; and

(b) for a cavity wall—
 (i) a transparent material for a proportion of the internal wall lining (to provide an unobstructed view of the external wall cladding) with sufficient structural capability and similar air tightness to resist the applied wind pressures; and
 (ii) a 15 mm diameter hole in the internal wall lining below a window.

(4) Test procedure for a direct fix cladding wall or unique wall:

(a) Apply 100% positive and negative serviceability wind pressures to the external face of the test specimen for a period of not less than 1 minute each.

(b) Apply static pressure of either 300 Pa or 30% serviceability wind pressure, whichever is higher, in accordance with the water penetration test procedure at clause 8.5.2 of AS/NZS 4284.

(c) Apply cyclic pressure in accordance with—
 (i) the three stages of Table F43V1b; and
 (ii) the water penetration test procedure at clause 8.6.2 of AS/NZS 4284.

(5) Test procedure for a cavity wall:

(a) Apply 100% positive and negative serviceability wind pressures to the external face of the test specimen for a period of not less than 1 minute each.

(b) Apply static pressure of either 300 Pa or 30% serviceability wind pressure, whichever is higher, in accordance with the water penetration test procedure at clause 8.5.2 of AS/NZS 4284.

(c) Apply cyclic pressure in accordance with—
 (i) stage 3 of Table F43V1b; and
(ii) the water penetration test procedure at clause 8.6.2 of AS/NZS 4284.
(d) To simulate the failure of the primary weather-defence or sealing, the following procedure must be applied to the test specimen:
(i) Insert 6 mm diameter holes through the external face of the cavity wall in all places specified below:
 (A) Wall/window or wall/door junctions at ¾ height.
 (B) Immediately above the head flashing.
 (C) Through external sealing of the horizontal and vertical joints.
 (D) Above any other penetration detail not covered by (A) to (C).
(ii) Repeat the static and cyclic pressure tests of (b) and (c).
(iii) Within 30 minutes of the completion of (ii), remove the internal lining of the cavity wall and check for compliance with (6).
(iv) With the internal lining removed, apply a final static pressure test at 50 Pa for a period of 15 minutes.

(6) Compliance:
(a) A direct fix cladding wall and unique wall are verified for compliance with F1P4F3P1 if there is no presence of water on the inside surface of the facade.
(b) A cavity wall is verified for compliance with F1P4F3P1 if there is no presence of water on the removed surface of the cavity, except that during the simulation of the failure of the primary weather-defence or sealing, water may—
 (i) transfer to the removed surface of the cavity due to the introduced defects (6 mm holes); and
 (ii) contact, but not pool on, battens and other cavity surfaces.

(7) Test report: The test report must include the following information:
(a) Name and address of the person supervising the test.
(b) Test report number.
(c) Date of the test.
(d) Cladding manufacturer’s name and address.
(e) Construction details of the test specimen, including a description, and drawings and details of the components, showing modifications, if any.
(f) Test sequence with the pressures used in all tests.
(g) For each of the static and cyclic pressure tests, full details of all leakages, including position, extent and timing.

Table F3V1a: Risk factors and scores

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Category</th>
<th>Risk severity</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Region</td>
<td>Region A (AS/NZS 1170.2)</td>
<td>Low to medium</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Region B (AS/NZS 1170.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Region C (AS/NZS 1170.2)</td>
<td>High</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Region D (AS/NZS 1170.2)</td>
<td>Very high</td>
<td>2</td>
</tr>
<tr>
<td>Number of storeys</td>
<td>One storey</td>
<td>Low</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Two storeys in part</td>
<td>Medium</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Two storeys</td>
<td>High</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>More than two storeys</td>
<td>Very high</td>
<td>4</td>
</tr>
<tr>
<td>Roof/wall junctions</td>
<td>Roof-to-wall junctions fully protected</td>
<td>Low</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Roof-to-wall junctions partially exposed</td>
<td>Medium</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Roof-to-wall junctions fully exposed</td>
<td>High</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Roof elements finishing within the boundaries formed by the external walls</td>
<td>Very high</td>
<td>5</td>
</tr>
</tbody>
</table>
Table Notes:
1. **Eaves width** is measured horizontally from the external face of any wall cladding to the outer edge of any overhang, including fascia and external gutters.
2. **Barriers to prevent falling and parapets** are considered as 0 mm eaves.

Table F3V1b: Cyclic pressure

<table>
<thead>
<tr>
<th>Stage number</th>
<th>Serviceability wind pressure (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>

Deemed-to-Satisfy Provisions
F3D1 Deemed-to-Satisfy Provisions

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirement F3P1 is satisfied by complying with F3D2 to F3D5.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

F1D4F3D2 Roof coverings

[2019: F1.5]

A roof must be covered with—

(a) concrete roofing tiles complying with AS 2049 and fixed, except in cyclonic areas, in accordance with AS 2050, as appropriate; or

(b) terracotta roofing tiles complying with AS 2049 and fixed, except in cyclonic areas, in accordance with AS 2050; or

(c) cellulose cement corrugated sheeting complying with AS/NZS 2908.1 and installed in accordance with AS/NZS 1562.2; or

(d) metal sheet roofing complying with AS 1562.1; or

(e) plastic sheet roofing designed and installed in accordance with AS/NZS 4256.1, AS/NZS 4256.2, AS/NZS 4256.3, AS/NZS 4256.5 and AS/NZS 1562.3; or

(f) terracotta, fibre-cement and timber slates and shingles designed and installed in accordance with AS 4597, except in cyclonic areas; or

(g) an external waterproofing membrane complying with F1D7 F1D73.

Applications:

F3D2 only applies to buildings located in areas with a design wind speed of not more than N3.

F1D5F3D3 Sarking

[2019: F1.6]

Sarking-type material used for weatherproofing of roofs and walls must comply with AS/NZS 4200.1 and AS 4200.2.

F1D1F3D4 Glazed assemblies

[2019: F1.13]

(1) Subject to (2) and (3), the following glazed assemblies in an external wall, must comply with AS 2047 requirements for resistance to water penetration:

(a) Windows.

(b) Sliding and swinging glazed doors with a frame, including French and bi-fold doors with a frame.

(c) Adjustable louvres.

(d) Shopfronts.

(e) Window walls with one piece framing.

(2) The following buildings need not comply with (1):

(a) A Class 7 or 8 building where in the particular case there is no necessity for compliance.

(b) A garage, tool shed, sanitary compartment, or the like, forming part of a building used for other purposes, except where the construction of the garage, tool shed, sanitary compartment or the like contributes to the weatherproofing of the other part of the building.
(c) An open spectator stand or open-deck carpark.

(3) The following glazed assemblies need not comply with (1):
(a) All glazed assemblies not in an external wall.
(b) Revolving doors.
(c) Fixed louvres.
(d) Skylights, roof lights and windows in other than the vertical plane.
(e) Sliding and swinging glazed doors without a frame.
(f) Windows constructed on site and architectural one-off windows, which are not design tested in accordance with AS 2047.
(g) Second-hand windows, re-used windows and recycled windows.
(h) Heritage windows.

F3D5 Wall cladding

(1) External wall cladding must comply with one or a combination of the following:
(a) Masonry, including masonry veneer, unreinforced and reinforced masonry: AS 3700.
(b) Autoclaved aerated concrete: AS 5146.
(c) Metal wall cladding: AS 1562.1.

(2) The following buildings need not comply with (1):
(a) A Class 7 or 8 building where in the particular case there is no necessity for compliance.
(b) A garage, tool shed, sanitary compartment, or the like, forming part of building used for other purposes, except where the construction of the garage, tool shed, sanitary compartment or the like contributed to the weatherproofing of another part of the building that is required to be weatherproofed.
(c) An open spectator stand or open-deck carpark.
Introduction to this Part

This Part focusses on reducing risk of illness and loss of amenity due to inadequate toilets, bathrooms and laundries; ensuring occupants in residential buildings have access to a kitchen; and, microbial control in air-conditioning and heated water systems.

Objectives

The Objective of this Part is to—

(a) safeguard occupants from illness caused by infection; and
(b) safeguard occupants from loss of amenity arising from the absence of adequate personal hygiene facilities; and
(c) enable occupants to carry out laundering; and
(d) provide for facilities to enable food preparation; and
(e) enable unconscious occupants of sanitary compartments to be removed from the compartment.

Functional Statements

Sanitary facilities

A building is to be provided with—

(a) suitable sanitary facilities and space and facilities for personal hygiene; and
(b) adequate means for the prevention of contaminants to hot water, warm water and cooling water systems.

Laundry facilities

A building is to be provided with—

(a) space or facilities for laundering; and
(b) suitable means for the sanitary disposal of waste water.

Applications:

only applies to—

(a) a Class 2 building or a Class 4 part of a building; and
(b) a Class 9a health-care building; and
(c) a Class 9b early childhood centre; and
(d) a Class 9c building.
Food preparation facilities

A building is to be provided with—

(a) space and facilities for the preparation and cooking of food; and

(b) suitable means for the sanitary disposal of associated waste water.

Applications:

only applies to—

(a) a Class 2 building or a Class 4 part of a building; and

(b) a Class 9a *health-care building*; and

(c) a Class 9b *early childhood centre*; and

(d) a Class 9c building.

Removal of unconscious occupant

A *sanitary compartment* is to have sufficient space or other means to permit an unconscious occupant to be removed from the compartment.

Personal hygiene facilities

Suitable sanitary facilities for personal hygiene must be provided in a convenient location within or associated with a building, to the degree necessary, appropriate to—

(a) the function or use of the building; and

(b) the number and gender of the occupants; and

(c) the disability or other particular needs of the occupants.

Laundry facilities

Laundering facilities or space for laundering facilities and the means for the sanitary disposal of waste water must be provided in a convenient location within or associated with a building appropriate to the function or use of the building.

Applications:

only applies to—

(a) a Class 2 building or Class 4 part of a building; and

(b) a Class 9a *health-care building*; and

(c) a Class 9b *early childhood centre*; and

(d) a Class 9c building.
F2P3 F4P3 Kitchen facilities

A facility must be provided which includes—

(a) a means for food rinsing, utensil washing and the sanitary disposal of associated waste water; and

(b) a means for cooking food; and

(c) a space for food preparation.

Applications:

F2P3 F4P3 only applies to—

(a) a Class 2 building or Class 4 part of a building; and

(b) a Class 9a health-care building; and

(c) a Class 9b early childhood centre; and

(d) a Class 9c building.

F2P4 F4P4 Disposal of contaminated water from containers

Suitable means must be provided in a building containing wards or bedrooms to facilitate the emptying of sewage or dirty water from containers.

Applications:

F2P4 F4P4 only applies to a Class 9a or 9c building.

F2P5 F4P5 Construction of sanitary compartments to allow removal of unconscious people

A sanitary compartment must be constructed with sufficient space or other means to permit an unconscious occupant to be removed from the compartment.

NSW F2P6 F4P6

F2P6 F4P6 Microbial control for water systems

Hot water, warm water and cooling water systems installed in a building must control the accumulation of harmful levels of micro-organisms.

Limitations:

F2P6 F4P6 does not apply to a system serving only a single sole-occupancy unit in a Class 2 or 3 building or Class 4 part of a building.
Sanitary facilities

(1) Compliance with \(F2P1 \), for the number of sanitary facilities, is verified when queuing modelling predicts that occupant waiting time for sanitary facilities is at least equivalent to the waiting time predicted using the respective Deemed-to-Satisfy Provisions.

(2) For calculations performed under (1), the occupant waiting time is determined as the 90th percentile wait time at maximum population.

(3) Queuing modelling in (1) must reflect the following:
 (a) Function or use of the building.
 (b) Number and gender of occupants.
 (c) The disability or other particular needs of the occupants.
 (d) Occupant usage patterns.

Deemed-to-Satisfy Provisions

Deemed-to-Satisfy Provisions

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements \(F2P1 \) to \(F2P6 \) are satisfied by complying with—
 (a) \(F2D2 \) to \(F2D12 \); and
 (b) for public transport buildings, Part I2; and
 (c) for farm sheds, Part I3.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with \(A2G2(3) \) and \(A2G4(3) \) as applicable.

Facilities in residential buildings

(1) For facilities in Class 2 buildings, the following applies:
 (a) Within each sole-occupancy unit, provide—
 (i) a kitchen sink and facilities for the preparation and cooking of food; and
 (ii) a bath or shower; and
 (iii) a closet pan; and
 (iv) a washbasin.
 (b) For laundry facilities, provide either—
 (i) in each sole-occupancy unit—
 (A) clothes washing facilities, comprising at least one washtub and a space for a washing machine; and
 (B) clothes drying facilities comprising clothes line or a hoist with not less than 7.5 m of line, or space for one heat operated drying cabinet or appliance in the same room as the clothes washing facilities; or
 (ii) a separate laundry for each 4 sole-occupancy units, or part thereof, that must comprise—
 (A) clothes washing facilities, comprising at least one washtub and a space for a washing machine; and
 (B) clothes drying facilities comprising clothes line or a hoist with not less than 7.5 m of line per sole-occupancy unit, or space for one heat operated drying cabinet or appliance.
 (c) For the purposes of (a) and (b), a kitchen sink or washbasin must not be counted as a laundry washtub.
(2) For facilities in Class 3 buildings other than *residential care buildings*, the following applies:

(a) For residents in each building or group of buildings, for each 10 residents for whom private facilities are not provided, provide—
 (i) a bath or shower; and
 (ii) a closet pan; and
 (iii) a washbasin.

(b) Notwithstanding (a), if one urinal is provided for each 25 males up to 50 and one additional urinal for each additional 50 males or part thereof, one closet pan for each 12 males may be provided.

(c) Facilities for employees must be provided in accordance with F2D4.

(d) Facilities required by (a), (b) or (c) need not be situated in the same building.

(3) For facilities in Class 3 *residential care buildings*, the following applies:

(a) For residents in each building or group of buildings, provide—
 (i) a shower, closet pan and wash basin for each 8 residents or part thereof where private facilities are not provided; and
 (ii) a suitable bath for each 30 residents or part thereof.

For the purposes of (a), urinals must not be taken into consideration in calculating the number of facilities.

(b) For the sole-occupancy unit, provide—
 (i) a kitchen sink and facilities for the preparation and cooking of food; and
 (ii) a bath or shower; and
 (iii) a closet pan; and
 (iv) a washbasin; and
 (v) clothes washing facilities, comprising a washtub and space in the same room for a washing machine; and
 (vi) a clothes line or hoist, or space for a heat-operated drying cabinet or similar appliance for the exclusive use of the occupants.

For the purposes of (a), a kitchen sink or washbasin must not be counted as a laundry washtub.

(b) For the purposes of (a), a kitchen sink or washbasin must not be counted as a laundry washtub.

(5) For facilities in Class 9c buildings, the following applies:

(a) For residents in each building or group of buildings, provide—
 (i) a closet pan and wash basin for each 6 residents or part thereof where private facilities are not provided; and
 (ii) a shower for each 7 residents or part thereof for where private facilities are not provided; and
 (iii) a suitable bath, fixed or mobile.

(b) In addition to the facilities required by (a), provide—
 (i) one kitchen or other adequate facility for the preparation and cooking or reheating of food including a kitchen sink and washbasin; and
 (ii) laundry facilities for the cleansing and drying of linen and clothing or adequate facilities for holding and dispatch or treatment of soiled linen and clothing and the like and the receipt and storage of clean linen; and
 (iii) one clinical hand washing basin for each 16 residents or part thereof.

(3) Calculation of number of occupants and facilities

[2019: F2.2]

(1) The number of persons accommodated must be calculated according to D2D18 if it cannot be more accurately determined by other means.
(2) Unless the premises are used predominantly by one sex, sanitary facilities must be provided on the basis of equal numbers of males and females.

(3) In calculating the number of sanitary facilities to be provided under and \(F_{24D4} \), a unisex facility \textit{required} for people with a disability (other than a facility provided under \(F_{24D12} \)) may be counted once for each sex.

(4) For the purposes of this Part, a unisex facility comprises one closet pan, one washbasin and means for the disposal of sanitary products.

\section*{F2D4F4D4 Facilities in Class 3 to 9 buildings}

[2019: F2.3]

(1) Except where permitted by (3), (4), (7), \(F_{24D5(a)} \) and \(F_{24D5(b)} \), separate sanitary facilities for males and females must be provided for Class 3, 5, 6, 7, 8 or 9 buildings in accordance with Tables \(F_{24D4a} \) to \(F_{24D4l} \), as appropriate.

(2) In Tables \(F_{24D4a} \) to \(F_{24D4l} \) —

(a) ‘Number’ means the number of facilities \textit{required}; and

(b) ‘>’ means greater than; and

(c) a hyphen means no data (refer to the row above for the highest value applicable); and

(d) ‘N/A’ means Not Applicable; and

(e) a reference to—

(i) employees includes owners and managers using the building; and

(ii) add 1 per 100 or 150, 250, 500" etc. includes any part of that number.

(3) If not more than 10 people are employed, a unisex facility may be provided instead of separate facilities for each sex.

(4) If the majority of employees are of one sex, not more than 2 employees of the other sex may share toilet facilities if the facilities are separated by means of walls, partitions and doors to afford privacy.

(5) Employees and the public may share the same facilities in a Class 6 and 9b building (other than a school or early childhood centre) provided the number of facilities provided is not less than the total number of facilities \textit{required} for employees plus those \textit{required} for the public.

(6) Adequate means of disposal of sanitary products must be provided in sanitary facilities for use by females.

(7) Separate sanitary facilities for males and females need not be provided for patients in a \textit{ward area} of a Class 9a building.

(8) A Class 9a \textit{health-care building} must be provided with—

(a) one kitchen or other adequate facility for the preparation and cooking or reheating of food including a kitchen sink and washbasin; and

(b) laundry facilities for the cleansing and drying of linen and clothing or adequate facilities for holding and dispatch or treatment of soiled linen and clothing, sanitary products and the like and the receipt and storage of clean linen; and

(c) one shower for each 8 patients or part thereof; and

(d) one island-type plunge bath in each \textit{storey} containing a \textit{ward area}.

\section*{VIC F2D4F4D4(9)}

(9) A Class 9b \textit{early childhood centre} must be provided with—

(a) a kitchen or food preparation area with a kitchen sink, separate hand washing facilities, space for a refrigerator and space for cooking facilities, with—

(i) the facilities protected by a door or gate with child proof latches to prevent unsupervised access to the facilities by children younger than 5 years old; and

(ii) the ability to facilitate supervision of children from the facilities if the \textit{early childhood centre} accommodates children younger than 2 years old; and

(b) one bath, shower or shower-bath; and

(c) if the centre accommodates children younger than 3 years old—

(i) a laundry facility comprising a washtub and space in the same room for a washing machine; and
(ii) a bench type baby bath, which is within 1 m of the nappy change bench; and

(iii) a nappy changing bench which—

(A) is within 1 m of separate adult hand washing facilities and bench type baby bath; and

(B) must be not less than 0.9 m² in area and at a height of not less than 850 mm, but not more than 900 mm above the finished floor level; and

(C) must have a space not less than 800 mm high, 500 mm wide and 800 mm deep for the storage of steps; and

(D) is positioned to permit a staff member changing a nappy to have visibility of the play area at all times.

(10) Class 9b theatres and sporting venues must be provided with one shower for each 10 participants or part thereof.

(11) Not less than one washbasin must be provided where closet pans or urinals are provided.

Table F4D4a: Sanitary facilities in Class 3, 5, 6 and 9 buildings other than schools

<table>
<thead>
<tr>
<th>User group</th>
<th>Closet pans</th>
<th>Urinals</th>
<th>Washbasins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design occupancy</td>
<td>Number</td>
<td>Design occupancy</td>
</tr>
<tr>
<td>Male employees</td>
<td>1 - 20</td>
<td>1</td>
<td>1 - 10</td>
</tr>
<tr>
<td></td>
<td>>20</td>
<td>Add 1 per 20</td>
<td>11 - 25</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>26 - 50</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>>50</td>
</tr>
<tr>
<td>Female employees</td>
<td>1 - 15</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>>15</td>
<td>Add 1 per 15</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table F4D4b: Sanitary facilities in Class 7 and 8 buildings

<table>
<thead>
<tr>
<th>User group</th>
<th>Closet pans</th>
<th>Urinals</th>
<th>Washbasins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design occupancy</td>
<td>Number</td>
<td>Design occupancy</td>
</tr>
<tr>
<td>Male employees</td>
<td>1 - 20</td>
<td>1</td>
<td>1 - 10</td>
</tr>
<tr>
<td></td>
<td>>20</td>
<td>Add 1 per 20</td>
<td>11 - 25</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>26 - 50</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>>50</td>
</tr>
<tr>
<td>Female employees</td>
<td>1 - 15</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>>15</td>
<td>Add 1 per 15</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table Notes:
Sanitary facilities need not be provided for a Class 8 electricity network substation.

Table F4D4c: Sanitary facilities in Class 6 buildings – department stores, shopping centres

<table>
<thead>
<tr>
<th>User group</th>
<th>Closet pans</th>
<th>Urinals</th>
<th>Washbasins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design occupancy</td>
<td>Number</td>
<td>Design occupancy</td>
</tr>
<tr>
<td>Male patrons</td>
<td>1 - 1200</td>
<td>1</td>
<td>1 - 600</td>
</tr>
<tr>
<td></td>
<td>>1200</td>
<td>Add 1 per 1200</td>
<td>>600</td>
</tr>
<tr>
<td>Female patrons</td>
<td>1 - 300</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>301 - 600</td>
<td>2</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table Notes:
Sanitary facilities need not be provided for patrons if the total number of persons accommodated in the building is not more than 600.

Table F4D4d: Sanitary facilities in Class 6 buildings – restaurants, cafes, bars

<table>
<thead>
<tr>
<th>User group</th>
<th>Closet pans</th>
<th>Design occupancy</th>
<th>Number</th>
<th>Urinals</th>
<th>Design occupancy</th>
<th>Number</th>
<th>Washbasins</th>
<th>Design occupancy</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>>600</td>
<td>Add 1 per 1200</td>
<td>N/A</td>
<td>>1200</td>
<td>Add 1 per 1200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
Sanitary facilities need not be provided for patrons if the total number of persons accommodated in the building is not more than 20.

Table F4D4e: Sanitary facilities in Class 9a health-care buildings

<table>
<thead>
<tr>
<th>User group</th>
<th>Closet pans</th>
<th>Design occupancy</th>
<th>Number</th>
<th>Washbasins</th>
<th>Design occupancy</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male patients</td>
<td></td>
<td>1-16</td>
<td>2</td>
<td>1-8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>16</td>
<td>Add 1 per 8</td>
<td>>8</td>
<td>Add 1 per 8</td>
<td></td>
</tr>
<tr>
<td>Female patients</td>
<td></td>
<td>1-16</td>
<td>2</td>
<td>1-8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>16</td>
<td>Add 1 per 8</td>
<td>>8</td>
<td>Add 1 per 8</td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
Urinals are not required for a Class 9a health-care building.
Table F4D4f: Sanitary facilities in Class 9b buildings – schools

<table>
<thead>
<tr>
<th>User group</th>
<th>Closet pans</th>
<th>Urinals</th>
<th>Washbasins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design occupancy</td>
<td>Number</td>
<td>Design occupancy</td>
</tr>
<tr>
<td>Male employees</td>
<td>1 - 20</td>
<td>1</td>
<td>1 - 10</td>
</tr>
<tr>
<td></td>
<td>>20</td>
<td>Add 1 per 20</td>
<td>11 - 20</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>21 - 45</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>>45</td>
</tr>
<tr>
<td>Female employees</td>
<td>1 - 5</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>>5</td>
<td>Add 1 per 15</td>
<td>N/A</td>
</tr>
<tr>
<td>Male students</td>
<td>1 - 25</td>
<td>1</td>
<td>1 - 50</td>
</tr>
<tr>
<td></td>
<td>26 - 75</td>
<td>2</td>
<td>51 - 100</td>
</tr>
<tr>
<td></td>
<td>76 - 150</td>
<td>3</td>
<td>>100</td>
</tr>
<tr>
<td></td>
<td>151 - 200</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>>200</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Female students</td>
<td>1 - 10</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>11 - 25</td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>26 - 100</td>
<td>Add 1 per 25</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>>100</td>
<td>Add 1 per 50</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TAS Table F4D4g
VIC Table F4D4g

Table F4D4g: Sanitary facilities in Class 9b buildings – early childhood centres

<table>
<thead>
<tr>
<th>User group</th>
<th>Closet pans</th>
<th>Washbasins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design occupancy</td>
<td>Number</td>
</tr>
<tr>
<td>Children</td>
<td>1 - 30</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>>30</td>
<td>Add 1 per 15</td>
</tr>
</tbody>
</table>

Table Notes:
1. Urinals are not required for a Class 9b early childhood centre.
2. Facilities for use by children must be—
 a. junior pans; and
 b. washbasins with a rim height not exceeding 600 mm; and
 c. accessible from both indoor and outdoor play areas.

Table F4D4h: Sanitary facilities in Class 9b buildings – theatres and cinemas with multiple auditoria, art galleries and the like

<table>
<thead>
<tr>
<th>User group</th>
<th>Closet pans</th>
<th>Urinals</th>
<th>Washbasins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design occupancy</td>
<td>Number</td>
<td>Design occupancy</td>
</tr>
<tr>
<td>Male participants</td>
<td>1 - 20</td>
<td>1</td>
<td>1 - 10</td>
</tr>
<tr>
<td></td>
<td>>20</td>
<td>Add 1 per 20</td>
<td>>10</td>
</tr>
</tbody>
</table>
Table F4D4i: Sanitary facilities in Class 9b buildings – single auditorium theatres and cinemas

<table>
<thead>
<tr>
<th>User group</th>
<th>Closet pans</th>
<th>Urinals</th>
<th>Washbasins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design occupancy</td>
<td>Number</td>
<td>Design occupancy</td>
</tr>
<tr>
<td>Female participants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 10</td>
<td>1</td>
<td>N/A</td>
<td>1 - 10</td>
</tr>
<tr>
<td>>10</td>
<td>Add 1 per 10</td>
<td>N/A</td>
<td>>10</td>
</tr>
<tr>
<td>Male spectators or patrons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 250</td>
<td>1</td>
<td>1 - 100</td>
<td>1 - 150</td>
</tr>
<tr>
<td>251 - 500</td>
<td>2</td>
<td>>100</td>
<td>>150</td>
</tr>
<tr>
<td>>500</td>
<td>Add 1 per 500</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Female spectators or patrons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 10</td>
<td>1</td>
<td>N/A</td>
<td>1 - 80</td>
</tr>
<tr>
<td>11 - 50</td>
<td>2</td>
<td>N/A</td>
<td>81 - 250</td>
</tr>
<tr>
<td><51</td>
<td>Add 1 per 60</td>
<td>N/A</td>
<td>251 - 430</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>N/A</td>
<td>>430</td>
</tr>
</tbody>
</table>

Table F4D4j: Sanitary facilities in Class 9b buildings – sports venues or the like

<table>
<thead>
<tr>
<th>User group</th>
<th>Closet pans</th>
<th>Urinals</th>
<th>Washbasins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design occupancy</td>
<td>Number</td>
<td>Design occupancy</td>
</tr>
<tr>
<td>Male participants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 20</td>
<td>1</td>
<td>1 - 10</td>
<td>1 - 10</td>
</tr>
<tr>
<td>>20</td>
<td>Add 1 per 20</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>Female participants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 10</td>
<td>1</td>
<td>N/A</td>
<td>1 - 10</td>
</tr>
<tr>
<td>>10</td>
<td>Add 1 per 10</td>
<td>N/A</td>
<td>>10</td>
</tr>
<tr>
<td>Male spectators or patrons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 250</td>
<td>1</td>
<td>1 - 100</td>
<td>1 - 150</td>
</tr>
<tr>
<td>251 - 500</td>
<td>2</td>
<td>>100</td>
<td>>150</td>
</tr>
<tr>
<td>>500</td>
<td>Add 1 per 500</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table F4D4k: Sanitary facilities in Class 9b buildings – churches, chapels or the like

<table>
<thead>
<tr>
<th>User group</th>
<th>Closet pans</th>
<th>Urinals</th>
<th>Washbasins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design occupancy</td>
<td>Number</td>
<td>Design occupancy</td>
</tr>
<tr>
<td>Female spectators or patrons</td>
<td>1 - 15</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>16 - 60</td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>61 - 120</td>
<td>3</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>>120</td>
<td>Add 1 per 70</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table F4D4l: Sanitary facilities in Class 9b buildings – public halls, function rooms or the like

<table>
<thead>
<tr>
<th>User group</th>
<th>Closet pans</th>
<th>Urinals</th>
<th>Washbasins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design occupancy</td>
<td>Number</td>
<td>Design occupancy</td>
</tr>
<tr>
<td>Male patrons</td>
<td>1 - 300</td>
<td>1</td>
<td>1 - 200</td>
</tr>
<tr>
<td></td>
<td>>300</td>
<td>Add 1 per 500</td>
<td>>200</td>
</tr>
<tr>
<td>Female patrons</td>
<td>1 - 150</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>>150</td>
<td>Add 1 per 150</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table Notes:
Sanitary facilities need not be provided for patrons if the total number of persons accommodated in the building is not more than 20.

F2D5F4D5 Accessible sanitary facilities

In a building required to be accessible—

(a) accessible unisex sanitary compartments must be provided in accessible parts of the building in accordance with F24D6; and

(b) accessible unisex showers must be provided in accordance with F24D7; and

(c) at each bank of toilets where there is one or more toilets in addition to an accessible unisex sanitary compartment at that bank of toilets—a sanitary compartment suitable for a person with an ambulant disability in accordance with AS 1428.1 must be provided for use by males and females; and

(i) at least one sanitary compartment for each sex suitable for persons with ambulant disability in accordance with AS 1428.1 must be provided; and

(ii) unless otherwise permitted by F4D4(3), (4) or (7) any required male ambulant sanitary compartment must be separate to any required female ambulant sanitary compartment; and

(d) an accessible unisex sanitary compartment must contain a closet pan, washbasin, shelf or bench top and adequate means of disposal of sanitary products; and

(e) the circulation spaces, fixtures and fittings of all accessible sanitary facilities provided in accordance with F24D6 and F24D7 must comply with the requirements of AS 1428.1; and

(f) an accessible unisex sanitary facility must be located so that it can be entered without crossing an area reserved for one sex only; and

(g) where two or more of each type of accessible unisex sanitary facility are provided, the number of left and right handed mirror image facilities must be provided as evenly as possible; and

(h) where male sanitary facilities are provided at a separate location to female sanitary facilities, accessible unisex sanitary facilities are only required at one of those locations; and

(i) an accessible unisex sanitary compartment or an accessible unisex shower need not be provided on a storey or level that is not required by D4D4(f) to be provided with a passenger lift or ramp complying with AS 1428.1.

F2D6F4D6 Accessible unisex sanitary compartments

[2019: Table F2.4a]

SA F2D6F4D6(1)

(1) Where required by F24D5(a), the minimum number of accessible unisex sanitary compartments for each Class of building is as follows:

(a) For a Class 1b building—

(i) not less than 1; and

(ii) where private accessible unisex sanitary compartments are provided for every accessible bedroom, common accessible unisex sanitary compartments need not be provided.

(b) For a Class 2 building, where sanitary compartments are provided in common areas, not less than 1.

(c) For Class 3 and Class 9c buildings—

(i) in every accessible sole-occupancy unit provided with sanitary compartments within the accessible sole-occupancy unit, not less than 1; and

(ii) at each bank of sanitary compartments containing male and female sanitary compartments provided in common areas, not less than 1.

(d) For Class 5, 6, 7, 8 or 9 buildings, where F24D4 requires closet pans—

(i) 1 on every storey containing sanitary compartments; and

(ii) where a storey has more than 1 bank of sanitary compartments containing male and female sanitary compartments, at not less than 50% of those banks.

(e) For a Class 10a building, at each bank of sanitary compartments containing male and female sanitary compartments, not less than 1.
(2) The requirements of (1)(d) do not apply within a ward area of a Class 9a health-care building.

(3) The requirements of (1)(e) do not apply to—
 (a) a Class 10a appurtenant to another Class of building; and
 (b) a sanitary compartment dedicated to a single caravan/camping site.

Accessible unisex showers

[2019: Table F2.4b]

SA F2D7F4D7(1)

(1) Where required by F24D5(b), the minimum number of accessible unisex showers for each Class of building is as follows:
 (a) For a Class 1b building—
 (i) not less than 1; and
 (ii) where private accessible unisex showers are provided for every accessible bedroom, common accessible unisex showers need not be provided.
 (b) For Class 2 buildings, where showers are provided in common areas, not less than 1.
 (c) For Class 3 and 9c buildings—
 (i) in every accessible sole-occupancy unit provided with showers within the accessible sole-occupancy unit, not less than 1; and
 (ii) 1 for every 10 showers or part thereof provided in common areas.
 (d) For Class 5, 6, 7, 8 or 9 buildings, where F24D4 requires 1 or more showers, not less than 1 for every 10 showers or part thereof.
 (e) For Class 10a buildings, where showers are provided, 1 for every 10 showers or part thereof.

(2) The requirements of (1)(d) do not apply within a ward area of a Class 9a health-care building.

(3) The requirements of (1)(e) do not apply to—
 (a) a Class 10a appurtenant to another Class of building; and
 (b) a sanitary compartment dedicated to a single caravan/camping site.

Construction of sanitary compartments

[2019: F2.5]

(1) Other than in an early childhood centre, sanitary compartments must have doors and partitions that separate adjacent compartments and extend—
 (a) from floor level to the ceiling in the case of a unisex facility; or
 (b) to a height of not less than 1.5 m above the floor if primary school children are the principal users; or
 (c) 1.8 m above the floor in all other cases.

(2) The door to a fully enclosed sanitary compartment must—
 (a) open outwards; or
 (b) slide; or
 (c) be readily removable from the outside of the sanitary compartment, unless there is a clear space of at least 1.2 m, measured in accordance with Figure F24D8, between the closet pan within the sanitary compartment and the doorway.

VIC F2D8F4D8(3)

(3) In an early childhood centre, facilities for use by children must have each sanitary compartment screened by a partition which, except for the doorway, is opaque for a height of at least 900 mm but not more than 1200 mm above the floor level.
Construction of sanitary compartments

Interpretation: urinals and washbasins

(1) A urinal may be—
 (a) an individual stall or wall-hung urinal; or
 (b) each 600 mm length of a continuous urinal trough; or
 (c) a closet pan used in place of a urinal.

(2) A washbasin may be—
 (a) an individual basin; or
 (b) a part of a hand washing trough served by a single water tap.

Microbial (legionella) control

Hot water, warm water and cooling water systems in a building other than a system serving only a single sole-occupancy unit in a Class 2 or 3 building or Class 4 part of a building must be installed in accordance with AS/NZS 3666.1.

Waste management

(1) In a Class 9a health-care building, at least one slop-hopper or other device, other than a water closet pan or urinal, must be provided—
 (a) on any storey containing ward areas or bedrooms to facilitate emptying of containers of sewage or dirty water; and
 (b) with a flushing apparatus, tap and grating.

(2) In a Class 9c building, the following facilities must be provided for every 60 beds or part thereof on each storey containing resident use areas:
 (a) One slop-hopper or other device other than a water closet pan or urinal for the safe handling and disposal of liquid and solid wastes with a flushing apparatus, tap and grating.
(b) An appliance for the disinfection of pans or an adequate means to dispose of receptacles.

Accessible adult change facilities

F2D12 F4D12

[2019: F2.9]

1. One unisex *accessible* adult change facility must be provided in an *accessible* part of a—

 a. Class 6 building that is a shopping centre having a design occupancy of not less than 3,500 people, calculated on the basis of the *floor area* and containing a minimum of 2 *sole-occupancy units*; and

 b. Class 9b sports venue or the like that—

 i. has a design occupancy of not less than 35,000 spectators; or

 ii. contains a *swimming pool* that has a perimeter of not less than 70 m and that is *required* by D4D2 to be *accessible*; and

 c. museum, art gallery or the like having a design occupancy of not less than 1,500 patrons; and

 d. theatre or the like having a design occupancy of not less than 1,500 patrons; and

 e. passenger use area of an airport terminal building within an airport that accepts domestic and/or international flights that are public transport services as defined in the Disability Standards for Accessible Public Transport 2002.

1. *Accessible* adult change facilities *required* by (1)—

 a. must be constructed in accordance with *Specification 27*; and

 b. cannot be combined with another *sanitary compartment*.

3. For the purposes of (1), design occupancy must be calculated in accordance with D2D18, but excluding any area that—

 a. can only be accessed by staff, employees, contractors, maintenance personnel and the like; or

 b. is subject to an exemption under D4D5.

TAS F2D13 F4D13
TAS F2D14 F4D14
VIC F2D13 F4D13

Explanatory Information: Cross-volume considerations

NCC Volume Three contains a number of plumbing and drainage provisions which are relevant to facilities. The include, but are not limited to, those listed in Table **F2 F4**.

Table F4:

<table>
<thead>
<tr>
<th>Item</th>
<th>NCC Volume Three - Plumbing Code of Australia</th>
</tr>
</thead>
</table>
| Access for maintenance of plumbing and drainage | B1 Cold water services
B2 Heated water services
B3 Non-drinking water services
C1 Sanitary plumbing systems
C2 Sanitary drainage systems |
| Heated water temperature control for facilities used for personal hygiene | B2 Heated water services |
Introduction to this Part

This Part is intended to prevent the construction of rooms or other spaces with insufficient ceiling heights, which can injury or loss of amenity for building occupants.

Objectives

Objective

The Objective of this Part is to safeguard occupants from injury or loss of amenity caused by inadequate height of a room or space.

Functional Statements

Room or space heights

A building is to be constructed to provide height in a room or space suitable for the intended use.

Performance Requirements

Room or space heights

A habitable room or space must have sufficient height that does not unduly interfere with its intended function.

Verification Methods

Room or space heights

1. Compliance with F3P1 is verified where the height of a habitable room or space provides an appropriate activity support level that does not unduly interfere with its intended function.

2. For the purposes of (1), the activity support level must consider the dimensions of—
 (a) doors, required exits, ramps, barriers, stairs and windows; and
 (b) fixed fittings and services; and
 (c) fixed and moveable equipment or furniture; and
 (d) occupant circulation spaces.
Deemed-to-Satisfy Provisions

VIC F3D1F5D1

Deemed-to-Satisfy Provisions

[2019: F3.0]

1. Where a *Deemed-to-Satisfy Solution* is proposed, *Performance Requirement* F35P1 is satisfied by complying with—

 (a) F35D2; and

 (b) for *farm sheds*, Part I3.

2. Where a *Performance Solution* is proposed, the relevant *Performance Requirements* must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

F3D2F5D2

Height of rooms and other spaces

[2019: F3.2]

1. The height of rooms and other spaces in a Class 2 or 3 building or Class 4 part of a building must be not less than—

 (a) for a kitchen, laundry, or the like — 2.1 m; and

 (b) for a corridor, passageway or the like — 2.1 m; and

 (c) for a *habitable room* excluding a kitchen — 2.4 m; and

 (d) in a *habitable room*, or space within a *habitable room*, with a sloping ceiling or projections below the ceiling line—

 (i) in an attic — a height of not less than 2.2 m for not less than two-thirds of the *floor area* of the room or space; and

 (ii) in other rooms — a height of not less than 2.4 m for not less than two-thirds of the *floor area* of the room or space; and

 (e) in a *habitable room*, or space within a *habitable room*, with a sloping ceiling or projections below the ceiling line — a height of not less than 2.1 m for not less than two-thirds of the *floor area* of the room or space.

2. For the purposes of (1), when calculating the *floor area* of a room or space, any part that has a ceiling height of less than 1.5 m is not included.

3. The height of rooms and other spaces in a Class 5, 6, 7 or 8 building must be not less than—

 (a) except as allowed in (b) and (8) — 2.4 m; and

 (b) a corridor, passageway, or the like — 2.1 m.

4. The height of rooms and other spaces in a Class 9a *health-care building* must be not less than—

 (a) for a *patient care area* — 2.4 m; and

 (b) for an operating theatre or delivery room — 3 m; and

 (c) for a treatment room, clinic, waiting room, passageway, corridor, or the like — 2.4 m.

5. The height of rooms and other spaces in a Class 9b building must be not be less than—

 (a) for a *school* classroom or other *assembly building* or part that accommodates not more than 100 persons — 2.4 m; and

 (b) for a theatre, public hall or other *assembly building* or part that accommodates more than 100 persons — 2.7 m; and

 (c) for a corridor—

 (i) that serves an *assembly building* or part that accommodates not more than 100 persons — 2.4 m; or

 (ii) that serves an *assembly building* or part that accommodates more than 100 persons — 2.7 m.

6. For the purposes of (5) the number of persons accommodated must be calculated according to D2D18.

7. The height of rooms and other spaces in a Class 9c building must be not be less than—
(a) for a kitchen, laundry, or the like — 2.1 m; and
(b) for a corridor, passageway or the like — 2.4 m; and
(c) for a habitable room excluding a kitchen — 2.4 m.

(8) The height of rooms and other spaces in any building must be not be less than—
(a) for a bathroom, shower room, sanitary compartment, other than an accessible adult change facility, airlock, tea preparation room, pantry, store room, garage, car parking area, or the like — 2.1 m; and
(b) for a commercial kitchen — 2.4 m; and
(c) above a stairway, ramp, landing or the like — 2 m measured vertically above the nosing line of stairway treads or the floor surface of the ramp, landing or the like; and
(d) for a required accessible adult change facility — 2.4 m.
Introduction to this Part

Objectives

Objective

The Objective of this Part is to—

1. safeguard occupants from injury, illness or loss of amenity due to—
 1. isolation from natural light; and
 2. lack of adequate artificial lighting; and
2. safeguard occupants from illness or loss of amenity due to lack of air freshness.

Functional Statements

Natural light

A space within a building used by occupants is to be provided with openings to admit natural light consistent with its function or use.

Artificial light

A space within a building used by occupants is to be provided with artificial lighting consistent with its function or use which, when activated in the absence of suitable natural light, will enable safe movement.

Ventilation

A space used by occupants within a building is to be provided with adequate ventilation consistent with its function or use.

Performance Requirements

Natural lighting

Sufficient openings must be provided and distributed in a building, appropriate to the function or use of that part of the building so that natural light, when available, provides an *average daylight factor* of not less than 2%.
Applications:

F4P1 only applies to a Class 2, 3 or 9 building, or a Class 4 part of a building.

Artificial lighting

F4P2 Artificial lighting

Artificial lighting must be installed to provide an illuminance of not less than 20 lux appropriate to the function or use of the building to enable safe movement by occupants.

Outdoor air supply

F4P3 Outdoor air supply

A space in a building used by occupants must be provided with means of ventilation with outdoor air which will maintain adequate air quality.

Mechanical ventilation to control odours and contaminants

F4P4 Mechanical ventilation to control odours and contaminants

A mechanical air-handling system installed in a building must control—

(a) the circulation of objectionable odours; and

(b) the accumulation of harmful contamination by micro-organisms, pathogens and toxins.

Disposal of contaminated air

F4P5 Disposal of contaminated air

Contaminated air must be disposed of in a manner which does not unduly create a nuisance or hazard to people in the building or other property.

Verification Methods

Verification of suitable indoor air quality

F4V1 Verification of suitable indoor air quality

For a Class 2, 3, 5, 6, 9b or 9c building or Class 4 part of a building, compliance with F4P3 and F4P4(a) is verified when it is determined that the building under typical conditions in use is provided with sufficient ventilation with outdoor air such that contaminant levels do not exceed the limits specified in Table F6V1.

Table F6V1: Maximum contaminant limits for acceptable indoor air quality

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging time</th>
<th>Maximum air quality value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide, CO₂</td>
<td>8 hours</td>
<td>850 ppm Note 1</td>
</tr>
<tr>
<td>Carbon monoxide, CO</td>
<td>15 minutes</td>
<td>90 ppm</td>
</tr>
<tr>
<td>Carbon monoxide, CO</td>
<td>30 minutes</td>
<td>50 ppm</td>
</tr>
<tr>
<td>Carbon monoxide, CO</td>
<td>1 hour</td>
<td>25 ppm</td>
</tr>
<tr>
<td>Carbon monoxide, CO</td>
<td>8 hours</td>
<td>10 ppm</td>
</tr>
<tr>
<td>Formaldehyde, CH₂O</td>
<td>30 minutes</td>
<td>0.1 mg/m³ (0.0197 ppm) Note 2</td>
</tr>
<tr>
<td>Nitrogen dioxide, NO₂</td>
<td>1 year</td>
<td>40 µg/m³</td>
</tr>
</tbody>
</table>
Pollutant | **Averaging time** | **Maximum air quality value** |
---|---|---|
Nitrogen dioxide, NO₂ | 1 hour | 200 μg/m³ (0.0987 ppm) |
Ozone, O₃ | 8 hour, daily maximum | 100 μg/m³ (0.0473 ppm) |
Particulate matter, PM₂.₅ | 1 year | 10 μg/m³ |
Particulate matter, PM₂.₅ | 24 hour (99th percentile) | 25 μg/m³ |
Particulate matter, PM₁₀ | 1 year | 20 μg/m³ |
Particulate matter, PM₁₀ | 24 hour (99th percentile) | 50 μg/m³ |
Total volatile organic compounds | 1 hour | 500 μg/m³ |

Table Notes:
1. Based on body odour metric (i.e. 450 ppm above ambient CO₂ level of 400 ppm and demand control ventilation provisions in AS 1668.2).
2. Based on pressure of 101.325 kPa and temperature of 25°C (i.e. the conversion is mg/m³ = ppm (molecular weight/24.4)).

F4V2F6V2 Verification of suitable indoor air quality for carparks

[2019: FV4.2]

For a Class 7a building, compliance with F₄₆P₃ and F₄₆P₄(a) is verified when it is determined that the building is provided with sufficient ventilation with outdoor air such that carbon monoxide exposure levels do not exceed the limits specified in Table F₄₆V₂.

Table F6V2: Maximum carbon monoxide exposure for carparks

<table>
<thead>
<tr>
<th>Concentration (ppm)</th>
<th>Total exposure duration per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Not to be exceeded</td>
</tr>
<tr>
<td>90</td>
<td>15 minutes</td>
</tr>
<tr>
<td>60</td>
<td>1 hour</td>
</tr>
<tr>
<td>30</td>
<td>8 hours</td>
</tr>
</tbody>
</table>

Table Notes:
Various government work health and safety regulations specify workplace exposure limits for airborne contaminants in the workplace.

F4V3F6V3 Verification of suitable provision of natural light

[2019: FV4.3]

Compliance with F₄₆P₁ is verified for the provision of natural light when the average daylight factor for each window is determined in accordance with the formula:

$$\text{Average Daylight Factor} = \frac{W}{A} \frac{T\theta}{(1 - R^2)}$$

where—

(a) $W =$ the net area of the light transmitting window (m²); and
(b) $A =$ the total area of the internal wall, floor and ceiling surfaces (m²); and
(c) $T =$ the diffuse light transmittance of the window; and
(d) $\theta =$ visible sky angle in degrees, measured in a vertical plane normal to and from the centre of the window; and
(e) $R =$ the area-weighted average reflectance of area A.

NCC 2022 Volume One - Building Code of Australia Page 325
Applications:

F4V3 only applies to—

(a) *habitable rooms* of Class 2 buildings and Class 4 parts of buildings; and
(b) bedrooms and dormitories of Class 3 buildings; and
(c) rooms used for sleeping purposes in Class 9a and 9c buildings; and
(d) general purpose classrooms in primary and secondary *school* and playrooms or the like for the use of children in an *early childhood centre* in Class 9b buildings.

Deemed-to-Satisfy Provisions

F4D1 Deemed-to-Satisfy Provisions

[2019: F4.0]

1. Where a *Deemed-to-Satisfy Solution* is proposed, *Performance Requirements* F46P1 to F46P5 are satisfied by complying with—

 (a) F46D2 to F46D12; and

 (b) for a building containing an *occupiable outdoor area*, Part G6; and

 (c) for *farm buildings* and *farm sheds*, Part I3.

2. Where a *Performance Solution* is proposed, the relevant *Performance Requirements* must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

VIC F4D2F6D2

F4D2 Provision of natural light

[2019: F4.1]

Natural light must be provided in:

(a) Class 2 buildings and Class 4 parts of buildings — to all *habitable rooms*.

(b) Class 3 buildings — to all bedrooms and dormitories.

(c) Class 9a and 9c buildings — to all rooms used for sleeping purposes.

(d) Class 9b buildings — to all general purpose classrooms in primary or secondary *schools* and all playrooms or the like for the use of children in an *early childhood centre*.

F4D3 Methods and extent of natural light

[2019: F4.2]

1. *Required* natural light must be provided by—

 (a) *windows*, excluding *roof lights*, that—

 (i) have an aggregate light transmitting area measured exclusive of framing members, glazing bars or other obstructions of not less than 10% of the *floor area* of the room; and

 (ii) are open to the sky or face a court or other space open to the sky or an open verandah, carport or the like; or

 (b) *roof lights*, that—

 (i) have an aggregate light transmitting area measured exclusive of framing members, glazing bars or other obstructions of not less than 3% of the *floor area* of the room; and

 (ii) are open to the sky; or

 (c) a proportional combination of *windows* and *roof lights required* by (a) and (b).
(2) Except in a Class 9c aged care building, in a Class 2, 3 or 9 building or Class 4 part of a building a required window that faces a boundary of an adjoining allotment or a wall of the same building or another building on the allotment must not be less than a horizontal distance from that boundary or wall that is the greater of—

(a) generally — 1 m; and
(b) in a patient care area or other room used for sleeping purposes in a Class 9a building — 3 m; and
(c) 50% of the square root of the exterior height of the wall in which the window is located, measured in metres from its sill.

(3) In a Class 9c aged care building, a required window must be transparent and located—

(a) in an external wall with the window sill not more than 1 m above the floor level; and
(b) where the window faces an adjoining allotment, another building or another wall of the same building, it must not be less than a horizontal distance of 3 m from the adjoining allotment, other building or wall.

(4) In a Class 9b early childhood centre, the sills of 50% of windows in children’s rooms must be located not more than 500 mm above the floor level.

F4D4F6D4 Natural light borrowed from adjoining room

(1) Natural light to a room in a Class 2 building or Class 4 part of a building or in a sole-occupancy unit of a Class 3 building, may come through one or more glazed panels or openings from an adjoining room (including an enclosed verandah) if—

(a) both rooms are within the same sole-occupancy unit or the enclosed verandah is on common property; and
(b) the glazed panels or openings have an aggregate light transmitting area of not less than 10% of the floor area of the room to which it provides light; and
(c) the adjoining room has—

(i) windows, excluding roof lights, that—

(A) have an aggregate light transmitting area of not less than 10% of the combined floor areas of both rooms; and
(B) are open to the sky or face a court or other space open to the sky or an open verandah, carport or the like; or

(ii) roof lights, that—

(A) have an aggregate light transmitting area of not less than 3% of the combined floor areas of both rooms; and
(B) are open to the sky; or

(iii) a proportional combination of windows and roof lights required by (i) and (ii).

(2) The areas specified in (1)(b) and (c) may be reduced as appropriate if direct natural light is provided from another source.

F4D5F6D5 Artificial lighting

(1) Artificial lighting must be provided—

(a) in required stairways, passageways, and ramps; and
(b) if natural light of a standard equivalent to that required by F4D4 is not available, and the periods of occupation or use of the room or space will create undue hazard to occupants seeking egress in an emergency, in—

(i) Class 4 parts of a building — to sanitary compartments, bathrooms, shower rooms, airlocks and laundries;
and

(ii) Class 2 buildings — to sanitary compartments, bathrooms, shower rooms, airlocks, laundries, common stairways and other spaces used in common by the occupants of the building; and

(iii) Class 3, 5, 6, 7, 8 and 9 buildings — to all rooms that are frequently occupied, all spaces required to be accessible, all corridors, lobbies, internal stairways, other circulation spaces and paths of egress.

(2) The artificial lighting system must comply with AS/NZS 1680.0.

(3) The system may provide a lesser level of illumination to the following spaces during times when the level of lighting would be inappropriate for the use:

(a) A theatre, cinema or the like, when performances are in progress, with the exception of aisle lighting required by Part 11.

(b) A museum, gallery or the like, where sensitive displays require low lighting levels.

(c) A discotheque, nightclub or the like, where to create an ambience and character for the space, low lighting levels are used.

NSW F4D6F6D6
SA F4D6F6D6

F4D6F6D6 Ventilation of rooms

[2019: F4.5]

A habitable room, office, shop, factory, workroom, sanitary compartment, bathroom, shower room, laundry and any other room occupied by a person for any purpose must have—

(a) natural ventilation complying with F4 D7; or

(b) a mechanical ventilation or air-conditioning system complying with AS 1668.2 and AS/NZS 3666.1.

F4D7F6D7 Natural ventilation

[2019: F4.6]

(1) Natural ventilation provided in accordance with F4 D6(a) must consist of openings, windows, doors or other devices which can be opened—

(a) with a ventilating area not less than 5% of the floor area of the room required to be ventilated; and

(b) open to—

(i) a suitably sized court, or space open to the sky; or

(ii) an open verandah, carport, or the like; or

(iii) an adjoining room in accordance with F4 D8.

(2) The requirements of (1)(a) do not apply to a Class 8 electricity network substation.

F4D8F6D8 Ventilation borrowed from adjoining room

[2019: F4.7]

Natural ventilation to a room may come through a window, opening, door or other device from an adjoining room (including an enclosed verandah) if both rooms are within the same sole-occupancy unit or the enclosed verandah is common property, and—

(a) in a Class 2 building, a sole-occupancy unit of a Class 3 building or Class 4 part of a building—

(i) the room to be ventilated is not a sanitary compartment; and

(ii) the window, opening, door or other device has a ventilating area of not less than 5% of the floor area of the room to be ventilated; and

(iii) the adjoining room has a window, opening, door or other device with a ventilating area of not less than 5%
of the combined floor areas of both rooms; and
(b) in a Class 5, 6, 7, 8 (except a Class 8 electricity network substation) or 9 building—
 (i) the window, opening, door or other device has a ventilating area of not less than 10% of the floor area of the room to be ventilated, measured not more than 3.6 m above the floor; and
 (ii) the adjoining room has a window, opening, door or other device with a ventilating area of not less than 10% of the combined floor areas of both rooms; and
(c) the ventilating areas specified in (a) and (b) may be reduced as appropriate if direct natural ventilation is provided from another source.

F4D9 F6D9 Restriction on location of sanitary compartments

Sanitary compartments must not open directly into—
(a) a kitchen or pantry; or
(b) a public dining room or restaurant; or
(c) a dormitory in a Class 3 building; or
(d) a room used for public assembly (which is not an early childhood centre, primary school or open spectator stand); or
(e) a workplace normally occupied by more than one person.

F4D10 F6D10 Airlocks

If a sanitary compartment is prohibited under F4D9 from opening directly to another room—
(a) in a sole-occupancy unit in a Class 2 or 3 building or Class 4 part of a building—
 (i) access must be by an airlock, hallway or other room; or
 (ii) the sanitary compartment must be provided with mechanical exhaust ventilation; and
(b) in a Class 5, 6, 7, 8 or 9 building (which is not an early childhood centre, primary school or open spectator stand)—
 (i) access must be by an airlock, hallway or other room with a floor area of not less than 1.1 m² and fitted with self-closing doors at all access doorways; or
 (ii) the sanitary compartment must be provided with mechanical exhaust ventilation and the doorway to the room adequately screened from view.

F4D11 F6D11 Carparks

Every storey of a carpark, except an open-deck carpark, must have—
(a) a system of mechanical ventilation complying with AS 1668.2; or
(b) a system of natural ventilation complying with Section 4 of AS 1668.4.

F4D12 F6D12 Kitchen local exhaust ventilation

A commercial kitchen must be provided with a kitchen exhaust hood complying with AS 1668.1 and AS 1668.2 where—
(a) any cooking apparatus has—
 (i) a total maximum electrical power input exceeding 8 kW; or
(ii) a total gas power input exceeding 29 MJ/h; or
(b) the total maximum power input to more than one apparatus exceeds—
 (i) 0.5 kW electrical power; or
 (ii) 1.8 MJ/hour gas, per m2 of floor area of the room or enclosure.
Introduction to this Part

This Part is intended to reduce the likelihood of illness or loss of amenity as result of undue noise transmission between different parts of a building or adjoining buildings. This part contains minimum requirements for sound insulation for walls, floors and penetrations through walls and floors for services such as pipework.

Objectives

The Objective of this Part is to safeguard occupants from illness or loss of amenity as a result of undue sound being transmitted—

(a) between adjoining sole-occupancy units; and
(b) from common spaces to sole-occupancy units; and
(c) from parts of different classifications to sole-occupancy units.

Applications:

F5O1F7O1 only applies to a Class 2 or 3 building or a Class 9c building.

Functional Statements

A part of a building that separates—

(a) sole-occupancy units; or
(b) a sole-occupancy unit from a part of another classification in the building; or
(c) a sole-occupancy unit from a common space,
is to be constructed to prevent undue sound transmission.

Applications:

F5F1F7F1 only applies to a Class 2 or 3 building or a Class 9c building.

Performance Requirements

A floor separating a sole-occupancy unit from another sole-occupancy unit, a plant room, lift shaft, stairway, public corridor, public lobby, or the like, or parts of a different classification, must minimise the transmission of airborne and impact generated sound such that the separating floor, inclusive of the effect of services penetrations, has—
(a) a weighted standardised level difference with spectrum adaptation term \(D_{nT,w} + C_{tr} \) not less than 45 for airborne sound; and

(b) a weighted standardised impact sound pressure level \(L_{nT,w} \) not more than 62 for impact generated sound.

(a) sole-occupancy units; or

(b) a sole-occupancy unit from a plant room, lift shaft, stairway, public corridor, public lobby, or the like, or a part of a different classification.

Applications:
F5P1F7P1 only applies to a Class 2 or 3 building.

F5P2F7P2 Sound transmission through walls

[2019: FP5.2]

(1) Walls separating sole-occupancy units or a sole-occupancy unit from a plant room, lift shaft, stairway, public corridor, public lobby, or the like, or parts of a different classification, must provide insulation against the transmission of—

A wall, including service penetrations, must minimise the transmission of sound such that—

(a) for airborne sound; and—

(i) a wall separating sole-occupancy units has a weighted standardised level difference with spectrum adaptation term \(D_{nT,w} + C_{tr} \) not less than 45; and

(ii) a wall separating a sole-occupancy unit from a plant room, lift shaft, stairway, public corridor, public lobby, or the like, or parts of a different classification, has a weighted standardised level difference \(D_{nT,w} \) not less than 45; and

(iii) any door assembly located in a wall that separates a sole-occupancy unit from a stairway, public corridor, public lobby, or the like, has a weighted standardised level difference \(D_{nT,w} \) not less than 25; and

(b) for impact generated sound, if the wall is separating a bathroom, sanitary compartment, laundry or kitchen in one sole-occupancy unit from a room (other than a kitchen) in an adjoining unit, the wall must have sufficient sound insulation to prevent illness or loss of amenity to the occupants if the wall separates—

(i) a bathroom, sanitary compartment, laundry or kitchen in one sole-occupancy unit from a habitable room (other than a kitchen) in an adjoining unit; or

(ii) a sole-occupancy unit from a plant room or lift shaft.

(2) Sound insulation required by (1) must be sufficient to prevent illness or loss of amenity to the occupants.

Applications:
F5P2F7P2 only applies to a Class 2 or 3 building.

F5P3 Sound transmission through floor and wall penetrations and door assemblies

[2019: FP5.3]

The required sound insulation of a floor or a wall must not be compromised by—

(a) the incorporation or penetration of a pipe or other service element; or

(b) a door assembly.

Applications:
F5P3 only applies to a Class 2 or 3 building.
Sound transmission through floors in a residential care building

[F5P34F7P3][2019: FP5.4]

Floors separating *sole-occupancy units* must *minimise* provide insulation against the transmission of airborne and impact generated sound sufficient to prevent illness or loss of amenity to the occupants, *such that the separating floor, including the effect of service penetrations, has*—

(a) a weighted standardised level difference with spectrum adaptation term ($D_{nT,w} + C_{tr}$) not less than 40 for airborne sound; and

(b) a weighted standardised impact sound pressure level ($L_{nT,w}$) not more than 62 for impact generated sound.

Applications:

F5P34F7P3 only applies to a Class 9c building.

Sound transmission through walls in a residential care building

[F5P45F7P4][2019: FP5.5]

(1) Walls separating *sole-occupancy units*, or a *sole-occupancy unit* from a kitchen, bathroom, *sanitary compartment* (not being an associated ensuite), laundry, plant room or utilities room, *including the effect of service penetrations*, must *provide insulation against* minimise the transmission of—

(a) airborne sound *such that the wall has a weighted standardised level difference* ($D_{nT,w}$) not less than 40; and

(b) impact generated sound, if the wall separates a *sole-occupancy unit* from a kitchen or laundry.

(2) Sound insulation *required* by (1) must be sufficient to prevent illness or loss of amenity to the occupants.

Applications:

F5P45F7P4 only applies to a Class 9c building.

Sound transmission through floor and wall penetrations in residential care buildings

[F5P6][2019: FP5.6]

The required sound insulation of a floor or a wall must not be compromised by the incorporation or penetration of a pipe or other service element.

Applications:

F5P6 only applies to a Class 9c building.

Verification Methods

Sound transmission through floors [F5P1 and F5P3]

[F5V4F7V1][2019: FV5.1]

Compliance with F5P1 and F5P3 to avoid the transmission of airborne and impact generated sound through floors is verified when it is measured in-situ that the separating floor has—

(a) airborne: a weighted standardised level difference with spectrum adaptation term ($D_{nT,w} + C_{tr}$) not less than 45 when determined under AS/NZS ISO 717.1; and
(b) impact: a weighted standardised impact sound pressure level \(L_{nT-w} \) not more than 62 when determined under AS ISO 717.2.

Sound transmission through walls [F57P2(1)(a), and (2) and F5P3]

Compliance with F57P2(1)(a) and (2) and F5P3 to avoid the transmission of airborne sound through walls is verified when it is measured in-situ that—

(a) a wall separating sole-occupancy units has a weighted standardised level difference with spectrum adaptation term \(D_{nT-w} + C_{tr} \) not less than 45 when determined under AS/NZS ISO 717.1; or

(b) a wall separating a sole-occupancy unit from a plant room, lift shaft, stairway, public corridor, public lobby, or the like, or parts of a different classification, has a weighted standardised level difference \(D_{nT-w} \) not less than 45 when determined under AS/NZS ISO 717.1; or

(c) any door assembly located in a wall that separates a sole-occupancy unit from a stairway, public corridor, public lobby, or the like, has a weighted standardised level difference \(D_{nT-w} \) not less than 25 when determined under AS/NZS ISO 717.1.

Sound transmission through floors [F57P3 and F5P6]

Compliance with F57P3 and F5P6 to avoid the transmission of airborne and impact generated sound through floors is verified when it is measured in-situ that—

(a) airborne: a weighted standardised level difference \(D_{nT-w} \) not less than 40 when determined under AS/NZS ISO 717.1; and

(b) impact: a weighted standardised impact sound pressure level \(L_{nT-w} \) not more than 62 when determined under AS ISO 717.2.

Sound transmission through walls [F57P4(1)(a) and (2) and F5P6]

Compliance with F57P4(1)(a) and (2) and F5P6 to avoid the transmission of airborne sound through walls is verified when it is measured in-situ that—

(a) a wall separating sole-occupancy units has a weighted standardised level difference \(D_{nT-w} \) not less than 40 when determined under AS/NZS ISO 717.1; or

(b) a wall separating a sole-occupancy unit from a kitchen, bathroom, sanitary compartment (not being an associated ensuite), laundry, plant room or utilities room has a weighted standardised level difference \(D_{nT-w} \) not less than 40 when determined under AS/NZS ISO 717.1.

Deemed-to-Satisfy Provisions

Deemed-to-Satisfy Provisions [F5D4D1]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements F67P1 to F67P6 are satisfied by complying with F67D2 to F67D8.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.
Application of Part

The Deemed-to-Satisfy Provisions of this Part apply to Class 2 and 3 buildings and Class 9c buildings.

Determination of airborne sound insulation ratings

A form of construction required to have an airborne sound insulation rating must—

(a) have the required value for weighted sound reduction index (R_w) or weighted sound reduction index with spectrum adaptation term ($R_w + C_{tr}$) determined in accordance with AS/NZS ISO 717.1 using results from laboratory measurements; or

(b) comply with Specification 28.

Determination of impact sound insulation ratings

(1) A floor in a building required to have an impact sound insulation rating must—

(a) have the required value for weighted normalised impact sound pressure level ($L_{n,w}$) determined in accordance with AS ISO 717.2 using results from laboratory measurements; or

(b) comply with Specification 28.

(2) A wall in a building required to have an impact sound insulation rating must—

(a) for a Class 2 or 3 building be of discontinuous construction; and

(b) for a Class 9c building, must—

(i) for other than masonry, be two or more separate leaves without rigid mechanical connection except at the periphery; or

(ii) be identical with a prototype that is no less resistant to the transmission of impact sound when tested in accordance with Specification 29 than a wall listed in S28C4 to S28C7.

(3) For the purposes of this Part, discontinuous construction means a wall having a minimum 20 mm cavity between 2 separate leaves, and—

(a) for masonry, where wall ties are required to connect leaves, the ties are of the resilient type; and

(b) for other than masonry, there is no mechanical linkage between leaves except at the periphery.

Sound insulation rating of floors

(1) A floor in a Class 2 or 3 building must have an $R_w + C_{tr}$ (airborne) not less than 50 and an $L_{n,w}$ (impact) not more than 62 if it separates—

(a) sole-occupancy units; or

(b) a sole-occupancy unit from a plant room, lift shaft, stairway, public corridor, public lobby or the like, or parts of a different classification.

(2) A floor in a Class 9c building separating sole-occupancy units must have an R_w not less than 45.

Sound insulation rating of walls

(1) A wall in a Class 2 or 3 building must—
(a) have an $R_w + C_r$ (airborne) not less than 50, if it separates sole-occupancy units; and
(b) have an R_w (airborne) not less than 50, if it separates a sole-occupancy unit from a plant room, lift shaft, stairway, public corridor, public lobby or the like, or parts of a different classification; and
(c) comply with $F_7 D_4(2)$ if it separates—
 (i) a bathroom, sanitary compartment, laundry or kitchen in one sole-occupancy unit from a habitable room (other than a kitchen) in an adjoining unit; or
 (ii) a sole-occupancy unit from a plant room or lift shaft.

(2) A door may be incorporated in a wall in a Class 2 or 3 building that separates a sole-occupancy unit from a stairway, public corridor, public lobby or the like, provided the door assembly has an R_w not less than 30.

(3) A wall in a Class 9c building must have an R_w not less than 45 if it separates—
 (a) sole-occupancy units; or
 (b) a sole-occupancy unit from a kitchen, bathroom, sanitary compartment (not being an associated ensuite), laundry, plant room or utilities room.

(4) In addition to (3), a wall separating a sole-occupancy unit in a Class 9c building from a kitchen or laundry must comply with $F_7 D_4(2)$.

(5) Where a wall required to have sound insulation has a floor above, the wall must continue to—
 (a) the underside of the floor above; or
 (b) a ceiling that provides the sound insulation required for the wall.

(6) Where a wall required to have sound insulation has a roof above, the wall must continue to—
 (a) the underside of the roof above; or
 (b) a ceiling that provides the sound insulation required for the wall.

Sound insulation rating of internal services

[2019: F5.6]

(1) If a duct, soil, waste or water supply pipe, including a duct or pipe that is located in a wall or floor cavity, serves or passes through more than one sole-occupancy unit, the duct or pipe must be separated from the rooms of any sole-occupancy unit by construction with an $R_w + C_r$ (airborne) not less than—
 (a) 40 if the adjacent room is a habitable room (other than a kitchen); or
 (b) 25 if the adjacent room is a kitchen or non-habitable room.

(2) If a storm water pipe passes through a sole-occupancy unit it must be separated in accordance with (1)(a) and (b).

Sound isolation of pumps

[2019: F5.7]

A flexible coupling must be used at the point of connection between the service pipes in a building and any circulating or other pump.
Introduction to this Part

This Part is intended to reduce the risk of illness or loss of amenity due to the occurrence of condensation inside a building. It does this through specifying design and construction of buildings with features that enable moisture-laden air to be removed from inside the building.

Objectives

Objective

The Objective of this Part is to safeguard occupants from illness or loss of amenity as a result of excessive internal moisture.

Applications:

only applies to a Class 2 building or Class 4 part of a building.

Functional Statements

Condensation

A building is to be constructed to avoid the likelihood of excessive internal moisture accumulating within the building structure.

Performance Requirements

Condensation and water vapour management

In a sole-occupancy unit of a Class 2 building or a Class 4 part of a building, risks associated with water vapour and condensation must be managed to minimise their impact on the health of occupants.

Verification Methods

Condensation management

(1) Compliance with Performance Requirement F6P1 is verified when modelling determines that moisture will not accumulate—

(a) interior to the primary water control layer within a building envelope; or
(b) on the interior surface of the water control layer.

(2) Modelling used for the purposes of (1) must assess the effects of—
 (a) indoor and outdoor temperature and humidity conditions; and
 (b) heating and cooling set points; and
 (c) rain absorption; and
 (d) wind pressure; and
 (e) solar radiation; and
 (f) material hygrothermal properties.

Deemed-to-Satisfy Provisions

Deemed-to-Satisfy Provisions

[2019: F6.0]

(1) Compliance with Performance Requirement F6D1P1 is satisfied by complying with Deemed-to-Satisfy Provisions F6D2D2 to F6D5D5.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

Explanatory Information:
The intent of these requirements is to assist in the mitigation of condensation within a building. The installation of a condensation management system may not prevent condensation from occurring.

Application of Part

Application of Part

[2019: F6.1]

The Deemed-to-Satisfy Provisions of this Part only apply to a sole-occupancy unit of a Class 2 building and a Class 4 part of a building.

Pliable building membrane

Pliable building membrane

[2019: F6.2]

(1) Where a pliable building membrane is installed in an external wall, it must—
 (a) comply with AS/NZS 4200.1; and
 (b) be installed in accordance with AS 4200.2; and
 (c) be a vapour permeable membrane for climate zones 6, 7 and 8; and
 (d) be located on the exterior side of the primary insulation layer of wall assemblies that form the external envelope of a building.

(2) Except for single skin masonry and single skin concrete, where a pliable building membrane is not installed in an external wall, the primary water control layer must be separated from water sensitive materials by a drained cavity.

Flow rate and discharge of exhaust systems

Flow rate and discharge of exhaust systems

[2019: F6.3]

(1) An exhaust system installed in a kitchen, bathroom, sanitary compartment or laundry must have a minimum flow rate of—
 (a) 25 L/s for a bathroom or sanitary compartment; and
(b) 40 L/s for a kitchen or laundry.

(2) Exhaust from a kitchen must be discharged directly or via a shaft or duct to outdoor air.

(3) Exhaust from a bathroom, sanitary compartment, or laundry must be discharged—
 (a) directly or via a shaft or duct to outdoor air, or
 (b) to a roof space that is ventilated in accordance with F68D5.

Ventilation of roof spaces

[2019: F6.4]

(1) Where an exhaust system covered by F68D4 discharges directly or via a shaft or duct into a roof space, the roof space must be ventilated to outdoor air through evenly distributed openings.

(2) Openings required by (1) must have a total unobstructed area of 1/300 of the respective ceiling area if the roof pitch is greater than 22°, or 1/150 of the respective ceiling area if the roof pitch is less than or equal to 22°.

(3) 30% of the total unobstructed area required by (2) must be located not more than 900 mm below the ridge or highest point of the roof space, measured vertically, with the remaining required area provided by eave vents.
Specification 26 Waterprooﬁng and water-resistance requirements for building elements in wet areas

S26C1 Scope

[2019: Table F1.7]
This Specification sets out requirements for building elements in wet areas that are required to be—
(a) water resistant; or
(b) waterproof.

S26C2 Application

[2019: Table F1.7]
(1) The requirements of this Specification apply to—
(a) shower areas (enclosed and unenclosed); and
(b) areas outside a shower area; and
(c) areas adjacent to baths and spas; and
(d) other areas as set out in clause S26C7.
(2) Where a shower is above a bath or spa, use requirements for a shower.

S26C3 Shower area (enclosed and unenclosed)

[2019: Table F1.7]
(1) For a shower area with a hob, step-down or without a hob or step-down, the following applies:
(a) The floor of the shower area must be waterproof, including any hob or step-down; and
(b) The walls of the shower area must be—
 (i) waterproof for all walls in shower area to a height the greater of—
 (A) not less than 150 mm above floor substrate; or
 (B) not less than 25 mm above maximum retained water level; and
 (ii) water resistant for walls to not less than 1800 mm above finished floor level of the shower.
(c) Wall junctions and joints within the shower area must be waterproof.
(d) Wall/floor junctions within the shower area must be waterproof.
(e) Penetrations within the shower area must be waterproof.
(2) A shower with a preformed shower base must also comply with the requirements of (1), except for (a) and (b)(i) which are not applicable.

S26C4 Area outside shower area

[2019: Table F1.7]
(1) For concrete and compressed fibre-cement sheet flooring, the floor of the room must be water resistant.
(2) For timber floors including particleboard, plywood and other timber based flooring materials, the floor of the room must be waterproof.
(3) Wall/floor junctions must be waterproof.
S26C5 Areas adjacent to baths and spas (other than inserted baths and spas) [2019: Table F1.7]

(1) For concrete and compressed fibre-cement and fibre-cement sheet flooring, the floor of the room must be water resistant.

(1) For timber floors including particleboard, plywood and other timber based flooring materials, the floor of the room must be waterproof.

(3) Walls must be water resistant—
 (a) to a height of not less than 150 mm above the vessel, for the extent of the vessel, where the vessel is within 75 mm of a wall; and
 (b) to all exposed surfaces below vessel lip.

(4) Wall junctions and joints must be water resistant junctions within 150 mm above a vessel for the extent of the vessel.

(5) Wall/floor junctions must be water resistant for the extent of the vessel.

(6) Tap and spout penetrations must be waterproof where they occur in horizontal surfaces.

Applications:
S26C5 applies to freestanding and non-freestanding baths and spas.

S26C6 Areas adjacent to inserted baths and spas [2019: Table F1.7]

(1) Floors and horizontal surfaces:
 (a) Waterproof shelf area, incorporating waterstop under bath lip.
 (b) No requirement under bath.

(2) Walls:
 (a) Waterproof to not less than 150 mm above lip of bath or spa.
 (b) No requirement under bath.

(3) Wall junctions and joints:
 (a) Waterproof junctions within 150 mm above bath or spa.
 (b) No requirement under bath.

(4) Tap and spout penetrations must be waterproof where they occur in horizontal surfaces.

S26C7 Other areas [2019: Table F1.7]

(1) For walls adjoining other types of vessel (e.g. sink, basin or laundry tub), the following applies:
 (a) Walls must be water resistant to a height of not less than 150 mm above the vessel, for the extent of the vessel, where the vessel is within 75 mm of a wall.
 (b) Waterproof wall junctions where a vessel is fixed to a wall.
 (c) Waterproof tap and spout penetrations where they occur in surfaces required to be waterproof or water resistant.

(2) For laundries and WCs, other than WCs as described in (3), the following applies:
 (a) Water resistant floor of the room.
 (b) Water resistant wall/floor junctions.
 (c) Waterproof penetrations where they occur in surfaces required to be waterproof.
(3) For WCs with a hand-held bidet spray installation, the following applies:

(a) **Waterproof** floor of the room.

(b) Wall must be—

 (i) **waterproof** within a 1500 mm radius from the wall connection of the hand held bidet spray device to a height of not less than 150 mm above the substrate; and

 (ii) **water resistant** within a 1500 mm radius from the wall connection of the hand held bidet spray device to a height of not less than 1800 mm above the finished floor level of the WC.

(c) **Waterproof** wall junctions within WC area within 1500 mm radius from the wall connection of the hand held bidet spray device.

(d) **Waterproof** wall/floor junctions within WC area within 1500 mm radius from the wall connection of the hand held bidet spray device.

(e) **Waterproof** penetrations in WC area.

(4) For bathrooms and laundries required to provide a floor waste by F2D4, the following applies:

(a) **Waterproof** floor of the room.

(b) **Waterproof** wall/floor junctions.

(c) **Waterproof** penetrations where they occur through the floor.
S27C1 Scope

[2019: Spec F2.9: 1]
This Specification contains the requirements for accessible adult change facilities.

S27C2 General requirements

[2019: Spec F2.9: 2]

(1) Each accessible adult change facility must—
 (a) be constructed so that all required equipment and fixtures are contained within the same room; and
 (b) if it is a unisex facility, be located such that it can be entered without crossing an area reserved for one sex only.

(2) In each accessible adult change facility, the following must be provided:
 (a) A hoist complying with S27C3.
 (b) A toilet pan, seat, backrest and grabrails complying with S27C4.
 (c) A washbasin and tap complying with S27C5.
 (d) Fixtures and fittings as specified in S27C6.
 (e) A change table complying with S27C7.
 (f) Changing rails complying with S27C8.
 (g) An automated sliding entrance door complying with S27C9.
 (h) Signage complying with S27C10.
 (i) Operating instructions for the hoist and change table in accordance with S27C11.
 (j) Circulation spaces complying with Figures S27C2a to S27C2c.

(3) The floor surface must have a slip resistance classification of not less than R10 or P3 when tested in accordance with AS 4586.

(4) For the purposes of Figures S27C2a to S27C2c, the following applies:
 (a) The Roman numerals shown in Figures S27C2a to S27C2c indicate the following required circulation spaces:
 (i) Turning space: a full circle of 1125 mm radius.
 (ii) Each side of the pan: 900 mm (measured from each edge of the pan).
 (iii) In front of the pan: 2350 mm (measured from the wall behind the pan, and therefore includes the pan itself).
 (iv) For a washbasin: the width of the basin (450 mm) increasing to a width of 1350 mm measured at a distance of 750 mm out from the wall against which the washbasin is mounted then continuing at that width for a further 800 mm (to a total of 1550 mm out from the wall).
 (v) For changing rails: the width of the rails increasing to a width of 1350 mm at a distance of 750 mm out from the wall to which the rails are fixed then continuing at that width for a further 800 mm (to a total of 1550 mm out from the wall).
 (b) All required circulation spaces must extend for a minimum height of 2000 mm above finished floor level.
 (c) Required circulation spaces may be overlapped.
Figure S27C2a: Required circulation spaces — Turning space, each side of the pan and in front of the pan

(i) 1125 mm
(ii) 900 mm
(iii) 2350 mm

Figure S27C2b: Required circulation spaces — Turning space and circulation space for a washbasin

(i) 1125 mm
(iv) 800 mm
(iv) 750 mm
(iv) 450 mm
(iii) 1350 mm

DRAFT
S27C3 Hoist

The hoist must—

(a) provide a constant charge in-line room coverage hoist system (also known as an “XY” system or gantry) including 2 parallel fixed rails and a moving traverse rail; and
(b) provide coverage over the entire room; and
(c) have a maximum safe working load of not less than 180 kg; and
(d) be capable of sustaining a static load of not less than 1.5 times the rated load; and
(e) have a minimum lifting height of 2100 mm.

S27C4 Toilet pan, seat, backrest and grabrails

(1) The toilet pan must be of the centrally located (“peninsula-type”) design.
(2) The toilet pan must be installed so that—

(a) the front edge of the pan is 800 mm (±10 mm) from the rear wall; and
(b) the top of the seat is between 460 mm and 480 mm above finished floor level; and
(c) there is a minimum clearance of 900 mm, measured horizontally, between each side of the pan and any adjacent wall or privacy screen.
The toilet seat must—
(a) be of the full-round type (not open-fronted) with minimal contours to the top surface; and
(b) be securely fixed in position when in use; and
(c) have seat fixings that provide lateral stability to the seat when the seat is in use; and
(d) be load-rated to 150 kg; and
(e) have a minimum luminance contrast of 30% against the pan, wall or floor; and
(f) remain in the fully upright position when raised.

Hand-operated flushing controls must—
(a) be located on the centreline of the toilet, at a height above finished floor level of—
 (i) not less than 600 mm; and
 (ii) not more than 1100 mm; and
(b) not be located within the area required for any grabrails or backrest; and
(c) have the button mounted so that it is proud of the wall surface, and activates the flushing operation before the button becomes level with the surrounding surface.

An automatically activated flushing system need not comply with the requirements of (4).

The backrest must—
(a) be capable of withstanding a force, in any direction, of not less than 1100 N; and
(b) have a minimum height, between the lower edge of the backrest and the top of the seat, of between 120 mm and 150 mm; and
(c) have a vertical height, between the upper and lower edges of the backrest, of between 150 mm and 200 mm; and
(d) have a width of between 350 mm and 400 mm; and
(e) be positioned such that the face of the backrest achieves an angle of between 95° and 100° back from the seat, when the seat is in use.

Grabrails must be installed adjacent to each side of the pan and must be—
(a) of the drop-down type; and
(b) located such that—
 (i) the top of each rail is between 800 mm and 810 mm above finished floor level; and
 (ii) the rails are between 750 mm and 770 mm apart, measured centre-to-centre, and equidistant to the centreline of the pan; and
(c) at least 850 mm long; and
(d) with a diameter of between 30 mm and 40 mm; and
(e) securely fixed to withstand a force, in any direction, of not less than 1100 N; and
(f) provided with a toilet paper dispenser on one side; and
(g) capable of being lifted up or swung away when not in use, so as to allow unimpeded access to the toilet pan.

Washbasin and tap

The washbasin must be installed so that the rim of the basin is between 800 mm and 830 mm above finished floor level.

Exposed heated water supply pipes must be insulated or located so as not to pose a hazard.

Water supply or sanitary drainage pipes must not encroach on the space under the basin.

The washbasin must have an integrated shelf not less than 300 mm long.

Water taps must have a single lever flick-mixer handle or a sensor plate or the like.
Where lever handles are provided, they must be installed with a clear space of not less than 50 mm between the tap and any adjacent surface.

Heated water must be provided and temperature controlled in accordance with Part B2 of NCC Volume Three.

S27C6 Fixtures and fittings

[2019: Spec F2.9: 6]

(1) A vertical mirror must be provided at the washbasin, with a reflective surface that—
 (a) is not less than 600 mm wide; and
 (b) has its bottom edge not more than 900 mm above finished floor level; and
 (c) has its top edge not less than 1850 mm above finished floor level.

(2) If a second vertical mirror is provided in the facility, it must have a reflective surface that—
 (a) is not less than 600 mm wide; and
 (b) has its bottom edge not less than 600 mm above finished floor level; and
 (c) has its top edge not less than 1850 mm above finished floor level.

(3) Towel dispensers, hand dryers, soap dispensers and the like must be operable using one hand, and must be installed with their output or operative components—
 (a) between 900 mm and 1100 mm above finished floor level; and
 (b) not less than 500 mm from any internal corner.

(4) A soap dispenser must be installed above the integrated shelf required by S27C5(4).

(5) A clothing hook must be installed so that it is located—
 (a) at a height of between 1200 mm and 1350 mm above finished floor level; and
 (b) adjacent to the washbasin; and
 (c) not less than 500 mm from any internal corner.

(6) A sling hook with a minimum projection of 50 mm from the wall must be installed beside the change table at a height of 1500 mm above finished floor level.

(7) Disposal bins must be provided as follows:
 (a) A sanitary disposal bin in the corner adjacent to the toilet pan.
 (b) An incontinence pad disposal bin in the corner adjacent to the change table.

Explanatory Information:
The purpose of the sling hook is to store the sling when it is not in use.

S27C7 Change table

[2019: Spec F2.9: 7]

(1) The change table must be—
 (a) permanently installed, with one of the long edges up against a wall and with a retractable safety rail on the opposite side; and
 (b) motorised for the purposes of height adjustment; and
 (c) height adjustable between 450 mm and 900 mm above finished floor level; and
 (d) not less than 700 mm wide; and
 (e) not less than 1800 mm long.

(2) The change table must have a maximum safe working load of not less than 180 kg, including when raising or lowering the table.
(3) The change table must not encroach on any required circulation space.

(4) A dispenser for sanitary wipes must be provided.

(5) A shelf not less than 400 mm long and 150 mm wide must be provided.

S27C8 Changing rails

Changing rails must be installed as two horizontal and parallel rails fixed to a wall, not less than 800 mm long, each with a diameter between 30 and 40 mm, and—

(a) the lower rail must be installed between 800 mm and 810 mm above finished floor level; and

(b) the upper rail must be installed between 1000 mm and 1010 mm above finished floor level; and

(c) the rails must be able to withstand a force of not less than 1100 N in any direction.

S27C9 Door and door controls

The entrance door and associated door controls must be automated and must comply with the following:

(a) The threshold must incorporate a smooth transition without a step or lip.

(b) The minimum clear opening width must be—

(i) 1100 mm in locations where beach wheelchairs are likely to be used; or

(ii) 950 mm in all other locations.

(c) The doorway must achieve a luminance contrast of at least 30% between—

(i) door leaf and door jamb; or

(ii) door leaf and adjacent wall; or

(iii) architraves (where used) and adjacent wall; or

(iv) door leaf and architrave (where used); or

(v) door jamb and adjacent wall.

(d) The operation of the door must be calibrated such that—

(i) it has a gentle opening and closing movement; and

(ii) there is sufficient dwell time for a user to safely travel through the doorway.

(e) The door must be fitted with a fail-safe opening mechanism that opens the door if an obstruction is detected during its closing movement.

(f) Door controls must be located internally and externally—

(i) between 900 mm and 1200 mm above finished floor level; and

(ii) not less than 500 mm from any internal corner.

(g) Door control buttons must—

(i) have a minimum diameter of 25 mm; and

(ii) be proud of the surrounding surface; and

(iii) activate the door operation before the button becomes level with the surrounding surface; and

(iv) be of a contrasting colour to the surrounding plate.

(h) The surrounding plates of both internal and external door controls must include the words “Push to Open”.

(i) The following indicator lights must be provided:

(i) Occupied” and “Vacant” on the external plate.

(ii) Locked” and “Unlocked” on the internal plate.

(j) Braille and tactile signage complying with Specification 16 must identify the door controls.
(1) External signage must incorporate—
 (a) the symbol shown in Figure S27C10; and
 (b) the words “Accessible Adult Change Facility”.

(2) The symbol required by (1)(a) must have a blue (B21, ultramarine) background with the hoist and table elements shown in white.

(3) Signage must be braille and tactile signage complying with Specification 16.

Figure S27C10: Accessible adult change facility symbol

S27C11 Operating instructions

[2019: Spec F2.9: 11]

Signage provided within the facility must include the following information for the hoist and change table:

(a) Operating instructions.

(b) Safe working load limits.
Specification 28 Sound insulation for building elements

S28C1 Scope

This Specification lists the weighted sound reduction index R_w for some common forms of construction.

S28C2 Discontinuous construction

Wall systems listed in S28C4 to S28C7 having a minimum 20 mm cavity between 2 separate leaves are deemed to be discontinuous construction if—

(a) for masonry, where wall ties are required to connect leaves, the ties are of the resilient type; and

(b) for other than masonry, there is no mechanical linkage between leaves except at the periphery.

S28C3 Construction Deemed-to-Satisfy

(1) The forms of construction listed in S28C4 to S28C7 for wall construction and S28C8 to S28C10 for floor construction, are considered to have the R_w, $R_w + C_{tr}$ and L_n,w stated in those clauses.

(2) The forms of construction referred to in (1) must be installed as follows:

(a) Masonry units must be laid with all joints filled solid, including those between the masonry and any adjoining construction.

(b) Joints between concrete slabs or panels and any adjoining construction must be filled solid.

(c) Sheeting materials—

(i) if one layer is required on both sides of a wall, it must be fastened to the studs with joints staggered on opposite sides; and

(ii) if two layers are required, the second layer must be fastened over the first layer so that the joints do not coincide with those of the first layer; and

(iii) joints between sheets or between sheets and any adjoining construction must be taped and filled solid.

(d) Timber or steel-framed construction — perimeter framing members must be securely fixed to the adjoining structure and—

(i) bedded in resilient compound; or

(ii) the joints must be caulked so that there are no voids between the framing members and the adjoining structure.

(e) Services must not be chased into concrete or masonry elements.

(f) A door or panel required to have a certain $R_w + C_{tr}$ that provides access to a duct, pipe or other service must—

(i) not open into any habitable room (other than a kitchen); and

(ii) be firmly fixed so as to overlap the frame or rebate of the frame by not less than 10 mm, be fitted with a sealing gasket along all edges and be constructed of—

(A) wood, particleboard or blockboard not less than 33 mm thick; or

(B) compressed fibre-reinforced cement sheeting not less than 9 mm thick; or

(C) other suitable material with a mass per unit area not less than 24.4 kg/m2.

(g) A water supply pipe must—

(i) only be installed in the cavity of discontinuous construction; and
in the case of a pipe that serves only one sole-occupancy unit, not be fixed to the wall leaf on the side adjoining any other sole-occupancy unit and have a clearance not less than 10 mm to the other wall leaf.

(h) Electrical outlets must be offset from each other—
(i) in masonry walling, not less than 100 mm; and
(ii) in timber or steel-framed walling, not less than 300 mm.

S28C4 Acceptable forms of construction for walls — masonry

[2019: Spec F5.2: Table 2]

(1) Acceptable forms of construction for masonry walls are set out in (2) to (9).

(2) Two leaves of 110 mm clay brick masonry with—
 (a) a cavity of not less than 50 mm between leaves; and
 (b) 50 mm thick glass wool insulation with a density of 11 kg/m3 or 50 mm thick polyester insulation with a density of 20 kg/m3 in the cavity,

 has an $R_w + C_{tr}$ of not less than 50 and an R_w of not less than 50, if constructed as shown in Figure S28C4a.

(3) Two leaves of 110 mm clay brick masonry with—
 (a) a cavity of not less than 50 mm between leaves; and
 (b) 13 mm cement render on each outside face,

 has an $R_w + C_{tr}$ of not less than 50 and an R_w of not less than 50, when constructed as shown in Figure S28C4b.

(4) Single leaf of 110 mm clay brick masonry with—
 (a) a row of 70 mm x 35 mm timber studs or 64 mm steel studs at 600 mm centres, spaced 20 mm from the masonry wall; and
 (b) 50 mm thick glass or mineral wool insulation with a density of 11 kg/m3 positioned between studs; and
 (c) one layer of 13 mm plasterboard fixed to outside face of studs and outside face of masonry,

 has an $R_w + C_{tr}$ of not less than 50 and an R_w of not less than 50, if constructed as shown in Figure S28C4c.

(5) Single leaf of 90 mm clay brick masonry with—
 (a) a row of 70 mm x 35 mm timber studs or 64 mm steels studs at 600 mm centres, spaced 20 mm from each face of the masonry wall; and
 (b) 50 mm thick mineral insulation or glass wool insulation with a density of 11 kg/m3 positioned between studs in each row; and
 (c) one layer of 13 mm plasterboard fixed to studs on each outside face,

 has an $R_w + C_{tr}$ of not less than 50 and an R_w of not less than 50, if constructed as shown in Figure S28C4d.

(6) A single leaf of 150 mm brick masonry with 13 mm cement render on each face has an R_w of not less than 50 if constructed as shown in Figure S28C4e.

(7) A single leaf of 220 mm brick masonry with 13 mm cement render on each face has an $R_w + C_{tr}$ of not less than 50 and an R_w of not less than 50, if constructed as shown in Figure S28C4f.

(8) 110 mm thick brick masonry with 13 mm cement render on each face has an R_w of not less than 45 if constructed as shown in Figure S28C4g.

(9) 110 mm thick concrete brickwork has an R_w of not less than 45 if constructed as shown in Figure S28C4h.
Figure S28C4a: Two leaves of 110 mm clay brick masonry (method 1)

Figure S28C4b: Two leaves of 110 mm clay brick masonry (method 2)

Figure S28C4c: Single leaf of 110 mm clay brick masonry
Figure S28C4d: Single leaf of 90 mm clay brick masonry

Figure S28C4e: Single leaf of 150 mm brick masonry with 13 mm cement render on each face

Figure S28C4f: Single leaf of 220 mm brick masonry with 13 mm cement render on each face

Figure S28C4g: 110 mm thick brick masonry with 13 mm cement render on each face
Acceptable forms of construction for walls — concrete

(1) Acceptable forms of construction for concrete walls are set out in (3) to (12).

(2) For the purposes of this clause, the term “concrete panel” is a reference to a solid in-situ concrete panel or solid pre-cast concrete panel.

(3) 150 mm thick concrete panel has an $R_w + C_{tr}$ of not less than 50 and an R_w of not less than 50, if constructed as shown in Figure S28C5a.

(4) 150 mm thick concrete panel with one layer of 10 mm plasterboard fixed to 28 mm metal furring channels on each face, has an R_w of not less than 50, if constructed as shown in Figure S28C5b.

(5) 200 mm thick concrete panel with one layer of 13 mm plasterboard or 13 mm cement render on each face has an $R_w + C_{tr}$ of not less than 50 and an R_w of not less than 50, if constructed as shown in Figure S28C5c.

(6) 100 mm thick concrete panel with—

(a) a row of 64 mm steel studs at 600 mm centres, spaced 25 mm from the concrete panel; and

(b) 80 mm thick polyester insulation or 50 mm thick glass wool insulation with a density of 11 kg/m3, positioned between studs; and

(c) two layers of 13 mm plasterboard fixed to outside face of studs and one layer of 13 mm plasterboard fixed to outside face of concrete panel,

has an with an $R_w + C_{tr}$ of not less than 50 and an R_w of not less than 50, if constructed in accordance with Figure S28C5d.

(7) 125 mm thick concrete panel with—

(a) a row of 64 mm steel studs at 600 mm centres, spaced 20 mm from the concrete panel; and

(b) 70 mm polyester insulation with a density of 9 kg/m3, positioned between studs; and

(c) one layer of 13 mm plasterboard fixed to the outside face of the studs,

has an with an $R_w + C_{tr}$ of not less than 50 and an R_w of not less than 50, if constructed in accordance with Figure S28C5e.

(8) 125 mm thick concrete panel has an R_w of not less than 50, if constructed as shown in Figure S28C5f.

(9) 100 mm concrete panel with 13 mm cement render or one layer of 13 mm plasterboard on each face has an R_w of not less than 50, if constructed as shown in Figure S28C5g.

(10) 190 mm thick concrete blockwork has an R_w of not less than 45, if constructed as shown in Figure S28C5h.

(11) 140 mm thick concrete blockwork, the face shell thickness of the blocks being not less than 44 mm and with—

(a) 50 mm x 50 mm timber battens spaced at not more than 610 mm centres screw-fixed on one face of the blocks into resilient plugs with rubber inserts between battens and the wall; and

(b) the face of the battens clad with 13 mm plasterboard,

has an R_w of not less than 45, if constructed as shown in Figure S28C5i.

(12) Concrete panel, 100 mm thick, has an R_w of not less than 45, if constructed as shown in Figure S28C5j.
Figure S28C5a: 150 mm thick concrete panel

Figure S28C5b: 150 mm thick concrete panel with one layer of 10 mm plasterboard fixed to 28 mm metal furring channels on each face

Figure S28C5c: 200 mm thick concrete panel with one layer of 13 mm plasterboard or 13 mm cement render on each face

Figure S28C5d: 100 mm thick concrete panel with studs, insulation and plasterboard
Figure S28C5e: 125 mm thick concrete panel with studs, insulation and plasterboard

Figure S28C5f: 125 mm thick concrete panel

Figure S28C5g: 100 mm concrete panel with 13 mm cement render or one layer of 13 mm plasterboard on each face

Figure S28C5h: 190 mm thick concrete blockwork

Figure S28C5i: 140 mm thick concrete blockwork with timber battens and 13 mm plasterboard
Acceptable forms of construction for walls — autoclaved aerated concrete

[2019: Spec F5.2: Table 2]

1. Acceptable forms of construction for autoclaved aerated concrete walls are set out in (2) to (5).

2. 75 mm thick autoclaved aerated concrete wall panel with—
 (a) a row of 64 mm steel studs at 600 mm centres, spaced 20 mm from the autoclaved aerated concrete wall panel; and
 (b) 75 mm thick glass wool insulation with a density of 11 kg/m3 positioned between studs; and
 (c) one layer of 10 mm moisture resistant plasterboard or 13 mm fire protective grade plasterboard fixed to outside face of studs and outside face of autoclaved aerated concrete wall panel,

 has an $R_w + C_{tr}$ of not less than 50 and an R_w of not less than 50, if constructed as shown in Figure S28C6a.

3. 75 mm thick autoclaved aerated concrete wall panel with—
 (a) a row of 64 mm steel studs at 600 mm centres, spaced 35 mm from the autoclaved aerated concrete panel wall; and
 (b) 28 mm metal furring channels fixed to the outside face of the autoclaved aerated concrete wall panel, with 50 mm thick polyester insulation with a density of 9 kg/m3 positioned between furring channels and one layer of 13 mm fire protective grade plasterboard fixed to outside face of the studs;
 (c) 105 mm thick glass wool insulation with a density of 7 kg/m3 positioned between studs; and
 (d) one layer of 13 mm fire protective grade plasterboard fixed to the outside face of the studs,

 has an $R_w + C_{tr}$ of not less than 50 and an R_w of not less than 50, if constructed as shown in Figure S28C6b.

4. Two leaves of 75 mm autoclaved aerated concrete wall panel with—
 (a) a cavity not less than 30 mm between panels containing 50 mm glass wool insulation with a density of 11 kg/m3; and
 (b) one layer of 10 mm plasterboard fixed to outside face of each panel,

 has an $R_w + C_{tr}$ of not less than 50 and an R_w of not less than 50, if constructed as shown in Figure S28C6c.

5. 75 mm thick autoclaved aerated concrete wall panel with—
 (a) one layer of 10 mm moisture resistant plasterboard on one face; and
 (b) 28 mm metal furring channels and resilient mounts, 75 mm polyester insulation with a density of 9 kg/m3 and 13 mm fire-protective grade plasterboard fixed to the other face,

 has an R_w of not less than 50, if constructed as shown in Figure S28C6d.
Figure S28C6a: 75 mm thick autoclaved aerated concrete wall panel (method 1)

Figure S28C6b: 75 mm thick autoclaved aerated concrete wall panel (method 2)

Figure S28C6c: Two leaves of 75 mm autoclaved aerated concrete wall panel
Acceptable forms of construction for walls — timber and steel framing

[2019: Spec F5.2: Table 2]

(1) Acceptable forms of construction for timber and steel framing wall are set out in (2) to (7).

(2) Two rows of 700 x 35 mm timber studs or two rows of 64 mm steel studs at 450 mm centres with—
 (a) an air gap not less than 20 mm between the rows of studs; and
 (b) 75 mm thick glass or mineral wool insulation with a density of 8 kg/m³ or 60 mm thick polyester insulation with a density of 11 kg/m³; positioned between one row of studs; and
 (c) two layers of 13 mm fire protective grade plasterboard or one layer of 6 mm fibre-cement sheet and one layer of 13 mm fire protective grade plasterboard, fixed to outside face of studs, has an R_w + C_tr of not less than 50 and an R_w of not less than 50, if constructed as shown in Figure S28C7a.

(3) One row of 70 mm x 35 mm staggered timber studs, without noggings between adjacent studs, at not less than 450 mm centres, fixed to 90 mm x 35 mm wall plates with—
 (a) 75 mm thick glass or mineral wool insulation with a minimum density of 8 kg/m³ positioned between studs; and
 (b) two layers of 13 mm fire-protective grade plasterboard fixed to outside face of studs, has an R_w of not less than 50, if constructed as shown in Figure S28C7b.

(4) One row of 70 mm x 35 mm timber studs at not less than 600 mm centres with—
 (a) 75 mm thick glass or mineral wool insulation with a minimum density of 8 kg/m³ positioned between studs; and
 (b) two layers of 13 mm fire-protective grade plasterboard fixed to outside face of studs, has an R_w of not less than 45, if constructed as shown in Figure S28C7c.

(5) One row of 70 mm x 35 mm timber studs at not less than 450 mm centres with—
 (a) 28 mm furring channels installed horizontally on one side; and
 (b) two layers of 13 mm fire-protective plasterboard fixed on each face, has an R_w of not less than 45, if constructed as shown in Figure S28C7d.

(6) Two rows of 64 mm steel studs at 600 mm centres with—
 (a) an air gap not less than 20 mm between the rows of studs; and
 (b) 50 mm thick glass wool insulation or 60 mm thick polyester insulation with a density of 11 kg/m³ positioned between one row of studs; and
 (c) two layers of 13 mm fire-protective grade plasterboard or one layer of 6 mm fibre-cement sheet and one layer of 13 mm fire-protective grade plasterboard, fixed to outside face of studs, has an R_w + C_tr of not less than 50 and an R_w of not less than 50, if constructed as shown in Figure S28C7e.

(7) Two rows of 64 mm steel studs at 600 mm centres with—
 (a) an air gap not less than 80 mm between the rows of studs; and
(b) 200 mm thick polyester insulation with a density of 14 kg/m3 positioned between studs; and

(c) one layer of 13 mm fire-protective grade plasterboard and one layer 13 mm plasterboard on one outside face and one layer of 13 mm fire-protective grade plasterboard on the other outside face, has an $R_w + C_{tr}$ of not less than 50 and an R_w of not less than 50, if constructed as shown in Figure S28C7f.

(84) One row of 92 mm steel studs at 600 mm centres with—

(a) 50 mm thick glass wool insulation with a density of 11 kg/m3 or 60 mm thick polyester insulation with a density of 8 kg/m3, positioned between studs; and

(b) two layers of 13 mm fire-protective grade plasterboard or one layer of 6 mm fibre-cement sheet and one layer of 13 mm fire-protective grade plasterboard, fixed to each face, has an R_w of not less than 50, if constructed as shown in Figure S28C7f.

(95) One row of 64 mm steel studs with 2 layers of 16 mm fire-protective grade plasterboard fixed to each face has an R_w of not less than 45, if constructed as shown in Figure S28C7f.

(106) One row of 64 mm steel studs with—

(a) one layer of 16 mm fire-protective grade plasterboard fixed to one face; and

(b) 50 mm thick glass or mineral wool insulation with a density of 11 kg/m3 positioned between the studs; and

(c) two layers of fire-protective grade plasterboard fixed to the other face, the inner layer being 16 mm thick and the outer layer being 13 mm, has an R_w of not less than 45, if constructed as shown in Figure S28C7f.

(112) One row of 64 mm steel studs with two layers of 13 mm plasterboard on each face has an R_w of not less than 45, if constructed as shown in Figure S28C7f.

Figure S28C7a: Two rows of 790×35 mm timber studs or two rows of 64 mm steel studs

Figure S28C7b: One row of 70 mm x 35 mm staggered timber studs without noggings between adjacent studs
Figure S28C7c: One row of 70 mm x 35 mm timber studs at not less than 600 mm centres

Figure S28C7d: One row of 70 mm x 35 mm timber studs at not less than 450 mm centres

Figure S28C7e: Two rows of 64 mm steel studs at 600 mm centres

Figure S28C7bf: Two rows of 64 mm steel studs

Figure S28C7cg: One row of 92 mm steel studs
Acceptable forms of construction for floors — concrete

[2019: Spec F5.2: Table 3]

(1) Acceptable forms of construction for concrete floors are set out in (2) to (4).

(2) 150 mm thick concrete slab with—
 (a) 28 mm metal furring channels and isolation mounts fixed to underside of slab, at 600 mm centres; and
 (b) 65 mm thick polyester insulation with a density of 8 kg/m3, positioned between furring channels; and
 (c) one layer of 13 mm plasterboard fixed to furring channels,

 has an $R_w + C_t$ of not less than 50, an $L_{n,w}$ of not more than 62 and an R_w of not less than 50, if constructed as shown in Figure S28C8a.

(3) 200 mm thick concrete slab with carpet on underlay has an $R_w + C_t$ of not less than 50, an $L_{n,w}$ of not more than 62 and an R_w of not less than 50, if constructed as shown in Figure S28C8b.

(4) 100 mm thick concrete slab has an $R_w + C_t$ of not less than 45 and an R_w of not less than 45, if constructed as shown in Figure S28C8c.
An acceptable form of construction for autoclaved aerated concrete floors is set out in (2).

(2) 75 mm thick autoclaved aerated concrete floor panel with—
 (a) 8 mm ceramic tiles with flexible adhesive and waterproof membrane, located above the slab; and
 (b) timber joists at 600 mm centres; and
 (c) R1.5 glass wool insulation positioned between timber joists; and
 (d) 28 mm metal furring channels and resilient mounts fixed to underside of joists; and
 (e) two layers of 13 mm plasterboard fixed to furring channels,

has an $R_w + C_v$ of not less than 50, an $L_{n,w}$ of not more than 62 and an R_w of not less than 50, if constructed as shown in Figure S28C9.
(1) Acceptable forms of construction for timber floors are set out in (2) to (4).

(2) 19 mm thick particleboard/chipboard floor sheeting with—
(a) 190 mm x 45 mm timber joists at 450 mm centres; and
(b) R2.5 glass or mineral wool insulation positioned between timber joists; and
(c) 28 mm metal furring channels and isolation mounts fixed to underside of joists, isolation mounts to be of natural rubber with a dynamic factor of not more than 1.1 and static deflection of not less than 3 mm at actual operating load; and
(d) two layers of 16 mm fire-protective grade plasterboard fixed to furring channels,
has an $R_{w} + C$ of not less than 50, an $L_{n,w}$ of not more than 62 and an R_{w} of not less than 50, if constructed as shown in Figure S28C10a.

(3) Timber flooring with minimum 8.5 kg/m² mass, over 19 mm thick particleboard floor sheeting with—
(a) 190 mm x 45 mm timber joists at not less than 450 mm centres; and
(b) R2.5 glass or mineral wool insulation positioned between timber joists; and
(c) 28 mm metal furring channels fixed to underside of joists at 600 mm centres by clip or mount; and
(d) one layer of 13 mm acoustic grade plasterboard fixed to furring channels,
has an $R_{w} + C$ of not less than 45 and an R_{w} of not less than 45, if constructed as shown in Figure S28C10b.

(3) 19 mm thick tongued and grooved boards with—
(a) timber joists not less than 175 mm x 50 mm; and
(b) 75 mm thick glass or mineral wool insulation with a density of 11 kg/m³ positioned between joists and laid on 10 mm thick plasterboard fixed to underside of joists; and
(c) 25 mm thick glass or mineral wool insulation with a density of 11 kg/m³ laid over entire floor, including tops of joists before flooring is laid; and
(d) secured to 75 mm x 50 mm battens; and
(e) the assembled flooring laid over the joists, but not fixed to them, with the battens lying between the joists,
has an $R_{w} + C$ of not less than 45 and an R_{w} of not less than 45, if constructed as shown in Figure S28C10b.
Figure S28C10a: 19 mm thick particleboard chipboard floor sheeting

Figure S28C10b: Timber flooring with minimum 8.5kg/m² mass, over 19 mm thick particleboard floor sheeting

Figure S28C10b: 19 mm thick tongued and grooved boards
Specification 29 Impact sound – test of equivalence

S29C1 Scope

This Specification describes a method of test to determine the comparative resistance of walls to the transmission of impact sound.

S29C2 Construction to be tested

(1) The test is conducted on a specimen of prototype wall construction and on a specimen of one or other of the constructions specified in S28C4 to S28C7.

(2) The testing of a construction specified in S28C4 to S28C7 need not be repeated for subsequent comparisons provided complete records of the results, the test equipment and the technique of testing are kept so that identical equipment can be employed and an identical technique can be adopted in the testing of specimens of prototype wall construction.

S29C3 Method

(1) The wall constructions to be compared must be tested in accordance with AS 1191.

(2) A horizontal steel platform 510 mm x 460 mm x 10 mm thick must be placed with one long edge in continuous and direct contact with the wall to be tested on the side of the wall on which the impact sound is to be generated.

(3) A tapping machine complying with ISO 140/6 — 1998 (E) must be mounted centrally on the steel platform.

(4) The sound transmission through the wall must be determined in accordance with AS 1191 except that the tapping machine as mounted on the steel platform must be used as the source of sound.

(5) The impact sound pressure levels measured in the receiving room must be converted into normalised levels using a reference equivalent absorption area of 10 m².
Section G Ancillary provisions

Part G1 Minor structures and components

Objectives

<table>
<thead>
<tr>
<th>G1O1</th>
<th>Objective</th>
</tr>
</thead>
</table>

Functional Statements

<table>
<thead>
<tr>
<th>G1F1</th>
<th>Swimming pool drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1F2</td>
<td>Swimming pools — access by young children and safety of reticulation systems</td>
</tr>
<tr>
<td>G1F3</td>
<td>Accidental locking in small spaces</td>
</tr>
<tr>
<td>G1F4</td>
<td>Early childhood centres</td>
</tr>
</tbody>
</table>

Performance Requirements

<table>
<thead>
<tr>
<th>G1P1</th>
<th>Swimming pool drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1P2</td>
<td>Swimming pool access and water recirculation systems</td>
</tr>
<tr>
<td>G1P3</td>
<td>Cool rooms</td>
</tr>
<tr>
<td>G1P4</td>
<td>Vaults</td>
</tr>
<tr>
<td>G1P5</td>
<td>Outdoor play spaces in early childhood centres</td>
</tr>
</tbody>
</table>

Deemed-to-Satisfy Provisions

<table>
<thead>
<tr>
<th>G1D1</th>
<th>Deemed-to-Satisfy Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1D2</td>
<td>Swimming pools</td>
</tr>
<tr>
<td>G1D3</td>
<td>Refrigerated chambers, strong-rooms and vaults</td>
</tr>
<tr>
<td>G1D4</td>
<td>Outdoor play spaces</td>
</tr>
</tbody>
</table>

Part G2 Boilers, pressure vessels, heating appliances, fireplaces, chimneys and flues

Objectives

<table>
<thead>
<tr>
<th>G2O1</th>
<th>Objective</th>
</tr>
</thead>
</table>

Functional Statements

<table>
<thead>
<tr>
<th>G2F1</th>
<th>Combustion appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2F2</td>
<td>Boilers and pressure vessels</td>
</tr>
</tbody>
</table>

Performance Requirements

<table>
<thead>
<tr>
<th>G2P1</th>
<th>Combustion heating appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2P2</td>
<td>Boilers and pressure vessels</td>
</tr>
</tbody>
</table>

Verification Methods

<table>
<thead>
<tr>
<th>G2V1</th>
<th>Combustion appliances</th>
</tr>
</thead>
</table>

Deemed-to-Satisfy Provisions

<table>
<thead>
<tr>
<th>G2D1</th>
<th>Deemed-to-Satisfy Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2D2</td>
<td>Installation of appliances</td>
</tr>
<tr>
<td>G2D3</td>
<td>Open fireplaces</td>
</tr>
<tr>
<td>G2D4</td>
<td>Incinerator rooms</td>
</tr>
</tbody>
</table>
Part G3 Atrium construction
Deemed-to-Satisfy Provisions
G3D1 Application of Part
G3D2 Dimensions of atrium well
G3D3 Separation of atrium by bounding walls
G3D4 Construction of bounding walls
G3D5 Construction at balconies
G3D6 Separation at roof
G3D7 Means of egress
G3D8 Fire and smoke control systems

Part G4 Construction in alpine areas
Objectives
G4O1 Objective

Functional Statements
G4F1 Construction in alpine areas

Performance Requirements
G4P1 External doorways
G4P2 Structures forming pathways in snow conditions
G4P3 Control of falling ice and snow
G4P4 Fire safety systems in alpine areas

Deemed-to-Satisfy Provisions
G4D1 Deemed-to-Satisfy Provisions
G4D2 Application of Part
G4D3 External doors
G4D4 Emergency lighting
G4D5 External trafficable structures
G4D6 Clear space around buildings
G4D7 Fire-fighting services and equipment
G4D8 Fire orders

Part G5 Construction in bushfire prone areas
Objectives
G5O1 Objective

Functional Statements
G5F1 Construction in bushfire prone areas

Performance Requirements
G5P1 Bushfire resistance
G5P2 Additional bushfire requirements for certain Class 9 buildings

Verification Methods
G5V1 Buildings in bushfire prone areas
Deemed-to-Satisfy Provisions
G5D1 Deemed-to-Satisfy Provisions
G5D2 Application of Part
G5D3 Protection — residential buildings
G5D4 Protection — certain Class 9 buildings

Part G6 Occupiable outdoor areas
Deemed-to-Satisfy Provisions
G6D1 Application of Part
G6D2 Fire hazard properties
G6D3 Fire separation
G6D4 Provision for escape
G6D5 Construction of exits
G6D6 Fire fighting equipment
G6D7 Lift installations
G6D8 Visibility in an emergency, exit signs and warning systems
G6D9 Light and ventilation
G6D10 Fire orders

Part G7 Livable housing design
Objectives
G7O1 Objective

Functional Statements
G7F1 Livable housing design

Performance Requirements
G7P1 Livable housing design

Deemed-to-Satisfy Provisions
G7D1 Deemed-to-Satisfy Provisions
G7D2 Livable housing design

Specification 30 Installation of boilers and pressure vessels
S30C1 Scope
S30C2 Explosion relief
S30C3 Floors and drainage
S30C4 Protection from heat

Specification 31 Fire and smoke control systems in buildings containing atriums
S31C1 Scope
S31C2 General requirement — automatic fire sprinkler system
S31C3 Roof protection
S31C4 Atrium floor protection
S31C5 Sprinkler systems to glazed walls
S31C6 Stop valves
<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S31C7</td>
<td>General requirements — smoke control system</td>
</tr>
<tr>
<td>S31C8</td>
<td>Operation of atrium mechanical air-handling systems</td>
</tr>
<tr>
<td>S31C9</td>
<td>Activation of smoke control system</td>
</tr>
<tr>
<td>S31C10</td>
<td>Smoke exhaust system</td>
</tr>
<tr>
<td>S31C11</td>
<td>Upward air velocity</td>
</tr>
<tr>
<td>S31C12</td>
<td>Exhaust fans</td>
</tr>
<tr>
<td>S31C13</td>
<td>Smoke and heat vents</td>
</tr>
<tr>
<td>S31C14</td>
<td>Make-up air supply</td>
</tr>
<tr>
<td>S31C15</td>
<td>General requirements—fire detection and alarm system</td>
</tr>
<tr>
<td>S31C16</td>
<td>Smoke detection system</td>
</tr>
<tr>
<td>S31C17</td>
<td>Smoke detection in spaces separated from the atrium by bounding walls</td>
</tr>
<tr>
<td>S31C18</td>
<td>Alarm systems</td>
</tr>
<tr>
<td>S31C19</td>
<td>Emergency warning and intercom systems</td>
</tr>
<tr>
<td>S31C20</td>
<td>Standby power system</td>
</tr>
<tr>
<td>S31C21</td>
<td>System for excluding smoke from fire-isolated exits</td>
</tr>
</tbody>
</table>

Specification 43 Bushfire protection for certain Class 9 buildings

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S43C1</td>
<td>Scope</td>
</tr>
<tr>
<td>S43C2</td>
<td>Separation from classified vegetation</td>
</tr>
<tr>
<td>S43C3</td>
<td>Separation between buildings</td>
</tr>
<tr>
<td>S43C4</td>
<td>Separation from allotment boundaries and carparking areas</td>
</tr>
<tr>
<td>S43C5</td>
<td>Separation from hazards</td>
</tr>
<tr>
<td>S43C6</td>
<td>Non-combustible path around building</td>
</tr>
<tr>
<td>S43C7</td>
<td>Access pathways</td>
</tr>
<tr>
<td>S43C8</td>
<td>Exposed external areas</td>
</tr>
<tr>
<td>S43C9</td>
<td>Internal tenability</td>
</tr>
<tr>
<td>S43C10</td>
<td>Building envelope</td>
</tr>
<tr>
<td>S43C11</td>
<td>Supply of water for fire-fighting</td>
</tr>
<tr>
<td>S43C12</td>
<td>Emergency power supply</td>
</tr>
<tr>
<td>S43C13</td>
<td>Signage</td>
</tr>
<tr>
<td>S43C14</td>
<td>Vehicular access</td>
</tr>
</tbody>
</table>
Introduction to this Part

This Part is intended to reduce the likelihood of illness or injury due to the design or construction of certain minor structures and components including swimming pools; cool rooms, vaults; pool fences, drainage and recirculation systems; and fences surrounding outdoor play spaces in early childhood centres.

Objectives

G1O1 Objective

The Objective of this Part is to—

(a) safeguard people from illness caused by the discharge of swimming pool waste water; and
(b) protect other property from damage caused by the discharge of swimming pool waste water; and
(c) safeguard young children from drowning or injury in a swimming pool; and
(d) safeguard people from drowning or injury due to suction by a swimming pool water recirculation system; and
(e) safeguard occupants from illness or injury resulting from being accidentally locked inside spaces which are designed to be entered for short periods of time only and in which occupation for longer periods may be hazardous; and
(f) safeguard young children in outdoor play spaces.

Applications:
(1) G1O1(d) only applies to a swimming pool with a depth of water more than 300 mm.
(2) G1O1(f) only applies to a Class 9b early childhood centre.

Functional Statements

G1F1 Swimming pool drainage

[2019: GF1.1]

Adequate means for the disposal of swimming pool water and drainage is to be provided to a swimming pool.

G1F2 Swimming pools — access by young children and safety of reticulation systems

[2019: GF1.2]

A swimming pool is to be provided with—

(a) means of restricting access by young children to it; and
(b) means to reduce the possibility of a person being entrapped or injured due to suction by a water recirculation system.
Applications:
G1F2(b) only applies to a swimming pool with a depth of water more than 300 mm.

G1F3 Accidental locking in small spaces

Any refrigerated or cooling chamber, strong-room and vault or the like that is capable of accommodating a person is to have safety measures to facilitate escape and for alerting people outside such a space in the event of an emergency.

G1F4 Early childhood centres

An outdoor play space is to be provided with a means of restricting the passage of children to outside of the play space.

Applications:
G1F4 only applies to a Class 9b early childhood centre.

Performance Requirements

NT G1P1

G1P1 Swimming pool drainage

A swimming pool must have adequate means of draining the pool in a manner which will not—

(a) cause illness to people; or
(b) affect other property.

NSW G1P2
NT G1P2
QLD G1P2
SA G1P2
TAS G1P2
VIC G1P2

G1P2 Swimming pool access and water recirculation systems

(1) A barrier must be provided to a swimming pool and must—

(a) be continuous for the full extent of the hazard; and
(b) be of a strength and rigidity to withstand the foreseeable impact of people; and
(c) restrict the access of young children to the pool and the immediate pool surrounds; and
(d) have any gates and doors fitted with latching devices not readily operated by young children, and constructed to automatically close and latch.

(2) A swimming pool water recirculation system must incorporate safety measures to avoid entrapment of, or injury to, a person.
G1P3 Cool rooms

Any refrigerated or cooling chamber, or the like which is of sufficient size for a person to enter must—

(a) have adequate means of communicating with or alerting other occupants in the building in the case of an emergency; and

(b) have a door which is—

(i) of adequate dimensions to allow occupants to readily escape; and

(ii) openable from inside without a key at all times.

G1P4 Vaults

Any strong-room, vault or the like which is of sufficient size for a person to enter must—

(a) have adequate means of communicating with or alerting other occupants in the building in the case of an emergency; and

(b) have internal lighting controllable only from within the room; and

(c) have an external indicator that the room is occupied.

G1P5 Outdoor play spaces in early childhood centres

Fencing or other barriers must be provided around any outdoor play space, in which the design and height of the fencing or other barriers, including the—

(a) design of gates and fittings; and

(b) proximity of the barriers to any permanent structure on the property,

must ensure that children cannot go through, over or under the fencing or other barriers.

Applications:
G1P5 only applies to a Class 9b early childhood centre.

TAS G1P6

Deemed-to-Satisfy Provisions

G1D1 Deemed-to-Satisfy Provisions

(1) Performance Requirement G1P1 must be complied with.

(2) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements G1P2 to G1P5 are satisfied by complying with G1D2 to G1D4.
Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

Explanatory Information:
There are no Deemed-to-Satisfy Provisions for G1P1.

G1D2 Swimming pools

(1) A swimming pool with a depth of water more than 300 mm and which is associated with a Class 2 or 3 building or Class 4 part of a building, must have suitable barriers to restrict access by young children to the immediate pool surrounds in accordance with AS 1926.1 and AS 1926.2.

(2) A water recirculation system in a swimming pool with a depth of water more than 300 mm must comply with AS 1926.3.

Explanatory Information: Cross-volume considerations
Part C2 of NCC Volume Three sets out the requirements for pumped discharge from swimming pools.

G1D3 Refrigerated chambers, strong-rooms and vaults

(1) A refrigerated or cooling chamber, strongroom or vault which is of sufficient size for a person to enter must have—
 (a) a door which is capable of being opened by hand from inside without a key; and
 (b) internal lighting controlled only by a switch which is located adjacent to the entrance doorway inside the chamber, strongroom or vault; and
 (c) an indicator lamp positioned outside the chamber, strongroom or vault which is illuminated when the interior lights required by (b) are switched on; and
 (d) an alarm that is—
 (i) located outside but controllable only from within the chamber, strongroom or vault; and
 (ii) able to achieve a sound pressure level outside the chamber, strongroom or vault of 90 dB(A) when measured 3 m from the sounding device.

(2) A door required by (1)(a) in a refrigerated or cooling chamber must have a doorway with a clear width of not less than 600 mm and a clear height not less than 1.5 m.

G1D4 Outdoor play spaces

(1) Any outdoor play space in a Class 9b early childhood centre must be enclosed on all sides with a barrier which complies with AS 1926.1:—
 (a) where the edge of the trafficable surface of the outdoor play space is less than 2 m above the surface beneath — complies with AS 1926.1: and
where the edge of the trafficable surface of the outdoor play space is 2 m or more above the surface beneath—

(i) is not less than 1.8 m high, as measured from above the trafficable surface; and

(ii) does not contain horizontal or vertical openings or apertures exceeding 100 mm and is otherwise non-climbable; and

(iii) is not within 1.8 m, as measured directly from the top of the barrier, of any elements within the outdoor play space that facilitate climbing; and

(iv) is not within 900 mm of elements in a wall that facilitate climbing.

(2) For the purposes of (1)(a), AS 1926.1 is applied as if there is a swimming pool located outside the outdoor play space, so that the barrier restricts children from exiting the premises without the knowledge of staff in the centre.

(3) The requirements of (1) do not apply to a wall, including doors and windows, which form part of the Class 9b early childhood centre, except where the wall is within a non-climbable zone for a barrier provided under (1)(a).

NSW G1D5
Introduction to this Part

This Part is intended to reduce the risk to building occupants from the operation, malfunction or failure of boilers, pressure vessels and combustion appliances including components such as fireplaces, chimneys, flues, chutes, hoppers and the like.

Objectives

G2O1 Objective

The Objective of this Part is to—

(a) safeguard occupants from illness or injury caused by—
 (i) fire from combustion appliances installed within a building; and
 (ii) malfunction of a boiler or pressure vessel installed within a building; and
(b) protect a building from damage caused by the malfunction of a boiler or pressure vessel installed within.

Functional Statements

G2F1 Combustion appliances

Combustion appliances using controlled combustion located in a building are to be installed in a way which reduces the likelihood of fire spreading beyond the appliance.

G2F2 Boilers and pressure vessels

Boilers and pressure vessels located in a building are to be installed in a manner which will provide adequate safety for occupants.

Performance Requirements

G2P1 Combustion heating appliances

Where provided in a building, a combustion appliance and its associated components, including an open fire-place, chimney, flue, chute, hopper or the like, must be installed—

(a) to withstand the temperatures likely to be generated by the appliance; and
(b) so that it does not raise the temperature of any building element to a level that would adversely affect the element’s physical or mechanical properties or function; and
(c) so that hot products of combustion will not—
Ancillary provisions

(i) escape through the walls of the associated components; and
(ii) discharge in a position that will cause fire to spread to nearby combustible materials or allow smoke to penetrate through nearby windows, ventilation inlets, or the like.

G2P2 Boilers and pressure vessels

When located in a building, boilers and pressure vessels must be installed to avoid, during reasonably foreseeable conditions, the likelihood of—

(a) leakage from the vessel which could cause damage to the building; and
(b) rupture or other mechanical damage of the vessel which could cause damage to the building or injury to occupants.

Verification Methods

G2V1 Combustion appliances

Compliance with G2P1(a) and G2P1(b) is verified when—

(a) components used within an appliance and its installation are constructed from—
 (i) heat-resistant materials for maximum operating temperatures not less than 600°C, where the material complies with (c); or
 (ii) heat-tolerant materials for maximum operating temperatures more than 150°C and less than 600°C, where the material complies with (c); and
(b) the building elements surrounding the appliance maintain their designed function and material properties inclusive of a full range of thermal movements when exposed to the heat effects of the appliance; and
(c) a sample of the material is tested to the maximum operating temperature, specified in (a)(i) or (a)(ii) for a minimum of 96 hours; and
(d) the tested sample, when allowed to cool, is free from—
 (i) visible cracks and fractures; and
 (ii) visible indication of de-lamination; and
 (iii) linear distortion in excess of the equivalent of 10 mm per metre, and
 (iv) deterioration of the appearance of any surface finish, when compared to an unheated sample.

Deemed-to-Satisfy Provisions

G2D1 Deemed-to-Satisfy Provisions

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements G2P1 and G2P2 are satisfied by complying with G2D2 to G2D4.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.
G2D2 Installation of appliances

The installation of a stove, heater or similar appliance in a building must comply with:

(a) Domestic solid-fuel burning appliances — installation: AS/NZS 2918.

(b) For boilers and pressure vessels: Specification 30.

G2D3 Open fireplaces

An open fireplace, or solid-fuel burning appliance in which the fuel-burning compartment is not enclosed must have—

(a) a hearth constructed of stone, concrete, masonry or similar non-combustible material so that—

(i) it extends not less than 300 mm beyond the front of the fireplace opening and not less than 150 mm beyond each side of that opening; and

(ii) it extends beyond the limits of the fireplace or appliance not less than 300 mm if the fireplace or appliance is free-standing from any wall of the room; and

(iii) its upper surface does not slope away from the grate or appliance; and

(iv) combustible material situated below the hearth but not below that part required to extend beyond the fireplace opening or the limits of the fireplace is not less than 150 mm from the upper surface of the hearth; and

(b) walls forming the sides and back of the fireplace up to not less than 300 mm above the underside of the arch or lintel which—

(i) are constructed in 2 separate leaves of solid masonry not less than 180 mm thick, excluding any cavity; and

(ii) do not consist of concrete block masonry in the construction of the inner leaf; and

(c) walls of the chimney above the level referred to in (b)—

(i) constructed of masonry units with a net volume, excluding cored and similar holes, not less than 75% of their gross volume, measured on the overall rectangular shape of the units, and with an actual thickness of not less than 100 mm; and

(ii) lined internally to a thickness of not less than 12 mm with rendering consisting of 1 part cement, 3 parts lime, and 10 parts sand by volume, or other suitable material; and

(d) suitable damp-proof courses or flashings to maintain weatherproofing.

G2D4 Incinerator rooms

(1) If an incinerator is installed in a building, any hopper giving access to a charging chute must be—

(a) non-combustible; and

(b) gas-tight when closed; and

(c) designed to return to the closed position after use; and

(d) not attached to a chute that connects directly to a flue unless the hopper is located in the open air; and

(e) not located in a required exit.

(2) A room containing an incinerator must be separated from other parts of the building by construction with an FRL of not less than 60/60/60.
Part G3 Atrium construction

Introduction to this Part

This Part provides additional Deemed-to-Satisfy Provisions for buildings that contain an atrium. The Deemed-to-Satisfy Provisions of this Part cover atrium well dimensions, construction, fire separation, exits and fire and smoke control systems.

Deemed-to-Satisfy Provisions

G3D1 Application of Part

This Part does not apply to an atrium which—

(a) connects only 2 storeys; or

(b) connects only 3 storeys if—

(i) each storey is provided with a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17 throughout; and

(ii) one of those storeys is situated at a level at which there is direct egress to a road or open space.

G3D2 Dimensions of atrium well

An atrium well must have a width throughout the well that is able to contain a cylinder having a horizontal diameter of not less than 6 m.

G3D3 Separation of atrium by bounding walls

An atrium must be separated from the remainder of the building at each storey by bounding walls set back not more than 3.5 m from the perimeter of the atrium well except in the case of the walls at no more than 3 consecutive storeys if—

(a) one of those storeys is at a level at which direct egress to a road or open space is provided; and

(b) the sum of the floor areas of those storeys that are contained within the atrium is not more than the maximum area that is permitted in Table C3D3.

G3D4 Construction of bounding walls

Bounding walls must—

(a) have an FRL of not less than 60/60/60, and—

(i) extend from the floor of the storey to the underside of the floor next above or to the underside of the roof; and

(ii) have any door openings protected with self-closing or automatic –/60/30 fire doors; or

(b) be constructed of fixed toughened safety glass, or wired safety glass in non-combustible frames, with—

(i) any door openings fitted with a self-closing smoke door complying with Specification 12; and

(ii) the walls and doors protected with wall-wetting systems in accordance with Specification 31; and
G3D4

Ancillary provisions

(iii) a fire barrier with an FRL of not less than –/60/30 installed in any ceiling spaces above the wall.

G3D5 Construction at balconies

[2019: G3.5]

If a bounding wall separating an atrium from the remainder of the building is set back from the perimeter of the atrium well, a barrier that is imperforate and non-combustible, and not less than 1 m high must be provided.

G3D6 Separation at roof

[2019: G3.6]

In an atrium—

(a) the roof must have the FRL prescribed in Tables S5C11a to S5C11g of Specification 5; or
(b) the roof structure and membrane must be protected by a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17.

G3D7 Means of egress

[2019: G3.7]

All areas within an atrium must have access to at least 2 exits.

G3D8 Fire and smoke control systems

[2019: G3.8]

Sprinkler systems, smoke control, fire detection and alarm systems, and emergency warning and intercom systems must be installed in compliance with Specification 31.
Part G4 Construction in alpine areas

Introduction to this Part

This Part contains additional requirements for buildings which are constructed in an alpine area to address the potential for snow and ice to obstruct or delay evacuation and fire fighting, or cause a hazard by falling on people.

Objectives

<table>
<thead>
<tr>
<th>G4O1</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[2019: GO4]</td>
</tr>
<tr>
<td></td>
<td>The Objective of this Part is to safeguard occupants in alpine areas from illness or injury from an emergency while evacuating a building.</td>
</tr>
</tbody>
</table>

Applications:

G4O1 applies to a building constructed in an alpine area.

Functional Statements

<table>
<thead>
<tr>
<th>G4F1</th>
<th>Construction in alpine areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[2019: GF4.1]</td>
</tr>
<tr>
<td></td>
<td>A building in an alpine area is to be provided with additional measures in view of the increased difficulties in fire-fighting and maintaining access and means of egress in snow conditions.</td>
</tr>
</tbody>
</table>

Applications:

G4F1 only applies to a building constructed in an alpine area.

Performance Requirements

<table>
<thead>
<tr>
<th>G4P1</th>
<th>External doorways</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[2019: GP4.1]</td>
</tr>
<tr>
<td></td>
<td>An external doorway from a building in an alpine area must be installed so that opening the door is not obstructed by snow or ice.</td>
</tr>
</tbody>
</table>

Applications:

G4P1 applies to a building constructed in an alpine area and overrules other Performance Requirements of NCC Volume One.
A building in an alpine area containing external trafficable structures forming part of the means of egress must be constructed so that those structures remain, as far as practicable, useable under snow conditions.

Applications:
G4P2 applies to a building constructed in an alpine area and overrules other Performance Requirements of NCC Volume One.

G4P3 Control of falling ice and snow

A building in an alpine area must be constructed so that snow or ice is not shed from the building onto the allotment, any adjoining allotment, road or public space in a location or manner that will—

(a) obstruct a means of egress from any building to a road or open space; or

(b) otherwise endanger people.

Applications:
G4P3 applies to a building constructed in an alpine area and overrules other Performance Requirements of NCC Volume One.

G4P4 Fire safety systems in alpine areas

A building in an alpine area must have a fire safety system installed to—

(a) facilitate fire-fighting operations; and

(b) alert occupants in the event of an emergency.

Applications:
G4P4 applies to a building constructed in an alpine area and overrules other Performance Requirements of NCC Volume One.

Deemed-to-Satisfy Provisions

G4D1 Deemed-to-Satisfy Provisions

(1) Where a Deemed-to-Satisfy Provisions is proposed, Performance Requirements G4P1 to G4P4 are satisfied by complying with—

(a) G4D2 to G4D8; and

(b) for a building containing an occupiable outdoor area, Part G6.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.
G4D2 Application of Part [2019: G4.1]

(1) The Deemed-to-Satisfy Provisions of this Part apply to any building constructed in an alpine area in addition to other Deemed-to-Satisfy Provisions of NCC Volume One.

(2) Where any Deemed-to-Satisfy Provisions are in conflict, the provisions of this Part take precedence.

G4D3 External doors [2019: G4.3]

External doors which may be subject to the build-up of snow must—

(a) open inwards or slide; and

(b) If inward opening, be marked “OPEN INWARDS” on the inside face of the door in letters not less than 75 mm high in a colour contrasting with that of the background; and

(c) be constructed so that the threshold is not less than 900 mm above the adjoining surface; and

(d) if it serves a corridor or stairway, be positioned in an alcove or recess with—

(i) no horizontal dimensions of the alcove or recess less than twice the width of the door; and

(ii) the door positioned to open against a wall such that the distance from any part of its swing to the nearest point of entry of the stairway or corridor is not less than the width of the door.

In a Class 2, 3, 5, 6, 7, 8 or 9 building or Class 4 part of a building, a system of emergency lighting must be installed in accordance with the Deemed-to-Satisfy Provisions of Part E4—

(a) in every stairway (other than those within a sole-occupancy unit in a Class 2 or 3 building or Class 4 part of a building); and

(b) in every public corridor or the like leading to an exit; and

(c) externally above every doorway opening to a road or open space; and

(d) in any storey of the building if illumination sufficient for safe egress will not be available under conditions of emergency.

G4D5 External trafficable structures [2019: G4.5]

External stairways, ramps, access bridges or other trafficable structures serving the building must—

(a) have a floor surface that consists of expanded mesh if it is used as a means of egress; and

(b) have any required barrier designed so that its sides are not less than 75% open; and

(c) for a stairway have, goings (G), risers (R) and slope relationship quantity (2R + G) in accordance with—

(i) Table D3D14; or

(ii) Table G4D5; and

(d) for a ramp serving as an exit and not serving as an accessible ramp, have a gradient not steeper than 1:12; and

(e) where a ramp is also serving as an accessible ramp under Part D4, be in accordance with AS 1428.1.
Table G4D5: Alternate stair riser and going dimensions

<table>
<thead>
<tr>
<th>Riser (R)</th>
<th>Going (G)</th>
<th>Slope relationship (2R + G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>150</td>
<td>115</td>
<td>375</td>
</tr>
</tbody>
</table>

Table Notes:
Dimensions are in mm.

G4D6 Clear space around buildings

A building must be so constructed that—

(a) if any part of an external wall is more than 3.6 m above the natural ground level — the distance of that part from a boundary other than a road alignment is not less than 2.5 m plus an additional 100 mm for each 300 mm or part by which that part of the wall exceeds a height of 3.6 m; and

(b) if an exit doorway discharges into a court between wings of a building and that area may be used for vehicle access to the building, the distance between wings must be not less than 4 m; and

(c) where an exit doorway discharges opposite a feature that could entrap snow or an embankment that is more than 900 mm above the threshold of the doorway, a distance of not less than 4 m must be provided between the doorway and the feature.

G4D7 Fire-fighting services and equipment

(1) Every Class 2, 3, 5, 6, 7, 8 or 9 building must have—

(a) a manually operated fire alarm system with call-points complying with AS 1670.1; and

(b) fire hydrants installed in accordance with E1D2(2); and

(c) fire hose reels installed in accordance with E1D3(2) to (7), except that in a Class 2 or 3 building—

(i) for the purpose of E1D3(2), a sole-occupancy unit is considered to be a fire compartment; and

(ii) for the purpose of E1D3(3)(b), a sole-occupancy unit may be served by a single fire hose reel located at the level of egress from that sole-occupancy unit; and

(iii) for the purpose of E1D3(6), a fire hose may pass through a doorway in bounding construction referred to in C4D12.

(2) The requirements of (1)(c) do not apply to a Class 8 electricity network substation.

G4D8 Fire orders

Every Class 2, 3 or 9 building must display a notice clearly marked “FIRE ORDERS” in suitable locations near the main entrance and on each storey, explaining—

(a) the method of operation of the fire alarm system and the location of all call-points; and

(b) the location and methods of operation of all fire-fighting equipment; and

(c) the location of all exits; and

(d) the procedure for evacuation of the building.
Introduction to this Part

This Part contains additional requirements for the construction of buildings located in bushfire prone areas, to address the additional risks posed by a bushfire attack.

Objectives

G5O1 Objective

The Objective of this Part is to—

(a) safeguard occupants from injury from the effects of a bushfire; and

(b) protect buildings from the effects of a bushfire; and

(c) facilitate temporary shelter for building occupants who may be unable to readily evacuate the building prior to a bushfire.

Applications:

G5O1(a) and (b) only applies to—

(a) a Class 2 or 3 building; or

(b) a Class 10a building or deck associated with a Class 2 or 3 building, located in a designated bushfire prone area.

Applications:

G5O1(a), (b) and (c) applies to—

(a) a Class 9a health-care building; or

(b) a Class 9b—

(i) early childhood centre; or

(ii) primary or secondary school; or

(c) a Class 9c residential care building; or

(d) a Class 10a building or deck associated with a building of a type listed in (a) to (c), located in a designated bushfire prone area.

Functional Statements

G5F1 Construction in bushfire prone areas

A building constructed in a designated bushfire prone area is to provide resistance to bushfires in order to reduce the danger to life and minimise the risk of the loss of the building.

(a) is to provide resistance to bushfires in order to reduce the danger to life and minimise the risk of the loss of the building; and
Ancillary provisions

(b) if occupied by people who may be unable to readily evacuate the building prior to a bushfire, is to be constructed so as to provide its occupants shelter from the direct and indirect actions of a bushfire.

Applications:
G5F1(a) only applies to—
(a) a Class 2 or 3 building; or
(b) a Class 10a building or deck associated with a Class 2 or 3 building, located in a designated bushfire prone area.

Applications:
G5F1(a) and (b) applies—
(a) a Class 9a health-care building; or
(b) a Class 9b—
 (i) early childhood centre; or
 (ii) primary or secondary school; or
(c) a Class 9c residential care building; or
(d) a Class 10a building or deck associated with a building of a type listed in (a) to (c), located in a designated bushfire prone area.

Performance Requirements

NSW G5P1
QLD G5P1

G5P1 Bushfire resistance

[2019: GP5.1]

A building that is constructed in a designated bushfire prone area must, to the degree necessary, be designed and constructed to reduce the risk of ignition from a bushfire, appropriate to the—

(a) potential for ignition caused by burning embers, radiant heat or flame generated by a bushfire; and
(b) intensity of the bushfire attack on the building.

Applications:
G5P1 only applies in a designated bushfire prone area to—
(a) a Class 2 or 3 building; or
(b) a Class 9a health-care building; or
(c) a Class 9b—
 (i) early childhood centre; or
 (ii) primary or secondary school; or
(d) a Class 9c residential care building; or
(e) a Class 10a building or deck associated with a Class 2 or 3 building of a type listed in (a) to (d).
G5P2 Additional bushfire requirements for certain Class 9 buildings

A building that is constructed in a designated bushfire prone area and occupied by people who may be unable to readily evacuate the building prior to a bushfire must, to the degree necessary—

(a) reduce the risk of an untenable indoor environment for occupants during a bushfire event, appropriate to the—
 (i) location of the building relative to fire hazards, including—
 (A) classified vegetation; and
 (B) adjacent buildings, structures and movable objects; and
 (C) carparking areas and allotment boundaries; and
 (D) other combustible materials; and
 (ii) number of occupants to be accommodated within the building; and
 (iii) intensity of bushfire attack on the building; and
 (iv) duration of occupancy; and
 (v) intensity of potential consequential fires; and
 (vi) occupant tenability within the building before, during and after the bushfire event; and
 (vii) combined effects of structural, fire exposure and other effects to which the building may reasonably be subjected; and
 (viii) provision of fire fighting equipment and water supply to facilitate protection of the building; and

(b) be provided with vehicular access to the site to enable firefighting and emergency personnel to defend or evacuate the building; and

(c) have access to a sufficient supply of water for firefighting purposes on the site; and

(d) provide safe access within the site to the building (including carparking areas), as well as safe egress after the bushfire event.

Applications:

G5P2 only applies to the following buildings located in a designated bushfire prone area—

(a) a Class 9a health-care building; or
(b) a Class 9b—
 (i) early childhood centre; or
 (ii) primary or secondary school; or
(c) a Class 9c residential care building; or
(d) a Class 10a building or deck associated with a building of a type listed in (a) to (c).

Notes:

G5P2 does not guarantee the safety of building occupants or the maintenance of tenable conditions within a building during a bushfire event.

Verification Methods

G5V1 Buildings in bushfire prone areas

[2019: GV5]

(1) Compliance with Performance Requirement G5P1 is verified if the ignition probability for a building exposed to a
design bushfire does not exceed 10%.

(2) Bushfire design actions must be determined in consideration of the annual probability of a design bushfire derived from—

(a) assigning the building or structure with an importance level in accordance with G5V1(3); and
(b) determining the corresponding annual probability of exceedance in accordance with Table G5V1.

(3) A building or structure’s importance level must be identified as one of the following:

(a) Importance level 1 — where the building or structure presents a low degree of hazard to life and other property in the case of failure.

(b) Importance level 2 — where the building or structure is not of importance level 1, 3 or 4 and is a Class 2 building accommodating 12 people or less.

(c) Importance level 3 — where the building is designed to contain a large number of people and is a—

(i) Class 2 building accommodating more than 12 people; or
(ii) Class 3 boarding house, guest house, hostel, lodging house or backpackers accommodation; or
(iii) Class 3 residential part of a hotel or motel; or
(iv) Class 3 residential part of a school.

(d) Importance level 4 — where the building or structure is—

(i) essential to emergency management or post-disaster recovery; or
(ii) associated with hazardous facilities; or
(iii) subject to a necessary ‘defend in place’ strategy and is a—

(A) Class 3 accommodation building for the aged, children or people with disabilities; or
(B) Class 3 residential part of a health-care building which accommodates members of staff; or
(C) Class 3 residential part of a detention centre; or
(D) Class 9a or 9c building; or
(E) building that operates in the event of a bushfire emergency, such as a public bushfire shelter or a bushfire emergency control centre.

(4) The ignition probability for a building must be assessed by application of the following:

(a) An event tree analysis of relevant bushfire scenarios.

(b) Design bushfire conditions that include combinations of the following actions appropriate to the distance between the building and the bushfire hazard:

(i) Direct attack from airborne burning embers.
(ii) Burning debris and accumulated embers adjacent to a building element.
(iii) Radiant heat from a bushfire front.
(iv) Direct flame attack from a bushfire front.

(5) Applied fire actions must allow for reasonable variations in—

(a) fire weather; and
(b) vegetation, including fuel load, burning behaviour of vegetation (including the potential for crown fires); and
(c) the distance of the building from vegetation; and
(d) topography, including slopes and features that may shield; and
(e) ignition of adjacent buildings, building elements, plants, mulch and other materials; and
(f) effective size of fire front; and
(g) duration of exposure; and
(h) flame height; and
(i) flame tilt; and
(j) flame adhesion to sloping land; and
(k) the height of the building and its elements.
(6) The assessment process must include consideration of—
 (a) the probability of non-complying construction of critical aspects of an approved design; and
 (b) the probability of critical aspects of an approved design being fully functional during the life of the building; and
 (c) inclusion of safety factors; and
 (d) sensitivity analysis of critical aspects of a proposed design.

Table G5V1: Annual Probability of Exceedance (APE) for design bushfire actions

<table>
<thead>
<tr>
<th>Importance level</th>
<th>Complex analysis APE for bushfire exposure</th>
<th>Simple analysis APE for weather conditions (design bushfire)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No requirement</td>
<td>No requirement</td>
</tr>
<tr>
<td>2</td>
<td>1:500</td>
<td>1:50</td>
</tr>
<tr>
<td>3</td>
<td>1:1000</td>
<td>1:1000</td>
</tr>
<tr>
<td>4</td>
<td>1:2000</td>
<td>1:2000</td>
</tr>
</tbody>
</table>

Table Notes:
Complex analysis must consider the probability of ignition, fire spread to the urban interface and penetration of the urban interface coincident with fire weather conditions.

Limitations:
G5V1 does not apply to any building that is subject to G5P2.

Notes:
For a building that is subject to G5P2, and therefore outside the scope of G5V1, the building would need to comply with either:
 (a) the Performance Requirement G5P2 by means of a Performance Solution; or
 (b) the Deemed-to-Satisfy Provisions of G5D1 if the building is located in an area subject to a Bushfire Attack Level (BAL) not exceeding BAL – 12.5.

Deemed-to-Satisfy Provisions

G5D1 Deemed-to-Satisfy Provisions

[2019: G5.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements G5P1 and subject to G5D2, G5P2, are satisfied by complying with G5D3 G5D2 and G5D4 G5D3.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

NSW G5D2
QLD G5D2

G5D2 Application of Part

[2019: G5.1]

The Deemed-to-Satisfy Provisions of this Part apply in a designated bushfire prone area to—
 (a) a Class 2 or 3 building; or
 (b) a building located in an area subject to a Bushfire Attack Level (BAL) not exceeding BAL—12.5, determined in
accordance with AS 3959 that is—

(i) a Class 9a health-care building; or

(ii) a Class 9b—
(A) an early childhood centre; or
(B) a primary or secondary school; or

(iii) a Class 9c residential care building; or

(c) a Class 10a building or deck associated with a Class 2 or 3 building.

(i) Class 2 or 3 building; or

(ii) a building of a type listed in (b).

Applications:
The Deemed-to-Satisfy Provisions of this Part only apply to a building of a type listed in (b) or (c)(ii) if that building is subject to a Bushfire Attack Level (BAL) not exceeding BAL—12.5, determined in accordance with AS 3959.

Notes:
(1) If a building of a type listed in (b) or (c)(ii) is subject to a BAL exceeding BAL—12.5 then the building would need to comply with the Performance Requirement G5P2 by means of a Performance Solution.

(2) There are no Deemed-to-Satisfy Provisions for these buildings.

NSW G5D3

G5D3 Protection — residential buildings

[2019: G5.2]

In a designated bushfire prone area the following must comply with AS 3959:

(a) A Class 2 or 3 building.

(b) A Class 10a building or deck associated with a Class 2 or 3 building.

G5D4 Protection — certain Class 9 buildings

[New for 2022]

In a designated bushfire prone area the following must comply with Specification 43:

(a) a Class 9a health-care building; or

(b) a Class 9b—
(i) early childhood centre; or
(ii) primary or secondary school; or

(c) a Class 9c residential care building; or

(d) a Class 10a building or deck associated with a building of a type listed in (a) to (c).
Introduction to this Part

This Part provides additional Deemed-to-Satisfy Provisions for buildings that include an occupiable outdoor area.

Deemed-to-Satisfy Provisions

G6D1 Application of Part

[2019: G6.1]

(1) The Deemed-to-Satisfy Provisions of this Part apply to buildings containing an occupiable outdoor area in addition to the other Deemed-to-Satisfy Provisions of NCC Volume One.

(2) The Deemed-to-Satisfy Provisions of this Part take precedence where there is a difference to the Deemed-to-Satisfy Provisions of Sections C, D, E, F and G.

(3) Except for G6D2, the Deemed-to-Satisfy Provisions of this Part do not apply to—

(a) an occupiable outdoor area of a sole-occupancy unit in a Class 2 or 3 building, Class 9c building or Class 4 part of a building; or

(b) an occupiable outdoor area with an area less than 10m².

Explanatory Information:

Part G6 contains Deemed-to-Satisfy Provisions additional to those contained in Sections C, D, E, F and G for occupiable outdoor areas.

G6D2 Fire hazard properties

[2019: G6.2]

(1) Subject to (2), a lining, material or assembly in an occupiable outdoor area must comply with C2D11 as for an internal element.

(2) The following fire hazard properties of a lining, material or assembly in an occupiable outdoor area are not required to comply with C2D11:

(a) Average specific extinction area.

(b) Smoke-Developed Index.

(c) Smoke development rate.

(d) Smoke growth rate index (SMOGRA_{RC}).

G6D3 Fire separation

[2019: G6.3]

For the purposes of the Deemed-to-Satisfy Provisions of C3D8, C3D9 and C3D10, a reference to a storey includes an occupiable outdoor area, however a fire wall cannot be used to separate an occupiable outdoor area into different fire compartments.
G6D4 Provision for escape

For the purposes of the Deemed-to-Satisfy Provisions of Part D2, a reference to a storey or room includes an occupiable outdoor area.

G6D5 Construction of exits

For the purposes of the Deemed-to-Satisfy Provisions of Part D3, a reference to a storey or room includes an occupiable outdoor area.

G6D6 Fire fighting equipment

Except for S17C7(2)(a), for the purposes of the Deemed-to-Satisfy Provisions of Part E1, a reference to a storey includes an occupiable outdoor area.

Notes: An occupiable outdoor area is not a storey for the purposes of Schedule 2 of the NCC and therefore is not included in the determination of rise in storeys.

G6D7 Lift installations

For the purposes of the Deemed-to-Satisfy Provisions of Part E3, a reference to a storey includes an occupiable outdoor area.

G6D8 Visibility in an emergency, exit signs and warning systems

For the purposes of the Deemed-to-Satisfy Provisions of Part E4, a reference to a storey includes an occupiable outdoor area.

G6D9 Light and ventilation

For the purposes of the Deemed-to-Satisfy Provisions of F46D5, F46D9 and F46D10, a reference to a room includes an occupiable outdoor area.

G6D10 Fire orders

For the purposes of the Deemed-to-Satisfy Provisions of G4D8, a reference to a storey includes an occupiable outdoor area.
Introduction to this Part

This Part sets requirements for dwellings to include features that are designed to improve their accessibility and usability for occupants and visitors, including those with a mobility-related disability.

Objectives

G7O1
Objective
[New for 2022]
The Objective of this Part is to ensure that housing is designed to meet the needs of the community, including older Australians and those with a mobility-related disability.

Applications:
G7O1 only applies to Class 2 sole-occupancy units.

Functional Statements

G7F1
Livable housing design
[New for 2022]
A Class 2 sole-occupancy unit should be designed such that it is—

(a) easy to enter; and
(b) easy to navigate in and around; and
(c) capable of easy and cost effective adaptation; and
(d) responsive to the changing needs of occupants.

Performance Requirements

G7P1
Livable housing design
[New for 2022]
Each sole-occupancy unit in a Class 2 building must be provided with—

(a) at least on level and step-free entrance door into the sole-occupancy unit from an accessible part of the floor on which it is located; and
(b) internal doors and corridors which facilitate unimpeded movement between spaces; and
(c) a sanitary compartment that—
 (i) facilitates independent access and use; and
 (ii) is located on the entry level of the sole-occupancy unit; and
(d) a shower that—
 (i) facilitates independent access and use; and
(ii) is located on the entry level of the sole-occupancy unit; and

(e) the walls of a sanitary compartment referred to in (c) and a shower referred to in (d) constructed so as to facilitate future installation of grabrails, or the like, in a way that minimises the removal of existing wall linings.

Applications:

G7P1(a) only applies to a sole-occupancy unit that is located on an accessible floor.

Deemed-to-Satisfy Provisions

G7D1 Deemed-to-Satisfy Provisions

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirement G7P1 is satisfied by complying with G7D2.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

G7D2 Livable housing design

Each Class 2 sole-occupancy unit in a Class 2 building must comply with the ABCB Standard for Livable Housing Design, except for Part 1.

Explanatory Information:

Part 1 of the ABCB Standard for Livable Housing Design requires a step-free access path from a parking space or property boundary, to the dwelling entry door. For Class 2 buildings, this requirement is already addressed by Part D4 and the Disability (Access to Premises—Buildings) Standards 2010. Therefore, it is not necessary to apply Part 1 of the ABCB Standard for Livable Housing Design to a Class 2 building.
Specification 30 Installation of boilers and pressure vessels

S30C1 Scope

[2019: Spec G2.2: 1]

This Specification sets out the requirements for the installation of *boilers* and *pressure vessels* in buildings.

Boilers and Pressure Vessels

S30C2 Explosion relief

[2019: Spec G2.2: 2.1]

The distance between the vent of any explosion relief device and any adjacent wall, roof, ceiling or other solid construction shall be calculated in accordance with Table S30C2.

Table S30C2: Minimum clearances for explosion relief

<table>
<thead>
<tr>
<th>Clearance from</th>
<th>Minimum clearance (metres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjacent wall or ceiling/roof</td>
<td>$0.4(V/3)^{1/3}$ or 0.4 m, whichever is the greater</td>
</tr>
<tr>
<td>Two walls at right angles; or one wall and a ceiling/roof</td>
<td>$0.6(V/3)^{1/3}$ or 0.6 m, whichever is the greater</td>
</tr>
</tbody>
</table>

Table Notes:

V is the internal volume of the *boiler* or *pressure vessel* being vented up to the connection of the flue.

S30C3 Floors and drainage

[2019: Spec G2.2: 2.2]

1. Floor surfaces beneath *boilers* and *pressure vessels* shall be *water resistant* and formed to drain away from supports and structural building elements.
2. Where a safe tray is provided to trap liquids, it must be manufactured from a material resistant to corrosion from the contents of the *boiler* or *pressure vessel*.

S30C4 Protection from heat

[2019: Spec G2.2: 2.3]

Building elements surrounding a *boiler* must be protected from any surface heat by refractory material or effective air spaces so that—

1. steel elements do not exceed a temperature of more than 300°C; and
2. concrete elements do not exceed a temperature of more than 200°C; and
3. timber elements do not exceed a temperature of more than 150°C.
S31C1 Scope

This Specification sets out the requirements for the design and operation of systems of fire and smoke control in buildings containing an atrium.

S31C2 General requirement — automatic fire sprinkler system

A sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17 must be installed in every building containing an atrium, except where varied or superseded by this Specification.

S31C3 Roof protection

A roof of an atrium which does not have the FRL prescribed in Specification 5 or the Deemed-to-Satisfy Provisions of Part C3 must be protected by automatic sprinklers arranged to wet both the covering membrane and supporting structure if the roof is—

(a) less than 12 m above the floor of the atrium or the floor of the highest storey where the bounding construction is set back more than 3.5 m from the atrium well if a Class 2, 3, 5 or 9 part of a building is open to the atrium; or

(b) less than 20 m above the floor of the atrium or the floor of the highest storey where the bounding construction is set back more than 3.5 m from the atrium well if a Class 6, 7 or 8 part of a building is open to the atrium, and the temperature rating of sprinkler heads providing roof protection must be within the range 79°C – 100°C.

S31C4 Atrium floor protection

The floor of the atrium must be protected by sprinklers with—

(a) the use of sidewall pattern sprinkler heads together with overhead sprinklers where dictated by the dimensions of the atrium; and

(b) sprinkler heads of the quick response type.

S31C5 Sprinkler systems to glazed walls

(1) Where an atrium is separated from the remainder of the building by walls or doors incorporating glazing, a wall wetting system must be provided to protect the glazing as follows:

(a) On the atrium side of the glazing — to all glazed walls which are set back more than 3.5 m from the atrium well.

(b) On the atrium side of the glazing — to all glazed walls which are not set back, or are set back 3.5 m or less, from the atrium well, for all levels which are less than—

(i) 12 m above the floor of an atrium or the floor of the highest storey where the bounding wall is set back more than 3.5 m from the atrium well if a Class 2, 3, 5 or 9 part of the building is open to the atrium; or
Ancillary provisions

(ii) 20 m above the floor of an atrium or the floor of the highest storey where the bounding wall is set back more than 3.5 m from the atrium well if a Class 6, 7 or 8 part of the building is open to the atrium.

(c) On the side of the glazing away from the atrium well — to all glazing forming part of the bounding wall at each storey.

(2) Sprinklers must be located in positions allowing full wetting of the glazing surfaces without wetting adjacent sprinkler heads.

(3) Sprinkler heads must be of the quick response type and have a maximum temperature rating of 74°C.

(4) The rate of water discharge to protect glazing must be not less than—

(a) on the atrium side of the glazing—

(i) 0.25 L/s.m² where glazing is not set back from the atrium well; or

(ii) 0.167 L/s.m² where glazing is set back from the atrium well; and

(b) on the side away from the atrium well — 0.167 L/s.m².

(5) In addition to that of the basic sprinkler protection for the building, the water supply to required wall wetting systems must be of adequate capacity to accommodate the following on the atrium side of the glazing:

(a) Where the bounding walls are set back less than 3.5 m from the atrium well — wall wetting of a part not less than 6 m long for a height of not less than—

(i) 12 m above the floor of an atrium or the floor of the highest storey where the bounding wall is set back more than 3.5 m from the atrium well if a Class 2, 3, 5 or 9 part of the building is open to the atrium; or

(ii) 20 m above the floor of an atrium or the floor of the highest storey where the bounding wall is set back more than 3.5 m from the atrium well if a Class 6, 7 or 8 part of the building is open to the atrium; and

(b) Where the walls are set back 3.5 m or more from the atrium well — wetting of a part not less than 12 m long on one storey.

S31C6 Stop valves

[2019: Spec G3.8: 2.5]

(1) Basic sprinkler and wall wetting systems protecting a building containing an atrium must be provided with easily accessible and identified stop valves.

(2) Sprinkler and wall wetting systems must be provided with independent stop valves.

(3) Sprinkler heads protecting the roof of the atrium must be provided with a stop valve.

(4) Stop valve to wall wetting and roof sprinklers may be of the gate type.

(5) All sprinkler and wall wetting stop valves must be monitored to detect unauthorised closure.

Smoke control system

S31C7 General requirements — smoke control system

[2019: Spec G3.8: 3.1]

Except where varied or superseded by this Specification, mechanical air-handling systems in a building containing an atrium must comply with AS 1668.1.

S31C8 Operation of atrium mechanical air-handling systems

[2019: Spec G3.8: 3.2]

Mechanical air-handling systems serving an atrium must be designed to operate so that during a fire—

(a) a tenable atmosphere is maintained in all paths of travel along balconies to required Exits during the period of evacuation; and
smoke exhaust fans serving the *atrium* are only activated when smoke enters the *atrium*; and

(c) central plant systems do not use the *atrium* as a return air path; and

(d) central plant systems which use return air paths remote from the *atrium*—
 (i) cycle to the full outside air mode; and
 (ii) stop supply air to the fire affected *storey* or *fire compartment*; and
 (iii) continue to fully exhaust the fire affected *storey* or *fire compartment* and reduce the exhaust from other *storeys* or *fire compartments* by at least 75%; and
 (iv) continue to supply air to *fire compartments* or *storeys* other than the fire affected *storey* or *fire compartment*; and

(e) fans performing relief or exhaust duty from the *atrium* stop normal operation; and

(f) floor by floor, or unitary, air-handling plant serving a single *fire compartment* or *storey*—
 (i) ceases normal operation in the fire affected *storey* or *fire compartment*; and
 (ii) commences full relief or exhaust from that fire affected *storey* or *fire compartment*; and
 (iii) continue to supply air to *fire compartments* or *storeys* other than the fire affected *storey* or *fire compartment*.

S31C9 Activation of smoke control system

[2019: Spec G3.8: 3.3]

1. The smoke control system must be activated by—
 (a) operation of an *automatic* fire alarm; or
 (b) operation of the sprinkler system; or
 (c) a manual start switch.

2. All controls for the smoke control system must be located—
 (a) in the fire control room; or
 (b) in the emergency control centre (if any); or
 (c) adjacent to the sprinkler control valves; or
 (d) incorporated in the Fire Indicator Panel.

S31C10 Smoke exhaust system

[2019: Spec G3.8: 3.4]

A smoke exhaust system serving an *atrium* must be designed on the basis of—

(a) the sprinkler system limiting the size of a fire to—
 (i) a heat output of 1.5 MW and perimeter of 7.5 m if a Class 2, 3, 5 or 9 part of the building is open to the *atrium*; or
 (ii) a heat output of 5 MW and perimeter of 12 m if a Class 6, 7 or 8 part of the building is open to the *atrium*; and

(b) a smoke plume reaching a level 3 m above the highest *storey* having a path of travel to a *required exit* along a balcony bounding the *atrium well*, and not less than—
 (i) 12 m above the floor of an *atrium* or the floor of the highest *storey* where the bounding wall is set back more than 3.5 m from the *atrium well* if a Class 2, 3, 5 or 9 part of the building is open to the *atrium*; or
 (ii) 20 m above the floor of an *atrium* or the floor of the highest *storey* where the bounding construction is set back more than 3.5 m from the *atrium well* if a Class 6, 7 or 8 part of the building is open to the *atrium*; and

(c) the smoke exhaust system discharging smoke at a rate of not less than that shown in Figure S31C10 for the appropriate height of smoke plume and fire size—
 (i) from the top of the *atrium*; or
(ii) horizontally where calculations of wind velocity induced pressure profiles for the building verify that the exhaust system will operate effectively for all wind directions.

Figure S31C10: Smoke exhaust rate

![Diagram of smoke exhaust rate vs. height of smoke plume from atrium floor (metres)]

<table>
<thead>
<tr>
<th>Smoke exhaust (m³/s)</th>
<th>Height of smoke plume from atrium floor (metres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td></td>
</tr>
<tr>
<td>682</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
<tr>
<td>493</td>
<td></td>
</tr>
<tr>
<td>436</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td></td>
</tr>
<tr>
<td>313</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

S31C11 Upward air velocity

Notwithstanding S31C10(c), the average upward air velocity in the atrium, due to the required smoke exhaust quantity must—

(a) be not less than 0.2 m/s at any level over an 18 m height above the floor of the atrium; and

(b) not exceed the following maximum velocities in atriums of constant cross sectional plan area—
Ancillary provisions

(i) for occupancy classification qualifying for 1.5 MW fire size — 3.5 m/s.
(ii) for occupancy classifications qualifying for 5 MW fire size — 5 m/s.

S31C12 Exhaust fans

[2019: Spec G3.8: 3.6]

(1) Smoke exhaust must be provided by fans capable of continuous and required operation for a period of not less than 1 hour when handling exhaust gases at 200°C.

(2) Where a Class 2, 3 or 9 part of a building adjoins an atrium, the atrium must be provided with a minimum of 3 fans each capable of 50% of the total required smoke exhaust capacity.

(3) Atriums other than those referred to in (2) must be provided with a minimum of 2 fans each capable of 50% of the total required smoke exhaust capacity.

S31C13 Smoke and heat vents

[2019: Spec G3.8: 3.7]

Notwithstanding S31C12, automatic vents complying with AS 2665 may be used, except where a Class 6 part of a building adjoins the atrium, in lieu of exhaust fans provided that—

(a) the height from the atrium floor to the bottom of the highest vent is not more than 12 m; and

(b) the vents are fitted with a remote manual operation switch located adjacent to the sprinkler control valves or incorporated in the Fire Indicator Panel.

S31C14 Make-up air supply

[2019: Spec G3.8: 3.8]

(1) Uniformly distributed make-up air must be provided to the atrium exhaust system from—

(a) outside the atrium at or near the lowest storey level; and

(b) relief air from non-fire storeys.

(2) A discharge volume sufficient to maintain a velocity of not less than 0.1 m/s towards the atrium well must be provided on all storeys where the bounding wall is set back from the atrium well.

(3) The requirements of (1)(a) are satisfied if make-up air is provided to the atrium exhaust system in such a manner as to prevent, as far as possible, disturbance of the smoke layer due to turbulence created by the incoming air, through—

(a) openings directly from the outside air to the atrium and located as close as practicable to the lowest level of the atrium; or

(b) ducts from the outside air to the atrium which deliver air as close as practicable to the lowest level of the atrium and, where passing through any other fire compartment having an FRL of at least 60/60/60; or

(c) a combination of (a) or (b).

Fire detection and alarm system

S31C15 General requirements—fire detection and alarm system

[2019: Spec G3.8: 4.1]

Except where superseded by this Specification, automatic fire detection and alarm systems in a building containing an atrium must comply with AS 1670.1.
S31C16 Smoke detection system

Smoke detection within an atrium—

(a) must be provided within all outside air intakes and at individual floor return air intakes of all air-handling systems to initiate automatic fire mode operation, and where applicable, comply with the restart facilities in AS 1668.1; and

(b) must operate at an obscuration level not greater than 0.5% per metre with compensation for external airborne contamination as necessary; and

(c) must sample air within the atrium and in storeys where the bounding wall is set back more than 3.5 m from the atrium well; and

(d) must be calibrated to compensate for smoke dilution where sampling occurs within return air path common to more than one room; and

(e) may incorporate beam type detectors to sense smoke in an atrium in a Class 5, 6, 7 or 8 building with an effective height of not more than 25 m if—
 (i) the beam detectors are located at intervals of not more than 3 storeys; and
 (ii) arranged to scan at 90 degrees orientation to adjacent beam units.

S31C17 Smoke detection in spaces separated from the atrium by bounding walls

Smoke detection systems must be located at all return and relief air openings associated with the building air-handling systems and be—

(a) of the sampling type system as required in S31C16; or

(b) of the point type photoelectric smoke detector.

S31C18 Alarm systems

(1) A break-glass fire alarm point must be provided at each door to a fire-isolated stairway, fire-isolated ramp or fire-isolated passageway.

(2) A staged alarm must be provided where an air sampling type smoke detection system is provided for the atrium, and must operate as follows:
 (a) Alert building management when abnormal smoke levels of 0.03% obscuration per metre are detected.
 (b) Initiate a second alarm to management and start all smoke control systems including pressurisation of escape routes when smoke levels of 0.07% obscuration per metre are detected.
 (c) Automatically call the fire brigade, activate the emergency warning and intercom system, and de-activate all plant not necessary for fire safety within the building when smoke levels of 0.09% obscuration per metre are detected.

(3) Beam and point type smoke detectors required must simultaneously operate all functions referred to above and activate at the level set out in AS 1670.1.

Additional requirements
S31C19 Emergency warning and intercom systems

All buildings containing an *atrium* must be provided with an emergency warning and intercom system which—

(a) complies with AS 1670.4; and

(b) incorporates visual warning devices that—

 (i) operate upon the evacuation signal; and

 (ii) display the word “EVACUATE” in red with letters conforming with the requirements of the *Deemed-to-Satisfy Provisions* of Part E4 for *exit* signs.

S31C20 Standby power system

(1) If a *required* path of travel to an exit is within an *atrium*, a suitable alternative power supply must be provided to operate *required* safety systems, including sprinkler systems and fire hydrant pumps, air handling systems, alarms, warning and communication systems and emergency lighting circuits.

(2) The alternative power supply must—

 (a) be connected *automatically* if the normal power supply fails; and

 (b) if located within the building, be separated from the remainder of the building by an enclosure with an FRL of at least 120/120/120; and

 (c) be connected to the safety systems by means of cabling complying with C3D14(3).

(3) The requirements of (1) are satisfied by—

 (a) a single medium voltage supply taken from an electricity substation situated within, or adjacent to, the building concerned where the power supply to the substation consists of two or more high voltage cables each taking electricity from separate transformers; or

 (b) two or more medium voltage supplies each taking electricity from separate electricity substations situated—

 (i) outside the building concerned; and

 (ii) at a suitable distance from each other; or

 (c) a single medium voltage supply taken from an electricity substation together with an electricity generating plant capable of—

 (i) generating a medium voltage supply; and

 (ii) starting and taking the *required* electrical load within a period of not more than 30 seconds from the time of normal supply failure.

S31C21 System for excluding smoke from fire-isolated exits

Required fire-isolated *exits* in a building containing an *atrium* must be protected from the entry of smoke in accordance with E2D3.
S43C1 **Scope**

(1) **This Specification** sets out bushfire protection measures for buildings occupied by people who may be unable to readily evacuate the building prior to a bushfire.

(2) **Compliance with this Specification** does not guarantee the safety of building occupants or the maintenance of tenable conditions within a building during a bushfire event.

Notes:

The measures set out in Specification are intended to operate in conjunction with other bushfire safety measures that lie outside the scope of the NCC. Information about these measures can be found in the Guide to NCC Volume One for Part G5.

S43C2 **Separation from classified vegetation**

(1) **The building must be separated from classified vegetation—**

 (a) by not less than the minimum distances specified in Table S43C2; or

 (b) such that radiant heat flux on exposed building elements will not exceed 10kW/m².

(2) **For the purposes of (1), the term classified vegetation has the meaning that it has in AS 3959.**

<table>
<thead>
<tr>
<th>Vegetation classification</th>
<th>Slope</th>
<th>Minimum distance (m) of the building to classified vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk</td>
<td>Upslope and flat land</td>
<td>60</td>
</tr>
<tr>
<td>High risk</td>
<td>Downslope max 20 degrees</td>
<td>110</td>
</tr>
<tr>
<td>Medium risk</td>
<td>Upslope and flat land</td>
<td>40</td>
</tr>
<tr>
<td>Medium risk</td>
<td>Downslope max 20 degrees</td>
<td>80</td>
</tr>
<tr>
<td>Low risk</td>
<td>Upslope and flat land</td>
<td>30</td>
</tr>
<tr>
<td>Low risk</td>
<td>Downslope max 20 degrees</td>
<td>50</td>
</tr>
</tbody>
</table>

Table Notes:

1. Table values are based on a Fire Danger Index of 100 in accordance with AS 3959.
2. High risk equates to vegetation classification of forest and woodland in accordance with AS 3959.
3. Medium risk equates to vegetation classification of scrub and rainforest in accordance with AS 3959.
4. Low risk equates to vegetation classification of scrubland, mallee/mulga, and grassland in accordance with AS 3959.

S43C3 **Separation between buildings**

(1) **The building must be located not less than 12 m from any other building.**

(2) **The separation distance required by (1) need not be complied with if the external walls and roof of the building are**
constructed—
 (a) with an FRL of not less than 60/60/60 when tested from the outside, with any openings protected in accordance with AS 3959 for BAL—19 or greater; or
 (b) using a material of system that satisfies the test criteria of AS 1530.8.1 for a radiant heat flux of 10 kW/m².

S43C4 Separation from allotment boundaries and carparking areas [New for 2022]

(1) The building must be located not less than 10 m from any allotment boundary or carparking area.
(2) The separation distance required by (1) need not be complied with if the external walls and roof of the building are constructed—
 (a) with an FRL of not less than 60/60/60 when tested from the outside, with any openings protected in accordance with AS 3959 for BAL—19 or greater; or
 (b) using a material of system that satisfies the test criteria of AS 1530.8.1 for a radiant heat flux of 10 kW/m².

S43C5 Separation from hazards [New for 2022]

The external walls and roof of the building must be protected from potential hazards on the site such as gas bottles, fuel storage, storage of combustible materials, waste bins, vehicles, machinery, and the like, by—

 (a) a separation distance of not less than 10 m; or
 (b) where within the 10 m separation distance described in (a), construction with an FRL of not less than 60/60/60 when tested from the outside, with any openings protected in accordance with AS 3959 for BAL—19 or greater; or
 (c) construction using a material of system that satisfies the test criteria of AS 1530.8.1 for a radiant heat flux of 10 kW/m².

S43C6 Non-combustible path around building [New for 2022]

A non-combustible pathway not less than 1.5 m wide must be provided around the perimeter of the building.

S43C7 Access pathways [New for 2022]

(1) Access pathways that lead to a road or open space must—
 (a) be readily identifiable; and
 (b) have an even surface; and
 (c) have a minimum clear width of not less than 1 m.
(2) If the access pathway is an accessway that is required to comply with Part D4, the requirements of Part D4 override (1) to the extent of any inconsistency.

S43C8 Exposed external areas [New for 2022]

For any external area designed to hold people unable to be safely accommodated within the building, that may be exposed to radiant heat flux from a fire front during a bushfire event, the maximum incident radiant heat flux from the fire front must not exceed 1 kW/m² above background solar radiant heat flux.
S43C9 Internal tenability

To maintain internal tenability throughout the duration of occupancy during a bushfire event, the building must comply with the following:

(a) An air handling system must be provided that is capable of—
 (i) being adjusted for full recycling of internal air for limited periods to avoid the introduction of smoke into the building; and
 (ii) maintaining an internal air temperature of not greater than 25°C.

(b) The building envelope must be designed such that if an air handling system required by (a) fails, then—
 (i) internal air temperatures can be maintained below 39°C; and
 (ii) internal surface temperatures can be maintained below 60°C.

(c) If the building is divided into separate compartments then, for the purposes of (a), each compartment must have a separate air handling system.

(d) Each air handling system required by (a) must be designed to account for the activation of smoke detectors from low concentrations of smoke from external sources, so as to ensure that air conditioning and other essential systems remain operational.

S43C10 Building envelope

The external walls and roof of the building must be—

(a) non-combustible, except for materials listed in C2D10(4) or (5); and
(b) constructed in accordance with AS 3959 for BAL—19 or greater.

S43C11 Supply of water for fire-fighting

Water for fire-fighting purposes must be available and consist of—

(a) a fire hydrant system complying with E1D2, or
(b) a static water supply consisting of tanks, swimming pools, dams or the like, or a combination of these, together with suitable pumps, hoses and fittings, capable of providing the required flow rate for a period of 4 hours, determined in consultation with the relevant fire brigade.

S43C12 Emergency power supply

Emergency power must be provided to support, for not less than 4 hours before and 2 hours after the passing of the fire front during a bushfire event, the ongoing operation of—

(a) air handling systems to maintain internal tenability; and
(b) any pumps for fire-fighting; and
(c) any emergency lighting, exit signs, and
(d) any other emergency equipment listed in C3D14(6) and required to be provided.
S43C13 Signage

Signage must be provided to warn building occupants against storing combustible materials under or adjacent to the building.

S43C14 Vehicular access

Vehicular access to the building must be provided in accordance C3D5(2), as if the building were a large isolated building for the purposes of C3D4.
Section I Special use buildings

Part I1 Class 9B buildings

Deemed-to-Satisfy Provisions

<table>
<thead>
<tr>
<th>I1D1</th>
<th>Application of Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1D2</td>
<td>Separation</td>
</tr>
<tr>
<td>I1D3</td>
<td>Proscenium wall construction</td>
</tr>
<tr>
<td>I1D4</td>
<td>Seating area</td>
</tr>
<tr>
<td>I1D5</td>
<td>Exits from stages</td>
</tr>
<tr>
<td>I1D6</td>
<td>Access to platforms and lofts</td>
</tr>
<tr>
<td>I1D7</td>
<td>Aisle lights</td>
</tr>
</tbody>
</table>

Part I2 Public transport buildings

Deemed-to-Satisfy Provisions

<table>
<thead>
<tr>
<th>I2D1</th>
<th>Application of Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2D2</td>
<td>Accessways</td>
</tr>
<tr>
<td>I2D3</td>
<td>Ramps</td>
</tr>
<tr>
<td>I2D4</td>
<td>Handrails and grabrails</td>
</tr>
<tr>
<td>I2D5</td>
<td>Doorways and doors</td>
</tr>
<tr>
<td>I2D6</td>
<td>Lifts</td>
</tr>
<tr>
<td>I2D7</td>
<td>Stairways</td>
</tr>
<tr>
<td>I2D8</td>
<td>Unisex accessible toilet</td>
</tr>
<tr>
<td>I2D9</td>
<td>Location of accessible toilets</td>
</tr>
<tr>
<td>I2D10</td>
<td>Symbols and signs</td>
</tr>
<tr>
<td>I2D11</td>
<td>Tactile ground surface indicators</td>
</tr>
<tr>
<td>I2D12</td>
<td>Lighting</td>
</tr>
<tr>
<td>I2D13</td>
<td>Hearing augmentation</td>
</tr>
<tr>
<td>I2D14</td>
<td>Emergency warning systems</td>
</tr>
<tr>
<td>I2D15</td>
<td>Controls</td>
</tr>
</tbody>
</table>

Part I3 Farm buildings and farm sheds

Deemed-to-Satisfy Provisions

<table>
<thead>
<tr>
<th>I3D1</th>
<th>Application of Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>I3D2</td>
<td>Fire resistance and separation</td>
</tr>
<tr>
<td>I3D3</td>
<td>Provision for escape</td>
</tr>
<tr>
<td>I3D4</td>
<td>Construction of exits</td>
</tr>
<tr>
<td>I3D5</td>
<td>Fixed platforms, walkways, stairways and ladders</td>
</tr>
<tr>
<td>I3D6</td>
<td>Thresholds</td>
</tr>
<tr>
<td>I3D7</td>
<td>Swinging doors</td>
</tr>
<tr>
<td>I3D8</td>
<td>Fire fighting equipment</td>
</tr>
<tr>
<td>I3D9</td>
<td>Fire hydrants and water supplies</td>
</tr>
<tr>
<td>Code</td>
<td>Topic</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>I3D10</td>
<td>Fire hose reels</td>
</tr>
<tr>
<td>I3D11</td>
<td>Portable fire extinguishers</td>
</tr>
<tr>
<td>I3D12</td>
<td>Emergency lighting requirements</td>
</tr>
<tr>
<td>I3D13</td>
<td>Exit signs</td>
</tr>
<tr>
<td>I3D14</td>
<td>Direction signs</td>
</tr>
<tr>
<td>I3D15</td>
<td>Design and operation of exit signs</td>
</tr>
<tr>
<td>I3D16</td>
<td>Sanitary facilities</td>
</tr>
<tr>
<td>I3D17</td>
<td>Height of rooms and other spaces</td>
</tr>
<tr>
<td>I3D18</td>
<td>Artificial lighting</td>
</tr>
</tbody>
</table>

Specification 32 Construction of proscenium walls

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S32C1</td>
<td>Scope</td>
</tr>
<tr>
<td>S32C2</td>
<td>Separation of stage areas, etc</td>
</tr>
<tr>
<td>S32C3</td>
<td>Proscenium wall construction</td>
</tr>
<tr>
<td>S32C4</td>
<td>Combustible materials not to cross proscenium wall</td>
</tr>
<tr>
<td>S32C5</td>
<td>Protection of openings in proscenium wall</td>
</tr>
<tr>
<td>S32C6</td>
<td>Proscenium curtains</td>
</tr>
</tbody>
</table>
Part I1 Class 9B buildings

Introduction to this Part

This Part provides additional Deemed-to-Satisfy Provisions for certain types of Class 9b buildings where large numbers of people assemble and which contain a stage and backstage area.

Deemed-to-Satisfy Provisions

I1D1 Application of Part

[2019: H1.1]

1. The Deemed-to-Satisfy Provisions of this Part apply to every enclosed Class 9b building or part of a building which—
 (a) is a school assembly, church or community hall with a stage and any backstage area with a total floor area of more than 300 m2; or
 (b) otherwise, has a stage and any backstage area with a total floor area of more than 200 m2; or
 (c) has a stage with an associated rigging loft.

2. Notwithstanding (1)—
 (a) I1D4 applies to every open or enclosed Class 9b building; and
 (b) I1D7 applies to every enclosed Class 9b building.

Explanatory Information:

Part I1 contains Deemed-to-Satisfy Provisions additional to those contained in Sections C, D and E for Class 9b buildings.

I1D2 Separation

[2019: H1.2]

A theatre, public hall or the like must—

(a) have a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17; or

(b) have the stage, backstage area and accessible under stage area separated from the audience by a proscenium wall in accordance with I1D3.

I1D3 Proscenium wall construction

[2019: H1.3]

A proscenium wall must comply with Specification 32.

I1D4 Seating area

[2019: H1.4]

In a seating area—

(a) the gradient of the floor surface must not be steeper than 1 in 8, or the floor must be stepped so that—
 (i) a line joining the nosings of consecutive steps does not exceed an angle of 30° to the horizontal; and
 (ii) the height of each step in the stepped floor is not more than 600 mm; and
(iii) the height of any opening in such a step is not more than 125 mm; and
(b) if an aisle divides the stepped floor and the difference in level between any 2 consecutive steps—
 (i) exceeds 230 mm but not 400 mm — an intermediate step must be provided in the aisle; and
 (ii) exceeds 400 mm — 2 equally spaced intermediate steps must be provided in the aisle; and
 (iii) the going of intermediate steps must be not less than 270 mm and such as to provide as nearly as practicable equal treads throughout the length of the aisle; and
(c) the clearance between rows of fixed seats used for viewing performing arts, sport or recreational activities must be not less than—
 (i) 300 mm if the distance to an aisle is not more than 3.5 m; or
 (ii) 500 mm if the distance to an aisle is more than 3.5 m.

I1D5 Exits from stages

[2019: H1.5]

(1) The path of travel to an exit from a stage or performing area must not pass through the proscenium wall if the stage area is separated from the audience area with a proscenium wall.

(2) Required exits from backstage and under-stage areas must be independent of those provided for the audience area.

I1D6 Access to platforms and lofts

[2019: H1.6]

A stairway that provides access to a service platform, rigging loft, or the like, must comply with AS 1657.

I1D7 Aisle lights

[2019: H1.7]

In every enclosed Class 9b building, where in any part of the auditorium, the general lighting is dimmed or extinguished during public occupation and the floor is stepped or is inclined at a slope steeper than 1 in 12, aisle lights must be provided to illuminate the full length of the aisle and tread of each step.
Part I2 Public transport buildings

Introduction to this Part

This Part provides additional Deemed-to-Satisfy Provisions for Class 9b and Class 10 buildings that are used as public transport buildings. The provisions of this Part are based on the Disability Standards for Accessible Public Transport 2002 (Transport Standards).

Deemed-to-Satisfy Provisions

I2D1 Application of Part

[2019: H2.1]

(1) The Deemed-to-Satisfy Provisions of this Part apply to the passenger use areas of a Class 9b or Class 10 building used for public transport.

(2) The Deemed-to-Satisfy Provisions of this Part take precedence where there is a difference to the Deemed-to-Satisfy Provisions of Parts D4, E3 and F42.

(3) For an airport that does not accept regular public transport services, as defined in the Disability Standards for Accessible Public Transport 2002, only I2D8, I2D9, I2D10, I2D11, I2D12 and I2D13 of this Part apply.

(4) Exemption (1) to A6G1(1) does not apply to this Part.

Explanatory Information:
Part I2 contains Deemed-to-Satisfy Provisions for Class 9b and Class 10 public transport buildings additional to those contained in Parts D4, E3 and F42 that apply to public transport buildings.

I2D2 Accessways

[2019: H2.2]

(1) An accessway must comply with AS 1428.2.

(2) If an accessway branches into 2 or more parallel tracks—
 (a) the ends of each track must be on the main pedestrian traffic routes; and
 (b) the parallel tracks must have equal convenience and be located as close as practicable to the main pedestrian branch.

(3) The minimum unobstructed width of an accessway must be 1.2 m, except that—
 (a) the minimum unobstructed width of a moving walkway forming part of an accessway may be not less than 850 mm; and
 (b) the minimum unobstructed width of a doorway in an accessway may be not less than 850 mm.

(4) Poles, columns, stanchions, bollards and fixtures must not project into an accessway.

(5) Obstacles that abut an accessway must have a luminance contrast with a background of not less than 30%.

(6) Manoeuvring areas that allow a 180 degree wheelchair turn must comply with clause 6.2 of AS 1428.2.

(7) A passing area must be provided at least every 6 m along any two-way accessway that is less than 1800 mm wide.

(8) Ground and floor surfaces must comply with clause 9 of AS 1428.2 and AS 1428.1 Supplement 1 provides criteria for the selection of floor surfaces.

(9) The requirements of D4D4(c)(ii) do not apply to Class 9b or Class 10 public transport buildings.
I2D3 Ramps

(1) A ramp forming part of an accessway must comply with clause 8 of AS 1428.2.

(2) The requirements of D4D12(a) do not apply to Class 9b or Class 10 public transport buildings.

I2D4 Handrails and grabrails

(1) A handrail must comply with clause 10.1 of AS 1428.2.

(2) Handrails must be placed along an accessway wherever passengers are likely to require additional support or passive guidance.

(3) A grabrail must comply with clause 10.2 of AS 1428.2.

(4) A grabrail or handrail must be provided at fixed locations where passengers are required to pay fares.

I2D5 Doorways and doors

Doorways and doors must comply with clause 11 (except clause 11.5.2) of AS 1428.2.

I2D6 Lifts

Lift facilities must comply with AS 1735.12.

I2D7 Stairways

Stairs must comply with—

(a) clause 9.1 of AS 1428.1, including the notes; and

(b) clause 9.2 of AS 1428.1; and

(c) clauses 13.2, 13.3 and Figures 8 and 9 of AS 1428.2.

I2D8 Unisex accessible toilet

If toilets are provided, there must be at least one unisex accessible toilet without an airlock that complies with AS 1428.1 clause 10, sanitary facilities.

I2D9 Location of accessible toilets

Accessible toilets must be in the same location as other toilets.
I2D10 Symbols and signs

[2019: H2.10]

(1) The international symbols for accessibility and deafness in accordance with clauses 14.2 and 14.3 of AS 1428.1 must be used to identify an accessway and which facilities and boarding points are accessible.

(2) Signs must be placed in accordance with clause 17.4 of AS 1428.2.

(3) The size of accessibility symbols must comply with Table 1 of AS 1428.2.

(4) The symbol for accessibility must incorporate directional arrows and words or, if possible, pictograms, to show passengers the way to accessible facilities such as toilets.

(5) Signs must comply with clause 17.1 and Figure 30 of AS 1428.2.

(6) If a sign incorporates raised lettering or symbols, they must be at least 0.8 mm above the surface of the sign.

(7) If an operator or provider supplements a notice with braille characters, they must be placed to the left of the raised characters.

I2D11 Tactile ground surface indicators

[2019: H2.11]

Tactile ground surface indicators must be installed in accordance with AS 1428.4 on an accessway and must indicate changes of direction in accordance with clause 18.1 of AS 1428.2.

I2D12 Lighting

[2019: H2.12]

Any lighting provided must comply with minimum levels of maintenance illumination for various situations shown in the notes to clause 19.1 of AS 1428.2.

I2D13 Hearing augmentation

[2019: H2.13]

If a public address system is installed, it must comply with clause 21.1 of AS 1428.2.

I2D14 Emergency warning systems

[2019: H2.14]

(1) If an emergency warning system is installed, it must comply with clauses 18.2.1, 18.2.2 and 18.2.3 of AS 1428.2.

(2) In the event of an emergency, provision must be made for people with vision impairment to locate the exit path.

I2D15 Controls

[2019: H2.15]

Controls must comply with clause 11 of AS 1428.2.
Part I3 Farm buildings and farm sheds

SA Part I3

Introduction to this Part

This Part provides additional Deemed-to-Satisfy Provisions for Class 7 and Class 8 buildings which are farm buildings or farm sheds.

Deemed-to-Satisfy Provisions

I3D1 Application of Part

(1) The Deemed-to-Satisfy Provisions of this Part apply to farm buildings and farm sheds.

(2) The Deemed-to-Satisfy Provisions of this Part take precedence where there is a difference to the Deemed-to-Satisfy Provisions of Sections C, D, E, and F.

(3) I3D1 to I3D5, I3D8 and I3D11 to I3D18 apply to a farm shed.

(4) I3D1, I3D3, I3D5 to I3D7, I3D9 to I3D12, I3D14, I3D15 and I3D18 apply to a farm building.

Explanatory Information:

Part I3 contains Deemed-to-Satisfy Provisions additional to those contained in Sections C, D, E and F for farm buildings and farm sheds.

I3D2 Fire resistance and separation

(2019: H3.2)

A farm shed need not comply with the provisions of Parts C2, C3 and C4, except for C2D12, if it is separated from any other building or allotment boundary by a distance of not less than 6 m.

I3D3 Provision for escape

(2019: H3.3)

(1) Except for D2D3, D2D5 to D2D11, D2D14, D2D15(1), D2D18(c), D2D19 and D2D20, the Deemed-to-Satisfy Provisions of Part D2 do not apply to a farm shed.

(2) An open space adjacent to a farm building or a farm shed need not be directly connected with a public road.

I3D4 Construction of exits

(2019: H3.4)

Except for D3D14, D3D15, D3D17 to D3D21, D3D22 and D3D29, the Deemed-to-Satisfy Provisions of Part D3 do not apply to a farm shed.

I3D5 Fixed platforms, walkways, stairways and ladders

(2019: H3.5)

A fixed platform, stairway, ladder and any going and riser, landing, handrail or barrier may comply with AS 1657 in lieu of...
D3D14, D3D15, D3D17 to D3D21 and D3D22 where it serves a farm building or a farm shed.

I3D6 Thresholds

[2019: H3.6]

The threshold of a doorway that serves an area not required to be accessible by D4D2 in a farm building need not comply with D3D16 where the door sill is not more than 700 mm above the finished surface of the ground, floor or the like, to which the doorway opens.

I3D7 Swinging doors

[2019: H3.7]

A swinging door in a required exit or forming part of a required exit need not swing in the direction of egress if it serves a farm building.

I3D8 Fire fighting equipment

[2019: H3.8]

The Deemed-to-Satisfy Provisions of Part E1 do not apply to a farm shed.

I3D9 Fire hydrants and water supplies

[2019: H3.9]

(1) This provision applies to a farm building—

(a) with a total floor area greater than 500 m²; and

(b) located where a fire brigade station is—

(i) not more than 50 km from the building as measured along roads; and

(ii) equipped with equipment capable of utilising a fire hydrant.

(2) A farm building referred to in (1) must be—

(a) provided with a fire hydrant system installed in accordance with AS 2419.1, except reference to ‘4 hours’ water supply in clause 4.2 is replaced with ‘2 hours’; or

(b) located on the same allotment as an access point to a water supply which—

(i) has a minimum total capacity of 144,000 litres; and

(ii) is situated so as to enable emergency services vehicles access to within 4 m; and

(iii) is located within 60 m of the building and not more than 90 m from any part of the building.

(3) For the purposes of (2)(b), water supply for a farm building must consist of one or any number of the following:

(a) A water storage tank.

(b) A dam.

(c) A reservoir.

(d) A river.

(e) A lake.

(f) A bore.

(g) A sea.

(4) If the whole or part of the water supply referred to in (2)(b) is contained in a water storage tank, it must be—

(a) located not less than 10 m from the building; and

(b) fitted with at least one small bore suction connection and one large bore suction connection where—
(i) each suction connection is located in a position so as to enable emergency service vehicles access to within 4 m; and
(ii) the suction connections are located not less than 10 m from the building; and
(iii) small bore suction connection’ and ‘large bore suction connection' have the meanings contained in AS 2419.1.

I3D10 Fire hose reels

[2019: H3.10]
A fire hose reel system need not be provided to serve a farm building where portable fire extinguishers are installed in accordance with I3D11.

I3D11 Portable fire extinguishers

[2019: H3.11]

(1) A farm building not provided with a fire hose reel system in accordance with E1D3 must be provided with—
(a) one portable fire extinguisher rated at not less than 5ABE in each room containing flammable materials or electrical equipment; and
(b) one portable fire extinguisher rated at not less than 4A60BE adjacent to every required exit door; and
(c) location signs complying with clauses 3.3 to 3.9 of AS 2444 above each required portable fire extinguisher.

(2) A farm shed must be provided with not less than one portable fire extinguisher for every 500 m² of floor area or part thereof, distributed as evenly as practicable throughout the building.

(3) A portable fire extinguisher required by (2) must be—
(a) of ABE type; and
(b) not less than 4.5 kg in size; and
(c) installed in accordance with Section 3 of AS 2444.

I3D12 Emergency lighting requirements

[2019: H3.12]

(1) An emergency lighting system need not be installed in a farm building—
(a) with no artificial lighting as permitted by I3D18; or
(b) with artificial lighting where, if that lighting fails due to an emergency, automatic power supply to the building is provided by a fuel-driven generator.

(2) An emergency lighting system need not be installed in a farm shed.

I3D13 Exit signs

[2019: H3.13]

An exit serving a farm shed need not be provided with an exit sign where the exit is a permanent opening not less than 2 m wide.

I3D14 Direction signs

[2019: H3.14]

In a farm building or a farm shed, if an exit is not readily apparent to persons occupying or visiting the building, exit signs complying with I3D15 must be installed in appropriate positions in corridors, hallways, lobbies and the like, indicating the direction to a required exit.
I3D15 Design and operation of exit signs

[2019: H3.15]

(1) In a farm building, each required exit sign provided under E4D5 and I3D14 need not comply with E4D8 if—
 (a) the use of illuminated exit signs may adversely impact the behaviour or welfare of animals being kept in the building; and
 (b) non-illuminated exit signs are installed in accordance with the requirements of Appendix D of AS/NZS 2293.1 as for an externally illuminated exit sign, and clauses 5.6 and 5.8 of AS/NZS 2293.1.

(2) In a farm shed, each required exit sign provided under E4D5 and I3D14 need not comply with E4D8 if—
 (a) non-illuminated exit signs are installed in accordance with the requirements of Appendix D of AS/NZS 2293.1 as for an externally illuminated exit sign, and clauses 5.6 and 5.8 of AS/NZS 2293.1; and
 (b) the maximum viewing distance in clause 5.6 of AS/NZS 2293.1 is not more than 24 m.

I3D16 Sanitary facilities

[2019: H3.16]

F24D4 does not apply to a farm shed.

I3D17 Height of rooms and other spaces

[2019: H3.17]

F35D2 does not apply to a farm shed which has ceiling heights not less than—

 (a) in a room, corridor, passageway or the like — 2.1 m; and
 (b) in a room or space with a sloping ceiling or projections — a height of not less than 2.1 m for at least two-thirds of the floor area of the room or space, and when calculating the floor area of the room or space, any part that has a ceiling height of less than 1.5 m is not included; and
 (c) in a stairway, ramp, landing or the like — 2.0 m measured vertically above the nosing line of stairway treads or the floor surface of the ramp, landing or the like.

I3D18 Artificial lighting

[2019: H3.18]

(1) An artificial lighting system need not be provided in a farm building where—
 (a) occupants are provided with visibility sufficient for safe movement through suitable alternative means; and
 (b) the use of artificial lighting could adversely affect the function of the building including, but not limited to—
 (i) the behaviour or welfare of animals being kept in the building; or
 (ii) the cultivating or propagating of plants or fungi.

(2) An artificial lighting system need not be provided in a farm shed.
Specification 32 Construction of proscenium walls

S32C1 Scope

This Specification contains the requirements for the construction of proscenium walls for theatres, public halls, or the like.

S32C2 Separation of stage areas, etc

(1) Dressing rooms, scene docks, property rooms, workshops, associated store rooms and other ancillary areas must be—
 (a) located on the stage side of the proscenium wall; and
 (b) separated from corridors and the like by construction having an FRL of not less than 60/60/60, and if of lightweight construction, complying with Specification 6.

(2) The stage and backstage must be separated from other parts of the building other than the audience seating area by construction having an FRL of not less than 60/60/60, and if of lightweight construction, complying with Specification 6.

(3) Any doorway in the construction referred to in (1) and (2) must be protected by a self-closing –/60/30 fire door.

S32C3 Proscenium wall construction

A proscenium wall must—
 (a) extend to the underside of the roof covering or the underside of the structural floor next above; and
 (b) have an FRL of not less than 60/60/60, and if of lightweight construction, comply with Specification 6.

S32C4 Combustible materials not to cross proscenium wall

Timber purlins or other combustible material must not pass through or cross any proscenium wall.

S32C5 Protection of openings in proscenium wall

Every opening in a proscenium wall must be protected—
 (a) at the principal opening, by a curtain in accordance with S32C6 which is—
 (i) capable of closing the proscenium opening within 35 seconds either by gravity slide or motor assisted mechanisms; and
 (ii) operated by a system of automatic heat activated devices, manually operated devices or push button emergency devices; and
 (iii) able to be operated from either the stage side or the audience side of the curtain; and
 (b) at any doorway in the wall, by a self-closing –/60/30 fire door.
A curtain required by S32C5 must be—

(a) a fire safety curtain—
 (i) made of non-combustible material; and
 (ii) capable of withstanding a pressure differential of 0.5 kPa over its entire surface area; and
 (iii) so fitted that when fully lowered it inhibits the penetration of smoke around the perimeter of the opening, from the stage; or

(b) a curtain—
 (i) having fire hazard properties complying with Specification 7; and
 (ii) protected by a deluge system of open sprinklers installed along the full width of the curtain.
Section J Energy efficiency

Part J1 Energy efficiency performance requirements

Objectives

<table>
<thead>
<tr>
<th>Objective</th>
<th>Functional Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1O1</td>
<td>Reducing greenhouse gas emissions</td>
</tr>
</tbody>
</table>

Performance Requirements

<table>
<thead>
<tr>
<th>Performance Requirement</th>
<th>Verification Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1P1</td>
<td>Energy use</td>
</tr>
<tr>
<td>J1V1</td>
<td>NABERS Energy for Offices</td>
</tr>
<tr>
<td>J1V2</td>
<td>Green Star</td>
</tr>
<tr>
<td>J1V3</td>
<td>Verification using a reference building</td>
</tr>
<tr>
<td>J1V4</td>
<td>Building envelope sealing</td>
</tr>
</tbody>
</table>

Part J2 Energy efficiency

Deemed-to-Satisfy Provisions

<table>
<thead>
<tr>
<th>Provision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J2D1</td>
<td>Deemed-to-Satisfy Provisions</td>
</tr>
<tr>
<td>J2D2</td>
<td>Application of Section J</td>
</tr>
<tr>
<td>J2D3</td>
<td>Heating and cooling loads of sole-occupancy units of a Class 2 building or a Class 4 part</td>
</tr>
<tr>
<td>J2D4</td>
<td>Ceiling fans</td>
</tr>
<tr>
<td>J2D5</td>
<td>Roof thermal breaks</td>
</tr>
<tr>
<td>J2D6</td>
<td>Wall thermal breaks</td>
</tr>
</tbody>
</table>

Part J3 Building fabric

Deemed-to-Satisfy Provisions

<table>
<thead>
<tr>
<th>Provision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J3D1</td>
<td>Deemed-to-Satisfy Provisions</td>
</tr>
<tr>
<td>J3D2</td>
<td>Application of Part</td>
</tr>
<tr>
<td>J3D3</td>
<td>Thermal construction — general</td>
</tr>
<tr>
<td>J3D4</td>
<td>Roof and ceiling construction</td>
</tr>
<tr>
<td>J3D5</td>
<td>Roof lights</td>
</tr>
<tr>
<td>J3D6</td>
<td>Walls and glazing</td>
</tr>
<tr>
<td>J3D7</td>
<td>Floors</td>
</tr>
</tbody>
</table>

Part J4 Building sealing

Deemed-to-Satisfy Provisions

<table>
<thead>
<tr>
<th>Provision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J4D1</td>
<td>Deemed-to-Satisfy Provisions</td>
</tr>
<tr>
<td>J4D2</td>
<td>Application of Part</td>
</tr>
<tr>
<td>J4D3</td>
<td>Chimneys and flues</td>
</tr>
<tr>
<td>J4D4</td>
<td>Roof lights</td>
</tr>
<tr>
<td>J4D5</td>
<td>Windows and doors</td>
</tr>
</tbody>
</table>
Part J5
Air-conditioning and ventilation

Deemed-to-Satisfy Provisions

J5D1 Deemed-to-Satisfy Provisions
J5D2 Application of Part
J5D3 Air-conditioning system control
J5D4 Mechanical ventilation system control
J5D5 Fan systems
J5D6 Ductwork insulation
J5D7 Ductwork sealing
J5D8 Pump systems
J5D9 Pipework insulation
J5D10 Space heating
J5D11 Refrigerant chillers
J5D12 Unitary air-conditioning equipment
J5D13 Heat rejection equipment

Part J6
Artificial lighting and power

Deemed-to-Satisfy Provisions

J6D1 Deemed-to-Satisfy Provisions
J6D2 Application of Part
J6D3 Artificial lighting
J6D4 Interior artificial lighting and power control
J6D5 Interior decorative and display lighting
J6D6 Exterior artificial lighting
J6D7 Boiling water and chilled water storage units
J6D8 Lifts
J6D9 Escalators and moving walkways

Part J7
Heated water supply and swimming pool and spa pool plant

Deemed-to-Satisfy Provisions

J7D1 Deemed-to-Satisfy Provisions
J7D2 Heated water supply
J7D3 Swimming pool heating and pumping
J7D4 Spa pool heating and pumping

Part J8
Facilities for energy monitoring

Deemed-to-Satisfy Provisions

J8D1 Deemed-to-Satisfy Provisions
J8D2 Application of Part
J8D3 Facilities for energy monitoring

Specification 33 Additional requirements
- S33C1 Scope
- S33C2 Additional requirements — general
- S33C3 Additional requirements — NABERS Energy for Offices
- S33C4 Additional requirements — Green Star

Specification 34 Modelling parameters
- S34C1 Scope
- S34C2 Reference building
- S34C3 Proposed building and reference building
- S34C4 Services — proposed and reference building

Specification 35 Modelling profiles
- S35C1 Scope
- S35C2 Modelling profiles

Specification 36 Material properties
- S36C1 Scope
- S36C2 Construction Deemed-to-Satisfy

Specification 37 Calculation of u-value and solar admittance
- S37C1 Scope
- S37C2 General
- S37C3 U-Value — Method 1 (Single Aspect)
- S37C4 U-Value — Method 2 (Multiple Aspects)
- S37C5 Solar admittance — Method 1 (Single Aspect)
- S37C6 Solar admittance — Method 2 (Multiple Aspects)
- S37C7 Shading

Specification 38 Spandrel panel thermal performance
- S38C1 Scope
- S38C2 Spandrel panel R-Value: Calculation method 1
- S38C3 Spandrel panel R-Value: Calculation method 2

Specification 39 Sub-floor thermal performance
- S39C1 Scope
- S39C2 Sub-floor thermal performance

Specification 40 Lighting and power control devices
- S40C1 Scope
- S40C2 Lighting timers
- S40C3 Time switch
- S40C4 Motion detectors
- S40C5 Daylight sensor and dynamic lighting control device
Part J1
Energy efficiency performance requirements

Introduction to this Part

This Part is intended to reduce greenhouse gas emissions from buildings. It addresses greenhouse gas emissions that occur as result of the how the building uses energy, and through the source of the energy used.

Objectives

J1O1
Objective

[2019: JO1]

The Objective of this Section is to reduce greenhouse gas emissions.

Functional Statements

J1F1
Reducing greenhouse gas emissions

[2019: JF1]

To reduce greenhouse gas emissions, to the degree necessary—

(a) a building, including its services, is to be capable of efficiently using energy; and

(b) a building’s services are to obtain their energy from—

(i) a low greenhouse gas intensity source; or

(ii) an on-site renewable energy source; or

(iii) another process, such as reclaimed energy.

Performance Requirements

J1P1
Energy use

[2019: JP1]

A building, including its services, must have features that facilitate the efficient use of energy appropriate to—

(a) the function and use of the building; and

(b) the level of human comfort required for the building use; and

(c) solar radiation being—

(i) utilised for heating; and

(ii) controlled to minimise energy for cooling; and

(d) the energy source of the services; and

(e) the sealing of the building envelope against air leakage; and

(f) for a conditioned space, achieving an hourly regulated energy consumption, averaged over the annual hours of operation, of not more than—

(i) for a Class 6 building, 80 kJ/m².hr; and

(ii) for a Class 5, 7b, 8 or 9a building other than a ward area, or a Class 9b school, 43 kJ/m².hr; and
(iii) for all other building classifications, other than a sole-occupancy unit of a Class 2 building or a Class 4 part of a building, 15 kJ/m².hr.

Verification Methods

J1V1 NABERS Energy for Offices

[2019: JV1]

1. For a Class 5 building, compliance with J1P1 is verified when—

 (a) a minimum 5.5-star NABERS Energy for Offices base building Commitment Agreement is obtained; and

 (b) the energy model required for (a) demonstrates—

 (i) the base building’s greenhouse gas emissions are not more than 67% of the 5.5-star level when excluding—

 (A) tenant supplementary heating and cooling systems; and

 (B) external lighting; and

 (C) carpark services; and

 (ii) a thermal comfort level of between a Predicted Mean Vote of -1 to +1 is achieved across not less than 95% of the floor area of all occupied zones for not less than 98% of the annual hours of operation of the building; and

 (c) the building complies with the additional requirements in Specification 33.

2. For common areas in Class 2 buildings with over 80 sole-occupancy units, compliance with J1P1 is verified when—

 The calculation method for (1) must comply with ANSI/ASHRAE Standard 140.

 (a) NABERS Energy for Apartment Buildings Commitment Agreement is obtained; and

 (b) the energy model required for (a) demonstrates—

 (i) for a conditioned space, 95% of the 4-star level; or

 (ii) for a non-conditioned space, 95% of the 4.5-star level; and

 (c) the energy model required for (a) removes energy associated with—

 (i) external lighting; and

 (ii) carpark services; and

 (iii) services for sole-occupancy units; and

 (iv) heated water supply for sole-occupancy units; and

 (v) plug loads of common area equipment (e.g. in gyms); and

 (vi) swimming pool heating and pumping; and

 (vii) services for an indoor space with a swimming pool or spa; and

 (d) the common area complies with the additional requirements in Specification 33.

3. For a Class 3 hotel, compliance with J1P1 is verified when—

 (a) a NABERS Energy for Hotels Commitment Agreement is obtained; and

 (b) the energy model required for (a)—

 (i) demonstrates the building’s greenhouse gas emissions are below 65% of the maximum 4.5-star level allowance when the emissions budget is recalculated to remove allowances for function room seats, laundry servicing and swimming pools; and

 (ii) removes energy associated with—

 (A) external lighting; and

 (B) carpark services; and

 (C) plug loads; and
(D) process loads; and
(E) laundry services; and
(F) swimming pool heating and pumping; and

(c) a thermal comfort level of between a Predicted Mean Vote of -1 to +1 is achieved across not less than 95% of the floor area of occupied zones for not less than 98% of the annual hours of operation of the building; and

(d) the building complies with the additional requirements in Specification 33.

(4) For a Class 6 shopping centre with a floor area of more than 15,000m², compliance with J1P1 is verified when—
(a) A NABERS Energy for Shopping Centres Commitment Agreement is obtained; and
(b) the energy model required for (a)—
 (i) demonstrates the building’s greenhouse gas emissions are below 80% of the maximum 4.5-star allowance when the emissions budget is recalculated to remove allowances for car parking spaces and multi-storey centres; and
 (ii) removes energy associated with—
 (A) external lighting; and
 (B) carpark services; and
 (C) plug loads; and
 (D) process loads; and

(c) a thermal comfort level of between a Predicted Mean Vote of -1 to +1 is achieved across not less than 95% of the floor area of occupied zones for not less than 98% of the annual hours of operation of the building; and

(d) the building complies with the additional requirements in Specification 33.

(5) The calculation method for (1), (2), (3) and (4) must comply with ANSI/ASHRAE Standard 140.

J1V2 Green Star

[2019: JV2]

(1) For a Class 3, 5, 6, 7, 8 or 9 building, or common area of a Class 2 building, compliance with J1P1 is verified when—
(a) the building complies with the simulation requirements, and is registered, for a Green Star – Design & As-Built rating; and
(b) the annual greenhouse gas emissions of the proposed building are less than 90% of the annual greenhouse gas emissions of the reference building; and
(c) in the proposed building, a thermal comfort level of between a Predicted Mean Vote of -1 to +1 is achieved across not less than 95% of the floor area of all occupied zones for not less than 98% of the annual hours of operation of the building; and
(d) the building complies with the additional requirements in Specification 33.

(2) The calculation method used for (1) must comply with ANSI/ASHRAE Standard 140.
(a) ANSI/ASHRAE Standard 140; and Specification 34.

J1V3 Verification using a reference building

[2019: JV3]

(1) For a Class 3, 5, 6, 7, 8 or 9 building or common area of a Class 2 building, compliance with J1P1 is verified when—
(a) it is determined that the annual greenhouse gas emissions of the proposed building are not more than the annual greenhouse gas emissions of a reference building when—
 (i) the proposed building is modelled with the proposed services; and
 (ii) the proposed building is modelled with the same services as the reference building; and
(b) in the proposed building, a thermal comfort level of between a Predicted Mean Vote of -1 to +1 is achieved across not less than 95% of the floor area of all occupied zones for not less than 98% of the annual hours of operation of the building; and
(c) the building complies with the additional requirements in Specification 33.
operation of the building; and

(c) the building complies with the additional requirements in Specification 33.

(2) The annual greenhouse gas emissions of the proposed building may be offset by—

(a) renewable energy generated and used on site; and

(b) another process such as reclaimed energy, used on site.

(3) The calculation method used for (1) and (2) must comply with—

(a) ANSI/ASHRAE Standard 140; and

(b) Specification 34.

J1V4 Building envelope sealing

[2019: JV4]

Compliance with J1P1(e) is verified when the envelope is sealed at an air permeability rate, tested in accordance with Method 1 of AS/NZS ISO 9972, of not more than—

(a) for a Class 2 building or a Class 4 part of a building, 10 m³/hr.m² at 50 Pa reference pressure; or

(b) for a Class 5, 6, 8 or 9a or 9b building, other than a ward area, in climate zones 1, 7 and 8, 5 m³/hr.m² at 50 Pa reference pressure; or

(c) for a Class 3 or 9c building, or a Class 9a ward area in climate zones 1, 3, 4, 6, 7 and 8, 5 m³/hr.m² at 50 Pa reference pressure.
Deemed-to-Satisfy Provisions

J2D1 Deemed-to-Satisfy Provisions

[2019: J0.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirement J1P1 is satisfied by complying with—
 (a) J2D2 to J2D6; and
 (b) J3D2 to J3D7; and
 (c) J4D2 to J4D8; and
 (d) J5D2 to J5D13; and
 (e) J6D2 to J6D9; and
 (f) J7D2 to J7D4; and
 (g) J8D2 to J8D3.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

J2D2 Application of Section J

[2019: J0.1]

Performance Requirement J1P1 is satisfied by complying with—

(a) for reducing the heating or cooling loads—
 (i) of sole-occupancy units of a Class 2 building or a Class 4 part of a building, J2D3 to J2D6; and
 (ii) of a Class 2 to 9 building, other than the sole-occupancy units of a Class 2 building or a Class 4 part of a building, Parts J3 and J4; and
(b) for air-conditioning and ventilation, Part J5; and
(c) for artificial lighting and power, Part J6; and
(d) for heated water supply and swimming pool and spa pool plant, Part J7; and
(e) for facilities for monitoring, Part J8.

J2D3 Heating and cooling loads of sole-occupancy units of a Class 2 building or a Class 4 part

[2019: J0.3]

(1) The sole-occupancy units of a Class 2 building or a Class 4 part of a building must—
 (a) for reducing the heating or cooling loads—
 (i) collectively achieve an average energy rating of not less than 6 stars, including the separate heating and cooling load limits; and
(ii) individually achieve an energy rating of not less than 5 stars, including the separate heating and cooling load limits; and

(b) for general thermal construction, comply with J3D; and

(c) for thermal breaks, comply with J2D5 and J2D6; and

(d) for floor edge insulation, comply with J3D6(2) and J3D7(3); and

(e) for building sealing, comply with Part J4.

(2) Energy ratings referred to in (1)(a)(i) and (ii) must be achieved using house energy rating software and the load limits specified in the ABCB Standard for NatHERS Heating and Cooling Load Limits.

J2D4 Ceiling fans

Ceiling fans required as part of compliance with J2D3(1)(a), must—

(a) be permanently installed; and

(b) have a speed controller; and

(c) serve the whole room, with the floor area that a single fan serves not exceeding—

(i) 15 m² if it has a blade rotation diameter of not less than 900 mm; and

(ii) 25 m² if it has a blade rotation diameter of not less than 1 200 mm.

J2D5 Roof thermal breaks

For compliance with J3D3(1)(c), a roof must have a thermal break, consisting of a material with an R-Value of not less than R0.2, installed at all points of contact between the metal sheet roofing and its supporting metal purlins, metal rafters or metal battens if the roof—

(a) has metal sheet roofing fixed to metal purlins, metal rafters or metal battens; and

(b) does not have a ceiling lining or has a ceiling lining fixed directly to those metal purlins, metal rafters or metal battens.

J2D6 Wall thermal breaks

For compliance with J3D3(1)(c), a wall must have a thermal break, consisting of a material with an R-Value of not less than R0.2, installed at all points of contact between the external cladding and the metal frame if the wall—

(a) does not have a wall lining or has a wall lining that is fixed directly to the same metal frame; and

(b) has lightweight external cladding such as weatherboards, fibre-cement or metal sheeting fixed to a metal frame.
Introduction to this Part

This Part contains Deemed-to-Satisfy Provisions for Part J1. It sets out provisions for the insulation of building fabric including roofs and walls, ceiling insulation, roof lights, glazing and floors.

Deemed-to-Satisfy Provisions

J3D1 Deemed-to-Satisfy Provisions

[2019: J1.0]

1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirement J1P1 is satisfied by complying with—
 (a) J2D2 to J2D6; and
 (b) J3D2 to J3D7; and
 (c) J4D2 to J4D8; and
 (d) J5D2 to J5D13; and
 (e) J6D2 to J6D9; and
 (f) J7D2 to J7D4; and
 (g) J8D2 to J8D3.

2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

J3D2 Application of Part

[2019: J1.1]

The Deemed-to-Satisfy Provisions of this Part apply to building elements forming the envelope of a Class 2 to 9 building other than J3D3(5), J3D4, J3D5, J3D6 and J3D7(1) which do not apply to a Class 2 sole-occupancy unit or a Class 4 part of a building.

J3D3 Thermal construction — general

[2019: J1.2]

1) Where required, insulation must comply with AS/NZS 4859.1 and be installed so that it—
 (a) abuts or overlaps adjoining insulation other than at supporting members such as studs, noggings, joists, furring channels and the like where the insulation must be against the member; and
 (b) forms a continuous barrier with ceilings, walls, bulkheads, floors or the like that inherently contribute to the thermal barrier; and
 (c) does not affect the safe or effective operation of a service or fitting.

2) Where required, reflective insulation must be installed with—
 (a) the necessary airspace to achieve the required R-Value between a reflective side of the reflective insulation and a building lining or claddling; and
 (b) the reflective insulation closely fitted against any penetration, door or window opening; and
 (c) the reflective insulation adequately supported by framing members; and
 (d) each adjoining sheet of roll membrane being—
Energy efficiency

(i) overlapped not less than 50 mm; or
(ii) taped together.

(3) Where required, bulk insulation must be installed so that—
 (a) it maintains its position and thickness, other than where it is compressed between cladding and supporting members, water pipes, electrical cabling or the like; and
 (b) in a ceiling, where there is no bulk insulation or reflective insulation in the wall beneath, it overlaps the wall by not less than 50 mm.

(4) Roof, ceiling, wall and floor materials, and associated surfaces are deemed to have the thermal properties listed in Specification 36.

(5) The required Total R-Value and Total System U-Value, including allowance for thermal bridging, must be—
 (a) calculated in accordance with AS/NZS 4859.2 for a roof or floor; or
 (b) determined in accordance with Specification 37 for wall-glazing construction; or
 (c) determined in accordance with Specification 39 or Section 3.5 of CIBSE Guide A for soil or sub-floor spaces.

J3D4 Roof and ceiling construction

[2019: J1.3]

(1) A roof or ceiling must achieve a Total R-Value greater than or equal to—
 (a) in climate zones 1, 2, 3, 4 and 5, R3.7 for a downward direction of heat flow; and
 (b) in climate zone 6, R3.2 for a downward direction of heat flow; and
 (c) in climate zone 7, R3.7 for an upward direction of heat flow; and
 (d) in climate zone 8, R4.8 for an upward direction of heat flow.

(2) In climate zones 1, 2, 3, 4, 5, 6 and 7, the solar absorptance of the upper surface of a roof must be not more than 0.45.
SA J3D4(3)

J3D5 Roof lights

[2019: J1.4]

Roof lights must have—
 (a) a total area of not more than 5% of the floor area of the room or space served; and
 (b) transparent and translucent elements, including any imperforate ceiling diffuser, with a combined performance of—
 (i) for Total system SHGC, in accordance with Table J3D5; and
 (ii) for Total system U-Value, not more than U3.9.

Table J3D5: Roof lights – Total system SHGC

<table>
<thead>
<tr>
<th>Roof light shaft index</th>
<th>Total area of roof lights up to 3.5% of the floor area of the room or space</th>
<th>Total area of roof lights more than 3.5% and up to 5% of the floor area of the room or space</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.0</td>
<td>≤ 0.45</td>
<td>≤ 0.29</td>
</tr>
<tr>
<td>≥ 1.0 to < 2.5</td>
<td>≤ 0.51</td>
<td>≤ 0.33</td>
</tr>
<tr>
<td>≥ 2.5</td>
<td>≤ 0.76</td>
<td>≤ 0.49</td>
</tr>
</tbody>
</table>

Table Notes:

(A) The roof light shaft index is determined by measuring the distance from the centre of the shaft at the roof to the centre of the shaft at the ceiling level and dividing it by the average internal dimension of...
the shaft opening at the ceiling level (or the diameter for a circular shaft) in the same units of measurement.

(B) The area of a roof light is the area of the roof opening that allows light to enter the building.

(C) The total area of roof lights is the combined area for all roof lights serving the room or space.

J3D6 Walls and glazing

[2019: J1.5]

1. The Total System U-Value of wall-glazing construction, including wall-glazing construction which is wholly internal must not be greater than—

 (a) for a Class 2 common area, a Class 5, 6, 7, 8 or 9b building or a Class 9a building other than a ward area, U2.0; and

 (b) for a Class 3 or 9c building or a Class 9a ward area—

 (i) in climate zones 1, 3, 4, 6 or 7, U1.1; or

 (ii) in climate zones 2 or 5, U2.0; or

 (iii) in climate zone 8, U0.9.

2. The Total System U-Value of display glazing must not be greater than U5.8.

3. The Total System U-Value of wall-glazing construction must be calculated in accordance with Specification 37.

4. Wall components of a wall-glazing construction must achieve a minimum Total R-Value of—

 (a) where the wall is less than 80% of the area of the wall-glazing construction, R1.0; or

 (b) where the wall is 80% or more of the area of the wall-glazing construction, the value specified in Table J3D6a.

5. The solar admittance of externally facing wall-glazing construction, excluding wall-glazing construction wholly internal must not be greater than—

 (a) for a Class 2 common area, a Class 5, 6, 7, 8 or 9b building or a Class 9a building other than a ward area, the values specified in Table J3D6b; and

 (b) for a Class 3 or 9c building or a Class 9a ward area, the values specified in Table J3D6c.

6. The solar admittance of a wall-glazing construction must be calculated in accordance with Specification 37.

7. The Total system SHGC of display glazing must not be greater than 0.81 divided by the applicable shading factor specified in S37C7.

Table J3D6a: Minimum wall Total R-Value - Wall area 80% or more of wall-glazing construction area

<table>
<thead>
<tr>
<th>Climate zone</th>
<th>Class 2 common area, Class 5, 6, 7, 8 or 9b building or a Class 9c building other than a ward area</th>
<th>Class 3 or 9c building or Class 9a ward area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.4</td>
<td>3.3</td>
</tr>
<tr>
<td>2</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>1.4</td>
<td>3.3</td>
</tr>
<tr>
<td>4</td>
<td>1.4</td>
<td>2.8</td>
</tr>
<tr>
<td>5</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>6</td>
<td>1.4</td>
<td>2.8</td>
</tr>
<tr>
<td>7</td>
<td>1.4</td>
<td>2.8</td>
</tr>
<tr>
<td>8</td>
<td>1.4</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Table J3D6b: Maximum wall-glazing construction solar admittance - Class 2 common area, Class 5, 6, 7, 8 or 9b building or Class 9a building other than a ward area

<table>
<thead>
<tr>
<th>Climate zone</th>
<th>Eastern aspect solar admittance</th>
<th>Northern aspect solar admittance</th>
<th>Southern aspect solar admittance</th>
<th>Western aspect solar admittance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>2</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>3</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>4</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>5</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>6</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>7</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
<td>0.2</td>
<td>0.42</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Table J3D6c: Maximum wall-glazing construction solar admittance - Class 3 or 9c building or Class 9a ward area

<table>
<thead>
<tr>
<th>Climate zone</th>
<th>Eastern aspect solar admittance</th>
<th>Northern aspect solar admittance</th>
<th>Southern aspect solar admittance</th>
<th>Western aspect solar admittance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.07</td>
<td>0.07</td>
<td>0.10</td>
<td>0.07</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>3</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>4</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>5</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>6</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>7</td>
<td>0.07</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>8</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
</tbody>
</table>

J3D7 Floors

[2019: J1.6]

1. A floor must achieve the **Total R-Value** specified in Table J3D7.

2. A floor must be insulated around the vertical edge of its perimeter with insulation having an **R-Value** greater than or equal to 1.0 when the floor—
 (a) is a concrete slab-on-ground in **climate zone 8**; or
 (b) has an in-slab or in-screed heating or cooling system, except where used solely in a bathroom, amenity area or the like.

3. Insulation **required** by (2) for a concrete slab-on-ground must—
 (a) be water resistant; and
 (b) be continuous from the adjacent finished ground level—
 (i) to a depth not less than 300 mm; or
 (ii) for the full depth of the vertical edge of the concrete slab-on-ground.
Table J3D7: Floors – Minimum Total R-Value

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone 1—upwards heat flow</th>
<th>Climate zones 2 and 3—upwards and downwards heat flow</th>
<th>Climate zones 4, 5, 6 and 7—downwards heat flow</th>
<th>Climate zone 8—downwards heat flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>A floor without an in-slab heating or cooling system</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>3.5</td>
</tr>
<tr>
<td>A floor with an in-slab heating or cooling system</td>
<td>3.25</td>
<td>3.25</td>
<td>3.25</td>
<td>4.75</td>
</tr>
</tbody>
</table>

Table Notes:

For the purpose of calculating the *Total R-Value* of a floor, the sub-floor and soil *R-Value* must be calculated in accordance with *Specification 40* or Section 3.5 of CIBSE Guide A.
Introduction to this Part

This Part contains Deemed-to-Satisfy Provisions for Part J1. Its sets out provisions for sealing of buildings to prevent heat loss via chimneys and flues, roof lights, windows and doors, exhaust fans and evaporative cooling systems.

Deemed-to-Satisfy Provisions

J4D1 Deemed-to-Satisfy Provisions

[2019: J3.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirement J1P1 is satisfied by complying with—
 (a) J2D2 to J2D6; and
 (b) J3D2 to J3D7; and
 (c) J4D2 to J4D8; and
 (d) J5D2 to J5D13; and
 (e) J6D2 to J6D9; and
 (f) J7D2 to J7D4; and
 (g) J8D2 to J8D3.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

J4D2 Application of Part

[2019: J3.1]

The Deemed-to-Satisfy Provisions of this Part apply to elements forming the envelope of a Class 2 to 9 building, other than—

 (a) a building in climate zones 1, 2, 3 and 5 where the only means of air-conditioning is by using an evaporative cooler; or
 (b) a permanent building opening, in a space where a gas appliance is located, that is necessary for the safe operation of a gas appliance; or
 (c) a building or space where the mechanical ventilation required by Part F4 provides sufficient pressurisation to prevent infiltration.

J4D3 Chimneys and flues

[2019: J3.2]

The chimney or flue of an open solid-fuel burning appliance must be provided with a damper or flap that can be closed to seal the chimney or flue.

J4D4 Roof lights

[2019: J3.3]

(1) A roof light must be sealed, or capable of being sealed, when serving—
 (a) a conditioned space; or
(b) a habitable room in climate zones 4, 5, 6, 7 or 8.

(2) A roof light required by (1) to be sealed, or capable of being sealed, must be constructed with—
 (a) an imperforate ceiling diffuser or the like installed at the ceiling or internal lining level; or
 (b) a weatherproof seal; or
 (c) a shutter system readily operated either manually, mechanically or electronically by the occupant.

J4D5 Windows and doors

(1) A door, openable window or the like must be sealed—
 (a) when forming part of the envelope; or
 (b) in climate zones 4, 5, 6, 7 or 8.

(2) The requirements of (1) do not apply to—
 (a) a window complying with AS 2047; or
 (b) a fire door or smoke door; or
 (c) a roller shutter door, roller shutter grille or other security door or device installed only for out-of-hours security.

(3) A seal to restrict air infiltration—
 (a) for the bottom edge of a door, must be a draft protection device; and
 (b) for the other edges of a door or the edges of an openable window or other such opening, may be a foam or rubber compression strip, fibrous seal or the like.

(4) An entrance to a building, if leading to a conditioned space must have an airlock, self-closing door, rapid roller door, revolving door or the like, other than—
 (a) where the conditioned space has a floor area of not more than 50 m2; or
 (b) where a café, restaurant, open front shop or the like has—
 (i) a 3 m deep un-conditioned zone between the main entrance, including an open front, and the conditioned space; and
 (ii) at all other entrances to the café, restaurant, open front shop or the like, self-closing doors.

(5) A loading dock entrance, if leading to a conditioned space, must be fitted with a rapid roller door or the like.

J4D6 Exhaust fans

An exhaust fan must be fitted with a sealing device such as a self-closing damper or the like when serving—
 (a) a conditioned space; or
 (b) a habitable room in climate zones 4, 5, 6, 7 or 8.

J4D7 Construction of ceilings, walls and floors

(1) Ceilings, walls, floors and any opening such as a window frame, door frame, roof light frame or the like must be constructed to minimise air leakage in accordance with (2) —
 (a) when forming part of the envelope; or
 (b) in climate zones 4, 5, 6, 7 or 8.

(2) Construction required by (1) must be—
 (a) enclosed by internal lining systems that are close fitting at ceiling, wall and floor junctions; or
(b) sealed at junctions and penetrations with—
 (i) close fitting architrave, skirting or cornice; or
 (ii) expanding foam, rubber compressible strip, caulking or the like.

(3) The requirements of (1) do not apply to openings, grilles or the like *required* for smoke hazard management.

J4D8 Evaporative coolers

[2019: J3.7]

An evaporative cooler must be fitted with a self-closing damper or the like—

(a) when serving a heated space; or
(b) in *climate zones* 4, 5, 6, 7 or 8.
Part J5 Air-conditioning and ventilation

Introduction to this Part

This Part contains Deemed-to-Satisfy Provisions for Part J1. Its sets out provisions for the configuration of air-conditioning and ventilation systems, fan systems, insulation and sealing of ducts and pipework, space heating and pump systems.

Deemed-to-Satisfy Provisions

J5D1 Deemed-to-Satisfy Provisions

[2019: J5.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirement J1P1 is satisfied by complying with—

(a) J2D2 to J2D6; and
(b) J3D2 to J3D7; and
(c) J4D2 to J4D8; and
(d) J5D2 to J5D13; and
(e) J6D2 to J6D9; and
(f) J7D2 to J7D4; and
(g) J8D2 to J8D3.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

J5D2 Application of Part

[2019: J5.1]

The Deemed-to-Satisfy Provisions of this Part do not apply to a Class 8 electricity network substation.

J5D3 Air-conditioning system control

[2019: J5.2]

(1) An air-conditioning system—

(a) must be capable of being deactivated when the building or part of a building served by that system is not occupied; and

(b) when serving more than one air-conditioning zone or area with different heating or cooling needs, must—

(i) thermostatically control the temperature of each zone or area; and

(ii) not control the temperature by mixing actively heated air and actively cooled air; and

(iii) limit reheating to not more than—

(A) for a fixed supply air rate, a 7.5 K rise in temperature; and

(B) for a variable supply air rate, a 7.5 K rise in temperature at the nominal supply air rate but increased or decreased at the same rate that the supply air rate is respectively decreased or increased; and

(c) which provides the required mechanical ventilation, other than in climate zone 1 or where dehumidification control is needed, must have an outdoor air economy cycle if the total air flow rate of any airside component of an air-conditioning system is greater than or equal to the flow rates in Table J5D3; and

(d) which contains more than one water heater, chiller or coil, must be capable of stopping the flow of water to those
(e) with an airflow of more than 1000 L/s, must have a variable speed fan when its supply air quantity is capable of being varied; and

(f) when serving a sole-occupancy unit in a Class 3 building, must not operate when any external door of the sole-occupancy unit that opens to a balcony or the like, is open for more than one minute; and

(g) must have the ability to use direct signals from the control components responsible for the delivery of comfort conditions in the building to regulate the operation of central plant; and

(h) must have a control dead band of not less than 2°C, except where a smaller range is required for specialised applications; and

(i) must be provided with balancing dampers and balancing valves, as required to meet the needs of the system at its maximum operating condition, that ensure the maximum design air or fluid flow is achieved but not exceeded by more than 15% above design at each—
 (i) component; or
 (ii) group of components operating under a common control in a system containing multiple components; and

(j) must ensure that each independently operating space of more than 1 000 m² and every separate floor of the building has provision to terminate airflow independently of the remainder of the system sufficient to allow for different operating times; and

(k) must have automatic variable temperature operation of heated water and chilled water circuits; and

(l) when deactivated, must close any motorised outdoor air or return air damper that is not otherwise being actively controlled.

(2) When two or more air-conditioning systems serve the same space they must use control sequences that prevent the systems from operating in opposing heating and cooling modes.

(3) Time switches — the following applies:

 (a) A time switch must be provided to control—
 (i) an air-conditioning system of more than 2 kW; and
 (ii) a heater of more than 1 kW heating used for air-conditioning.

 (b) The time switch must be capable of switching electric power on and off at variable pre-programmed times and on variable pre-programmed days.

 (c) The requirements of (a) and (b) do not apply to—
 (i) an air-conditioning system that serves—
 (A) only one sole-occupancy unit in a Class 2, 3 or 9c building; or
 (B) a Class 4 part of a building; or
 (ii) a conditioned space where air-conditioning is needed for 24 hour continuous use.

Table J5D3: Requirement for an outdoor air economy cycle

<table>
<thead>
<tr>
<th>Climate zone</th>
<th>Requirement for an outdoor air economy cycle (L/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9000</td>
</tr>
<tr>
<td>3</td>
<td>7500</td>
</tr>
<tr>
<td>4</td>
<td>3500</td>
</tr>
<tr>
<td>5</td>
<td>3000</td>
</tr>
<tr>
<td>6</td>
<td>2000</td>
</tr>
<tr>
<td>7</td>
<td>2500</td>
</tr>
<tr>
<td>8</td>
<td>4000</td>
</tr>
</tbody>
</table>
J5D4 Mechanical ventilation system control

[2019: J5.3]

(1) General — A mechanical ventilation system, including one that is part of an air-conditioning system, except where the mechanical system serves only one sole-occupancy unit in a Class 2 building or serves only a Class 4 part of a building, must—

(a) be capable of being deactivated when the building or part of the building served by that system is not occupied; and

(b) when serving a conditioned space, except in periods when evaporative cooling is being used—

(i) where specified in Table J5D4, have—

(A) an energy reclaiming system that preconditions outdoor air at a minimum sensible heat transfer effectiveness of 60%; or

(B) demand control ventilation in accordance with AS 1668.2 if appropriate to the application; and

(ii) not exceed the minimum outdoor air quantity required by Part F4 by more than 20%, except where—

(A) additional unconditioned outdoor air is supplied for free cooling; or

(B) additional mechanical ventilation is needed to balance the required exhaust or process exhaust; or

(C) an energy reclaiming system preconditions all the outdoor air; and

(c) for an airflow of more than 1000 L/s, have a variable speed fan unless the downstream airflow is required by Part F4 to be constant.

(2) Exhaust systems — An exhaust system with an air flow rate of more than 1000 L/s must be capable of stopping the motor when the system is not needed, except for an exhaust system in a sole-occupancy unit in a Class 2, 3 or 9c building.

(3) Carpark exhaust systems — Carpark exhaust systems must have a control system in accordance with—

(a) clause 4.11.2 of AS 1668.2; or

(b) clause 4.11.3 of AS 1668.2.

(4) Time switches — The following applies:

(a) A time switch must be provided to a mechanical ventilation system with an air flow rate of more than 1000 L/s.

(b) The time switch must be capable of switching electric power on and off at variable pre-programmed times and on variable pre-programmed days.

(c) The requirements of (a) and (b) do not apply to—

(i) a mechanical ventilation system that serves—

(A) only one sole-occupancy unit in a Class 2, 3 or 9c building; or

(B) a Class 4 part of a building; or

(ii) a building where mechanical ventilation is needed for 24 hour occupancy.

Table J5D4: Required outdoor air treatment

<table>
<thead>
<tr>
<th>Climate zone</th>
<th>Outdoor air flow (L/s)</th>
<th>Required measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>500</td>
<td>Modulating control</td>
</tr>
<tr>
<td>2</td>
<td>Not applicable</td>
<td>No required measure</td>
</tr>
<tr>
<td>3</td>
<td>>1000</td>
<td>Modulating control</td>
</tr>
<tr>
<td>4 and 6</td>
<td>>500</td>
<td>Modulating control or energy reclaiming system</td>
</tr>
<tr>
<td>5</td>
<td><1000</td>
<td>Modulating control or energy reclaiming system</td>
</tr>
<tr>
<td>7 and 8</td>
<td>>250</td>
<td>Modulating control or energy reclaiming system</td>
</tr>
</tbody>
</table>
J5D5 Fan systems

[2019: J5.4]

(1) Fans, ductwork and duct components that form part of an *air-conditioning* system or mechanical ventilation system must—

(a) separately comply with (2), (3), (4) and (5); or

(b) achieve a fan motor input power per unit of flowrate lower than the fan motor input power per unit of flowrate achieved when applying (2), (3), (4) and (5) together.

(2) Fans:

(a) Fans in systems that have a static pressure of not more than 200 Pa must have an efficiency at the full load operating point not less than the efficiency calculated with the following formula:

\[\eta_{\text{min}} = 0.13 \times \ln(p) - 0.13 \]

(b) In the formula at (a)—

(i) \(\eta_{\text{min}} \) = the minimum *required* system static efficiency for installation type A or C or the minimum *required* system total efficiency installation type B or D; and

(ii) \(p \) = the static pressure of the system (Pa); and

(iii) \(\ln \) = natural logarithm.

(c) Fans in systems that have a static pressure above 200 Pa must have an efficiency at the full load operating point not less than the efficiency calculated with the following formula:

\[\eta_{\text{min}} = 0.85 \times (a \times \ln(P) - b + N) / 100 \]

(d) In the formula at (c)—

(i) \(\eta_{\text{min}} \) = the minimum *required* system static efficiency for installation type A or C or the minimum *required* system total efficiency installation type B or D; and

(ii) \(P \) = the motor input power of the fan; and

(iii) \(N \) = the minimum performance grade obtained from Table J5D5a; and

(iv) \(a \) = regression coefficient a, obtained from Table J5D5b; and

(v) \(b \) = regression coefficient b, obtained from Table J5D5c; and

(vi) \(\ln \) = natural logarithm.

(e) The requirements of (a), (b), (c) and (d) do not apply to fans that need to be explosion proof.

(3) Ductwork:

(a) The pressure drop in the index run across all straight sections of rigid ductwork and all sections of flexible ductwork must not exceed 1 Pa/m when averaged over the entire length of straight rigid duct and flexible duct. The pressure drop of flexible ductwork sections may be calculated as if the flexible ductwork is laid straight.

(b) Flexible ductwork must not account for more than 6 m in length in any duct run.

(c) The upstream connection to ductwork bends, elbows and tees in the index run must have an equivalent diameter to the connected duct.

(d) Turning vanes must be included in all rigid ductwork elbows of 90° or more acute than 90° in the index run except where—

(i) the inclusion of turning vanes presents a fouling risk; or

(ii) a long radius bend in accordance with AS 4254.2 is used.

(4) Ductwork components in the index run:

(a) The pressure drop across a coil must not exceed the value specified in Table J5D5b.

(b) A high efficiency particulate arrestance (HEPA) air filter must not exceed the higher of—
(i) a pressure drop of 200 Pa when clean; or
(ii) the filter design pressure drop when clean at an air velocity of 1.5 m/s.

(c) Any other air filter must not exceed—
(i) the pressure drop specified in Table J5D5e when clean; or
(ii) the filter design pressure drop when clean at an air velocity of 2.5 m/s.

(d) The pressure drop across intake louvres must not exceed the higher of—
(i) for single stage louvres, 30 Pa; and
(ii) for two stage louvres, 60 Pa; and
(iii) for acoustic louvres, 50 Pa; and
(iv) for other non-weatherproof louvres, 30 Pa.

(e) The pressure drop across a variable air volume box, with the damper in the fully open position, must not exceed—
(i) for units with electric reheat, 100 Pa; and
(ii) for other units, 25 Pa not including coil pressure losses.

(f) Rooftop cowls must not exceed a pressure drop of 30 Pa.

(g) Attenuators must not exceed a pressure drop of 40 Pa.

(h) Fire dampers must not exceed a pressure drop of 15 Pa when open.

(i) Balancing and control dampers in the index run must not exceed a pressure drop of 25 Pa when in the fully open position.

(j) Supply air diffusers and grilles must not exceed a pressure drop of 40 Pa.

(k) Exhaust grilles must not exceed a pressure drop of 30 Pa.

(l) Transfer ducts must not exceed a pressure drop of 12 Pa.

(m) Door grilles must not exceed a pressure drop of 12 Pa.

(n) Active chilled beams must not exceed a pressure drop of 150 Pa.

(5) The requirements of (1), (2), (3) and (4) do not apply to—
(a) fans in unducted air-conditioning systems with a supply air capacity of less than 1000 L/s; and
(b) smoke spill fans, except where also used for air-conditioning or ventilation; and
(c) the power for process-related components; and
(d) kitchen exhaust systems.

Table J5D5a: Minimum fan performance grade

<table>
<thead>
<tr>
<th>Fan type</th>
<th>Installation type A or C</th>
<th>Installation type B or D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial — as a component of an air handling unit or fan coil unit</td>
<td>46.0</td>
<td>51.5</td>
</tr>
<tr>
<td>Axial — other</td>
<td>42.0</td>
<td>61.0</td>
</tr>
<tr>
<td>Mixed flow — as a component of an air handling unit or fan coil unit</td>
<td>46.0</td>
<td>51.5</td>
</tr>
<tr>
<td>Mixed flow — other</td>
<td>52.5</td>
<td>65.0</td>
</tr>
<tr>
<td>Centrifugal forward — curved</td>
<td>46.0</td>
<td>51.5</td>
</tr>
<tr>
<td>Centrifugal radial bladed</td>
<td>46.0</td>
<td>51.5</td>
</tr>
<tr>
<td>Centrifugal backward-curved</td>
<td>64.0</td>
<td>64.0</td>
</tr>
</tbody>
</table>

Table Notes:

1. Installation type A means an arrangement where the fan is installed with free inlet and outlet conditions.
2. Installation type B means an arrangement where the fan is installed with a free inlet and a duct at its outlet.
3. Installation type C means an arrangement where the fan is installed with a duct fitted to its inlet and with free outlet.
conditions.
4. Installation type D means an arrangement where the fan is installed with a duct fitted to its inlet and outlet.

Table J5D5b: Fan regression coefficient a

<table>
<thead>
<tr>
<th>Fan type</th>
<th>Fan motor input power < 10 kW</th>
<th>Fan motor input ≥ 10 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial</td>
<td>2.74</td>
<td>0.78</td>
</tr>
<tr>
<td>Mixed flow</td>
<td>4.56</td>
<td>1.1</td>
</tr>
<tr>
<td>Centrifugal forward-curved</td>
<td>2.74</td>
<td>0.78</td>
</tr>
<tr>
<td>Centrifugal radial bladed</td>
<td>2.74</td>
<td>0.78</td>
</tr>
<tr>
<td>Centrifugal backward-curved</td>
<td>4.56</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table J5D5c: Fan regression coefficient b

<table>
<thead>
<tr>
<th>Fan type</th>
<th>Fan motor input power < 10 kW</th>
<th>Fan motor input ≥ 10 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial</td>
<td>6.33</td>
<td>1.88</td>
</tr>
<tr>
<td>Mixed flow</td>
<td>10.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Centrifugal forward-curved</td>
<td>6.33</td>
<td>1.88</td>
</tr>
<tr>
<td>Centrifugal radial bladed</td>
<td>6.33</td>
<td>1.88</td>
</tr>
<tr>
<td>Centrifugal backward-curved</td>
<td>10.5</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Table J5D5d: Maximum coil pressure drop

<table>
<thead>
<tr>
<th>Number of rows</th>
<th>Maximum pressure drop (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>130</td>
</tr>
<tr>
<td>8</td>
<td>175</td>
</tr>
<tr>
<td>10</td>
<td>220</td>
</tr>
</tbody>
</table>

Table J5D5e: Maximum clean filter pressure drop

<table>
<thead>
<tr>
<th>Filter minimum efficiency reporting value</th>
<th>Maximum pressure drop (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>65</td>
</tr>
<tr>
<td>13</td>
<td>95</td>
</tr>
<tr>
<td>14</td>
<td>110</td>
</tr>
</tbody>
</table>

J5D6 Ductwork insulation

[2019: J5.5]

(1) Ductwork and fittings in an air-conditioning system must be provided with insulation—
(a) complying with AS/NZS 4859.1; and
(b) having an insulation R-Value greater than or equal to—
 (i) for flexible ductwork, 1.0; or
 (ii) for cushion boxes, that of the connecting ductwork; or
(iii) that specified in Table J5D6.

(2) Insulation must—
 (a) be protected against the effects of weather and sunlight; and
 (b) be installed so that it—
 (i) abuts adjoining insulation to form a continuous barrier; and
 (ii) maintains its position and thickness, other than at flanges and supports; and
 (c) when conveying cooled air—
 (i) be protected by a vapour barrier on the outside of the insulation; and
 (ii) where the vapour barrier is a membrane, be installed so that adjoining sheets of the membrane—
 (A) overlap by at least 50 mm; and
 (B) are bonded or taped together.

(3) The requirements of (1) do not apply to—
 (a) ductwork and fittings located within the only or last room served by the system; or
 (b) fittings that form part of the interface with the conditioned space; or
 (c) return air ductwork in, or passing through, a conditioned space; or
 (d) ductwork for outdoor air and exhaust air associated with an air-conditioning system; or
 (e) the floor of an in-situ air-handling unit; or
 (f) packaged air conditioners, split systems, and variable refrigerant flow air-conditioning equipment complying with MEPS; or
 (g) flexible fan connections.

(4) For the purposes of (1), (2) and (3), fittings—
 (a) include non-active components of a ductwork system such as cushion boxes; and
 (b) exclude active components such as air-handling unit components.

Table J5D6: Ductwork and fittings – Minimum insulation R-Value

<table>
<thead>
<tr>
<th>Location of ductwork and fittings</th>
<th>Climate zone 1, 2, 3, 4, 5, 6 or 7</th>
<th>Climate zone 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within a conditioned space</td>
<td>1.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Where exposed to direct sunlight</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>All other locations</td>
<td>2.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

J5D7 Ductwork sealing

[Draft 2019: J5.6]

Ductwork in an air-conditioning system with a capacity of 3000 L/s or greater, not located within the only or last room served by the system, must be sealed against air loss in accordance with the duct sealing requirements of AS 4254.1 and AS 4254.2 for the static pressure in the system.

J5D8 Pump systems

[Draft 2019: J5.7]

(1) General — Pumps and pipework that form part of an air-conditioning system must either—
 (a) separately comply with (2), (3) and (4); or
 (b) achieve a pump motor power per unit of flowrate lower than the pump motor power per unit of flowrate achieved when applying (2), (3) and (4) together.

(2) Circulator pumps — A glandless impeller pump, with a rated hydraulic power output of less than 2.5 kW and that is
used in closed loop systems must have an energy efficiency index (EEI) not more than 0.27 calculated in accordance with European Union Commission Regulation No. 622/2012.

(3) Other pumps — Pumps that are in accordance with Articles 1 and 2 of European Union Commission Regulation No. 547/2012 must have a minimum efficiency index (MEI) of 0.4 or more when calculated in accordance with European Union Commission Regulation No. 547/2012.

(4) Pipework — Straight segments of pipework along the index run, forming part of an air-conditioning system—

(a) in pipework systems that do not have branches and have the same flow rate throughout the entire pipe network, must achieve an average pressure drop of not more than—

(i) for constant speed systems, the values nominated in Table J5D8a; or
(ii) for variable speed systems, the values nominated in Table J5D8b; or

(b) in any other pipework system, must achieve an average pressure drop of not more than—

(i) for constant speed systems, the values nominated in Table J5D8c; or
(ii) for variable speed systems, the values nominated in Table J5D8d.

(5) The requirements of (4) do not apply—

(a) to valves and fittings; or

(b) where the smallest pipe size compliant with (4) results in a velocity of 0.7 m/s or less at design flow.

Table J5D8a: Maximum pipework pressure drop – Non-distributive constant speed systems

<table>
<thead>
<tr>
<th>Nominal pipe diameter (mm)</th>
<th>Maximum pressure drop in systems operating 5000 hours/annum or less (Pa/m)</th>
<th>Maximum pressure drop in systems operating more than 5000 hours/annum (Pa/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not more than 20</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>25</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>32</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>40</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>50</td>
<td>400</td>
<td>350</td>
</tr>
<tr>
<td>65</td>
<td>400</td>
<td>350</td>
</tr>
<tr>
<td>80</td>
<td>400</td>
<td>350</td>
</tr>
<tr>
<td>100</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>125</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>150 or more</td>
<td>400</td>
<td>200</td>
</tr>
</tbody>
</table>

Table J5D8b: Maximum pipework pressure drop – Non-distributive variable speed systems

<table>
<thead>
<tr>
<th>Nominal pipe diameter (mm)</th>
<th>Maximum pressure drop in systems operating 5000 hours/annum or less (Pa/m)</th>
<th>Maximum pressure drop in systems operating more than 5000 hours/annum (Pa/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not more than 20</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>25</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>32</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>40</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>50</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>65</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>80</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>100</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>125</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>150 or more</td>
<td>400</td>
<td>300</td>
</tr>
</tbody>
</table>
Table J5D8c: Maximum pipework pressure drop – Distributive constant speed systems

<table>
<thead>
<tr>
<th>Nominal pipe diameter (mm)</th>
<th>Maximum pressure drop in systems operating 2000 hours/annum or less (Pa/m)</th>
<th>Maximum pressure drop in systems operating between 2000 hours/annum and 5000 hrs/yr (Pa/m)</th>
<th>Maximum pressure drop in systems operating more than 5000 hours/annum (Pa/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not more than 20</td>
<td>400</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>25</td>
<td>400</td>
<td>220</td>
<td>100</td>
</tr>
<tr>
<td>32</td>
<td>400</td>
<td>220</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>400</td>
<td>220</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>400</td>
<td>220</td>
<td>100</td>
</tr>
<tr>
<td>65</td>
<td>400</td>
<td>400</td>
<td>170</td>
</tr>
<tr>
<td>80</td>
<td>400</td>
<td>400</td>
<td>170</td>
</tr>
<tr>
<td>100</td>
<td>400</td>
<td>400</td>
<td>170</td>
</tr>
<tr>
<td>125</td>
<td>400</td>
<td>400</td>
<td>170</td>
</tr>
<tr>
<td>150 or more</td>
<td>400</td>
<td>400</td>
<td>170</td>
</tr>
</tbody>
</table>

Table J5D8d: Maximum pipework pressure drop – Distributive variable speed systems

<table>
<thead>
<tr>
<th>Nominal pipe diameter (mm)</th>
<th>Maximum pressure drop in systems operating 5000 hours/annum or less (Pa/m)</th>
<th>Maximum pressure drop in systems operating more than 5000 hours/annum (Pa/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not more than 20</td>
<td>400</td>
<td>250</td>
</tr>
<tr>
<td>25</td>
<td>400</td>
<td>180</td>
</tr>
<tr>
<td>32</td>
<td>400</td>
<td>180</td>
</tr>
<tr>
<td>40</td>
<td>400</td>
<td>180</td>
</tr>
<tr>
<td>50</td>
<td>400</td>
<td>180</td>
</tr>
<tr>
<td>65</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>80</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>100</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>125</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>150 or more</td>
<td>400</td>
<td>300</td>
</tr>
</tbody>
</table>

J5D9 Pipework insulation

[2019: J5.8]

1. Piping, vessels, heat exchangers and tanks containing heating or cooling fluid, where the fluid is held at a heated or cooled temperature, that are part of an air-conditioning system, other than in appliances covered by MEPS, must be provided with insulation—
 (a) complying with AS/NZS 4859.1; and
 (b) for piping of heating and cooling fluids, having an insulation R-Value in accordance with Table J5D9a; and
 (c) for vessels, heat exchangers or tanks, having an insulation R-Value in accordance with Table J5D9b; and
 (d) for refill or pressure relief piping, having an insulation R-Value equal to the required insulation R-Value of the connected pipe, vessel or tank within 500 mm of the connection.

2. Insulation must—
 (a) be protected against the effects of weather and sunlight; and
 (b) be able to withstand the temperatures within the piping, vessel, heat exchanger or tank.
Insulation provided to *piping*, vessels, heat exchangers or tanks containing cooling fluid must be protected by a vapour barrier on the outside of the insulation.

The requirements of (1) and (2) do not apply to *piping*, vessels or heat exchangers—

- located within the only or last room served by the system and downstream of the control device for the regulation of heating or cooling service to that room;
- encased within a concrete slab or panel which is part of a heating or cooling system;
- supplied as an integral part of a chiller, boiler or unitary air-conditioner complying with the requirements of J5D10, J5D11 and J5D12;
- inside an air-handling unit, fan-coil unit, or the like.

For the purposes of (1), (2), (3) and (4)—

- heating fluids include refrigerant, heated water, steam and condensate; and
- cooling fluids include refrigerant, chilled water, brines and glycol mixtures, but do not include condenser cooling water.

Table J5D9a: Piping — Minimum insulation R-Value

<table>
<thead>
<tr>
<th>Fluid temperature range</th>
<th>Minimum insulation R-Value nominal pipe diameter ≤ 40 mm</th>
<th>Minimum insulation R-Value nominal pipe diameter > 40 mm and ≤ 80 mm</th>
<th>Minimum insulation R-Value nominal pipe diameter between > 80 mm and ≤ 150 mm</th>
<th>Minimum insulation R-Value nominal pipe diameter > 150 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low temperature chilled — ≤ 2°C</td>
<td>1.3</td>
<td>1.7</td>
<td>2.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Chilled — > 2°C but ≤ 20°C</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Heated — > 30°C but ≤ 85°C</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>High Temperature heated — > 85°C</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Table Notes:

The minimum *required R-Value* may be halved for *piping* penetrating a structural member.

Table J5D9b: Vessels, heat exchangers and tanks — Minimum insulation R-Value

<table>
<thead>
<tr>
<th>Fluid temperature range</th>
<th>Minimum insulation R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low temperature chilled — ≤ 2°C</td>
<td>2.7</td>
</tr>
<tr>
<td>Chilled — > 2°C but ≤ 20°C</td>
<td>1.8</td>
</tr>
<tr>
<td>Heated — > 30°C but ≤ 85°C</td>
<td>3.0</td>
</tr>
<tr>
<td>High temperature heated — > 85°C</td>
<td>3.0</td>
</tr>
</tbody>
</table>

J5D10 Space heating

A heater used for *air-conditioning* or as part of an *air-conditioning* system must be—

- a solar heater; or
- a gas heater; or
- a heat pump heater; or
- a heater using reclaimed heat from another process such as reject heat from a refrigeration plant; or
- an electric heater if—
 - the heating capacity is not more than—
(A) 10 \text{W/m}^2 of the floor area of the conditioned space in climate zone 1; or
(B) 40 \text{W/m}^2 of the floor area of the conditioned space in climate zone 2; or
(C) the value specified in Table J5D10 where reticulated gas is not available at the allotment boundary; or
(ii) the annual energy consumption for heating is not more than 15 \text{kWh/m}^2 of the floor area of the conditioned space in climate zones 1, 2, 3, 4 and 5; or
(iii) the in-duct heater complies with J5D3(1)(b)(iii); or
(f) any combination of (a) to (e).

(2) An electric heater may be used for heating a bathroom in a Class 2, 3, 9a or 9c building if the heating capacity is not more than 1.2 kW and the heater has a timer.

(3) A fixed heating or cooling appliance that moderates the temperature of an outdoor space must be configured to automatically shut down when—
(a) there are no occupants in the space served; or
(b) a period of one hour has elapsed since the last activation of the heater; or
(c) the space served has reached the design temperature.

(4) A gas water heater, that is used as part of an air-conditioning system, must—
(a) if rated to consume 500 \text{MJ/hour of gas or less}, achieve a minimum gross thermal efficiency of 86%; or
(b) if rated to consume more than 500 \text{MJ/hour of gas}, achieve a minimum gross thermal efficiency of 90%.

Table J5D10: Maximum electric heating capacity

<table>
<thead>
<tr>
<th>Floor area of the conditioned space</th>
<th>\text{W/m}^2 of floor area in climate zone 3</th>
<th>\text{W/m}^2 of floor area in climate zone 4</th>
<th>\text{W/m}^2 of floor area in climate zone 5</th>
<th>\text{W/m}^2 of floor area in climate zone 6</th>
<th>\text{W/m}^2 of floor area in climate zone 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 500 m(^2)</td>
<td>50</td>
<td>60</td>
<td>55</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>> 500 m(^2)</td>
<td>40</td>
<td>50</td>
<td>45</td>
<td>55</td>
<td>60</td>
</tr>
</tbody>
</table>

J5D11 Refrigerant chillers

[2019: J5.10]

An air-conditioning system refrigerant chiller must comply with MEPS and the full load operation energy efficiency ratio and integrated part load energy efficiency ratio in Table J5D11a or Table J5D11b when determined in accordance with AHRI 551/591.

Table J5D11a: Minimum energy efficiency ratio for refrigerant chillers – Option 1

<table>
<thead>
<tr>
<th>Chiller type</th>
<th>Full load operation (W/W_{input power})</th>
<th>Integrated part load (W/W_{input power})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-cooled chiller with a capacity ≤ 528 kW(r)</td>
<td>2.985</td>
<td>4.048</td>
</tr>
<tr>
<td>Air-cooled chiller with a capacity > 528 kW(r)</td>
<td>2.985</td>
<td>4.137</td>
</tr>
<tr>
<td>Water-cooled positive displacement chiller with a capacity ≤ 264 kW(r)</td>
<td>4.694</td>
<td>5.867</td>
</tr>
<tr>
<td>Water-cooled positive displacement chiller with a capacity > 264 kW(r) but ≤ 528 kW(r)</td>
<td>4.889</td>
<td>6.286</td>
</tr>
<tr>
<td>Water-cooled positive displacement chiller with a capacity > 528 kW(r) but ≤ 1055 kW(r)</td>
<td>5.334</td>
<td>6.519</td>
</tr>
<tr>
<td>Water-cooled positive displacement chiller with a capacity > 1055 kW(r) but ≤ 2110 kW(r)</td>
<td>5.800</td>
<td>6.770</td>
</tr>
</tbody>
</table>
Table J5D11b: Minimum energy efficiency ratio for refrigerant chillers – Option 2

<table>
<thead>
<tr>
<th>Chiller type</th>
<th>Full load operation (\frac{W_r}{W_{\text{input power}}})</th>
<th>Integrated part load (\frac{W_r}{W_{\text{input power}}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-cooled positive displacement chiller with a capacity > 2110 kWr</td>
<td>6.286</td>
<td>7.041</td>
</tr>
<tr>
<td>Water-cooled centrifugal chiller with a capacity ≤ 528 kWr</td>
<td>5.771</td>
<td>6.401</td>
</tr>
<tr>
<td>Water-cooled centrifugal chiller with a capacity > 528 kWr but ≤ 1055 kWr</td>
<td>5.771</td>
<td>6.519</td>
</tr>
<tr>
<td>Water-cooled centrifugal chiller with a capacity > 1055 kWr but ≤ 1407 kWr</td>
<td>6.286</td>
<td>6.770</td>
</tr>
<tr>
<td>Water-cooled centrifugal chiller with a capacity > 1407 kWr</td>
<td>6.286</td>
<td>7.041</td>
</tr>
</tbody>
</table>

Table J5D11b: Minimum energy efficiency ratio for refrigerant chillers – Option 2

<table>
<thead>
<tr>
<th>Chiller type</th>
<th>Full load operation (\frac{W_r}{W_{\text{input power}}})</th>
<th>Integrated part load (\frac{W_r}{W_{\text{input power}}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-cooled chiller with a capacity ≤ 528 kWr</td>
<td>2.866</td>
<td>4.669</td>
</tr>
<tr>
<td>Air-cooled chiller with a capacity > 528 kWr</td>
<td>2.866</td>
<td>4.758</td>
</tr>
<tr>
<td>Water-cooled positive displacement chiller with a capacity ≤ 264 kWr</td>
<td>4.513</td>
<td>7.041</td>
</tr>
<tr>
<td>Water-cooled positive displacement chiller with a capacity > 264 kWr but ≤ 528 kWr</td>
<td>4.694</td>
<td>7.184</td>
</tr>
<tr>
<td>Water-cooled positive displacement chiller with a capacity > 528 kWr but ≤ 1055 kWr</td>
<td>5.177</td>
<td>8.001</td>
</tr>
<tr>
<td>Water-cooled positive displacement chiller with a capacity > 1055 kWr but ≤ 2110 kWr</td>
<td>5.633</td>
<td>8.586</td>
</tr>
<tr>
<td>Water-cooled positive displacement chiller with a capacity > 2110 kWr</td>
<td>6.018</td>
<td>9.264</td>
</tr>
<tr>
<td>Water-cooled centrifugal chiller with a capacity ≤ 528 kWr</td>
<td>5.065</td>
<td>8.001</td>
</tr>
<tr>
<td>Water-cooled centrifugal chiller with a capacity > 528 kWr but ≤ 1055 kWr</td>
<td>5.544</td>
<td>8.001</td>
</tr>
<tr>
<td>Water-cooled centrifugal chiller with a capacity > 1055 kWr but ≤ 1407 kWr</td>
<td>5.917</td>
<td>9.027</td>
</tr>
<tr>
<td>Water-cooled centrifugal chiller with a capacity > 1407 kWr</td>
<td>6.018</td>
<td>9.264</td>
</tr>
</tbody>
</table>

J5D12 Unitary air-conditioning equipment

[2019: J5.11]

Unitary air-conditioning equipment including packaged air-conditioners, split systems, and variable refrigerant flow systems must comply with MEPS and for a capacity greater than or equal to 65 kWr—

(a) where water cooled, have a minimum energy efficiency ratio of \(\frac{4.0 W_r}{W_{\text{input power}}}\) for cooling when tested in accordance with AS/NZS 3823.1.2 at test condition T1, where input power includes both compressor and fan input power; or

(b) where air cooled, have a minimum energy efficiency ratio of \(\frac{2.9 W_r}{W_{\text{input power}}}\) for cooling when tested in accordance with AS/NZS 3823.1.2 at test condition T1, where input power includes both compressor and fan input power; or...
input power.

J5D13 Heat rejection equipment

[2019: J5.12]

(1) The motor rated power of a fan in a cooling tower, closed circuit cooler or evaporative condenser must not exceed the allowances in Table J5D13.

(2) The fan in an air-cooled condenser must have a motor rated power of not more than 42 W for each kW of heat rejected from the refrigerant, when determined in accordance with AHRI 460 except for—

(a) a refrigerant chiller in an air-conditioning system that complies with the energy efficiency ratios in J5D11; or

(b) packaged air-conditioners, split systems, and variable refrigerant flow air-conditioning equipment that complies with the energy efficiency ratios in J5D12.

Table J5D13: Maximum fan motor power – Cooling towers, closed circuit coolers and evaporative condensers

<table>
<thead>
<tr>
<th>Type</th>
<th>Cooling tower maximum fan motor input power (W/kW$_{rej}$)</th>
<th>Closed circuit cooler maximum fan motor input power (W/kW$_{rej}$)</th>
<th>Evaporative condenser maximum fan motor input power (W/kW$_{rej}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induced draft</td>
<td>10.4</td>
<td>16.9</td>
<td>11.0</td>
</tr>
<tr>
<td>Forced draft</td>
<td>19.5</td>
<td>Note</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Table Notes:
A closed circuit, forced draft cooling tower must not be used.
Deemed-to-Satisfy Provisions

J6D1 Deemed-to-Satisfy Provisions [2019: J6.0]

(1) Where a **Deemed-to-Satisfy Solution** is proposed, **Performance Requirement** J1P1 is satisfied by complying with—
(a) J2D2 to J2D6; and
(b) J3D2 to J3D7; and
(c) J4D2 to J4D8; and
(d) J5D2 to J5D13; and
(e) J6D2 to J6D9; and
(f) J7D2 to J7D4; and
(g) J8D2 to J8D3.

(2) Where a **Performance Solution** is proposed, the relevant **Performance Requirements** must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

J6D2 Application of Part [2019: J6.1]

J6D3, J6D4 and J6D6(1)(b) do not apply to a Class 8 **electricity network substation**.

J6D3 Artificial lighting [2019: J6.2]

(1) In a **sole-occupancy unit** of a Class 2 building or a Class 4 part of a building—
(a) the **lamp power density** or **illumination power density** of artificial lighting must not exceed the allowance of—
 (i) 5 W/m² within a **sole-occupancy unit**; and
 (ii) 4 W/m² on a verandah, balcony or the like attached to a **sole-occupancy unit**; and
(b) the **illumination power density** allowance in (a) may be increased by dividing it by the **illumination power density** adjustment factor for a control device in Table J6D3b as applicable; and
(c) when designing the **lamp power density** or **illumination power density**, the power of the proposed installation must be used rather than nominal allowances for exposed batten holders or luminaires; and
(d) halogen lamps must be separately switched from fluorescent lamps.

(2) In a building other than a **sole-occupancy unit** of a Class 2 building or a Class 4 part of a building—
(a) for artificial lighting, the aggregate design illumination power load must not exceed the sum of the allowances obtained by multiplying the area of each space by the maximum **illumination power density** in Table J6D3a; and
(b) the aggregate design illumination power load in (a) is the sum of the design illumination power loads in each of the spaces served; and
(c) where there are multiple lighting systems serving the same space, the design illumination power load for (b) is—
 (i) the total illumination power load of all systems; or
(ii) where a control system permits only one system to operate at a time based on the highest illumination power load; or determined by the formula—

\[
[H \times T/2 + P \times (100 - T/2)]/100
\]

(d) In the formula at (c)(ii)—

(i) \(H\) = the highest illumination power load; and

(ii) \(T\) = the time for which the maximum illumination power load will occur, expressed as a percentage; and

(iii) \(P\) = the predominant illumination power load.

(3) The requirements of (1) and (2) do not apply to the following:

(a) Emergency lighting provided in accordance with Part E4.

(b) Signage, display lighting within cabinets and display cases that are fixed in place.

(c) Lighting for accommodation within the residential part of a detention centre.

(d) A heater where the heater also emits light, such as in bathrooms.

(e) Lighting of a specialist process nature such as in a surgical operating theatre, fume cupboard or clean workstation.

(f) Lighting of performances such as theatrical or sporting.

(g) Lighting for the permanent display and preservation of works of art or objects in a museum or gallery other than for retail sale, purchase or auction.

(h) Lighting installed solely to provide photosynthetically active radiation for indoor plant growth on green walls and the like.

(4) For the purposes of Table J6D3b, the following control devices must comply with Specification 40:

(a) Lighting timers.

(b) Motion detectors.

(c) Daylight sensors and dynamic lighting control devices.

<table>
<thead>
<tr>
<th>Table J6D3a: Maximum illumination power density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Auditorium, church and public hall</td>
</tr>
<tr>
<td>Board room and conference room</td>
</tr>
<tr>
<td>Carpark - general</td>
</tr>
<tr>
<td>Carpark - entry zone (first 15 m of travel) during the daytime</td>
</tr>
<tr>
<td>Carpark - entry zone (next 4 m of travel) during the day</td>
</tr>
<tr>
<td>Carpark - entry zone (first 20 m of travel) during night time</td>
</tr>
<tr>
<td>Common rooms, spaces and corridors in a Class 2 building</td>
</tr>
<tr>
<td>Control room, switch room and the like - intermittent monitoring</td>
</tr>
<tr>
<td>Control room, switch room and the like - constant monitoring</td>
</tr>
<tr>
<td>Corridors</td>
</tr>
<tr>
<td>Courtroom</td>
</tr>
<tr>
<td>Dormitory of a Class 3 building used for sleeping only</td>
</tr>
<tr>
<td>Dormitory of a Class 3 building used for sleeping and study</td>
</tr>
<tr>
<td>Entry lobby from outside the building</td>
</tr>
</tbody>
</table>
Table Notes:

1. In areas not listed above, the maximum illumination power density is—
 (i) for an illuminance not more than 80 lx, 2 W/m²; and
 (ii) for an illuminance more than 80 lx and not more than 160 lx, 2.5 W/m²; and
 (iii) for an illuminance more than 160 lx and not more than 240 lx, 3 W/m²; and
 (iv) for an illuminance more than 240 lx and not more than 320 lx, 4.5 W/m²; and
 (v) for an illuminance more than 320 lx and not more than 400 lx, 6 W/m²; and
 (vi) for an illuminance more than 400 lx and not more than 600 lx, 10 W/m²; and
 (vii) for an illuminance more than 600 lx and not more than 800 lx, 11.5 W/m².

2. For enclosed spaces with a Room Aspect Ratio of less than 1.5, the maximum illumination power density may be increased by dividing it by an adjustment factor for room aspect which is 0.5 + (Room Aspect Ratio/3).

<table>
<thead>
<tr>
<th>Space</th>
<th>Maximum illumination power density (W/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health-care - infants’ and children’s wards and emergency department</td>
<td>4</td>
</tr>
<tr>
<td>Health-care - examination room</td>
<td>4.5</td>
</tr>
<tr>
<td>Health-care - examination room in intensive care and high dependency ward</td>
<td>6</td>
</tr>
<tr>
<td>Health-care - all other patient care areas including wards and corridors</td>
<td>2.5</td>
</tr>
<tr>
<td>Kitchen and food preparation area</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory - artificially lit to an ambient level of 400 lx or more</td>
<td>6</td>
</tr>
<tr>
<td>Library - stack and shelving area</td>
<td>2.5</td>
</tr>
<tr>
<td>Library - reading room and general areas</td>
<td>4.5</td>
</tr>
<tr>
<td>Lounge area for communal use in a Class 3 or 9c building</td>
<td>4.5</td>
</tr>
<tr>
<td>Museum and gallery - circulation, cleaning and service lighting</td>
<td>2.5</td>
</tr>
<tr>
<td>Office - artificially lit to an ambient level of 200 lx or more</td>
<td>4.5</td>
</tr>
<tr>
<td>Office - artificially lit to an ambient level of less than 200 lx</td>
<td>2.5</td>
</tr>
<tr>
<td>Plant room where an average of 160 lx vertical illuminance is required on a vertical panel such as in switch rooms</td>
<td>4</td>
</tr>
<tr>
<td>Plant rooms with a horizontal illuminance target of 80 lx</td>
<td>2</td>
</tr>
<tr>
<td>Restaurant, café, bar, hotel lounge and a space for the serving and consumption of food or drinks</td>
<td>14</td>
</tr>
<tr>
<td>Retail space including a museum and gallery whose purpose is the sale of objects</td>
<td>14</td>
</tr>
<tr>
<td>School - general purpose learning areas and tutorial rooms</td>
<td>4.5</td>
</tr>
<tr>
<td>Sole-occupancy unit of a Class 3 or 9c building</td>
<td>5</td>
</tr>
<tr>
<td>Storage</td>
<td>1.5</td>
</tr>
<tr>
<td>Service area, cleaner’s room and the like</td>
<td>1.5</td>
</tr>
<tr>
<td>Toilet, locker room, staff room, rest room and the like</td>
<td>3</td>
</tr>
<tr>
<td>Wholesale storage area with a vertical illuminance target of 160 lx</td>
<td>4</td>
</tr>
<tr>
<td>Stairways, including fire-isolated stairways</td>
<td>2</td>
</tr>
<tr>
<td>Lift cars</td>
<td>3</td>
</tr>
</tbody>
</table>
3. The Room Aspect Ratio of the enclosed space is determined by the formula: \(A/(H \times C) \), where—
 (i) \(A \) is the area of the enclosed space; and
 (ii) \(H \) is the height of the space measured from the floor to the highest part of the ceiling; and
 (iii) \(C \) is the perimeter of the enclosed space at floor level.

4. In addition to 2, the maximum illumination power density may be increased by dividing it by the illumination power density adjustment factor in Table J6D3b and Table J6D3c and where the control device is not installed to comply with J6D4.

5. Circulation spaces are included in the allowances listed in the Table.

Table J6D3b: Illumination power density adjustment factor for a control device

<table>
<thead>
<tr>
<th>Item Description</th>
<th>(\text{illumination power density adjustment factor})</th>
</tr>
</thead>
<tbody>
<tr>
<td>In a toilet or change room, other than a public toilet, in a Class 6 building</td>
<td>0.4</td>
</tr>
<tr>
<td>Where a group of light fittings serving less than 100 (m^2) is controlled by one or more detectors</td>
<td>0.6</td>
</tr>
<tr>
<td>Where a group of light fittings serving 100 (m^2) or more is controlled by one or more detectors</td>
<td>0.7</td>
</tr>
<tr>
<td>Where not less than 75% of the area of a space is controlled by programmable dimmers</td>
<td>0.85</td>
</tr>
<tr>
<td>All fittings with fixed dimming</td>
<td>Whichever is greater of (a) 0.5; or (b) 0.2+0.8L where L = the illuminance turndown for the fixed dimming.</td>
</tr>
<tr>
<td>All fittings with lumen depreciation dimming</td>
<td>0.85</td>
</tr>
<tr>
<td>Fire stairs and other spaces not used for regular transit</td>
<td>0.4</td>
</tr>
<tr>
<td>Transitory spaces in regular use or in a carpark</td>
<td>0.7</td>
</tr>
<tr>
<td>In a Class 5, 6, 7, 8 or 9b building or a Class 9a building, other than a ward area, where the lights are adjacent windows, other than roof lights, for a distance from the window equal to the depth of the floor to window head height</td>
<td>0.5 Note 3</td>
</tr>
<tr>
<td>Serving a Class 3 or 9c building, or a Class 9a ward area, where the lights are adjacent windows, other than roof lights, for a distance from the window equal to the depth of the floor to window head height</td>
<td>0.75 Note 3</td>
</tr>
<tr>
<td>In a Class 5, 6, 7, 8 or 9b building or a Class 9a building, other than a ward area, where the lights are adjacent</td>
<td>0.6 Note 3</td>
</tr>
</tbody>
</table>
Table Notes:
1. A maximum of two illumination power density adjustment factors for a control device can be applied to an area.
2. Where more than one illumination power density adjustment factor (other than for room aspect) applies to an area, they are to be combined using the following formula: A x (B + [(1 - B) / 2]), where—
 (i) A is the lowest applicable illumination power density adjustment factor; and
 (ii) B is the second lowest applicable illumination power density adjustment factor.
3. The adjustment factor does not apply to tungsten, halogen or other incandescent sources.
4. Includes luminaires with a pre-programmed function which provides dimming from ON to OFF (one-stage dimming).
5. The illumination power density adjustment factor is only applied to lights controlled by daylight sensors between 8:00 am and 7:00 pm.

Table J6D3c: Illumination power density adjustment factor for light colour

<table>
<thead>
<tr>
<th>Light source</th>
<th>Description</th>
<th>illumination power density adjustment factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRI ≥ 90</td>
<td>Where lighting with good colour rendering is used</td>
<td>0.9</td>
</tr>
<tr>
<td>CCT ≤ 3500 K</td>
<td>Where lighting with a warm appearance is used</td>
<td>0.8</td>
</tr>
<tr>
<td>CCT ≥ 4500 K</td>
<td>Where lighting with a cool appearance is used</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table Notes:
Includes luminaires that can adjust their CCT to 3500 K or below.

J6D4 Interior artificial lighting and power control

(1) All artificial lighting of a room or space must be individually operated by—
 (a) a switch; or
 (b) other control device; or
 (c) a combination of (a) and (b).

(2) An occupant activated device, such as a room security device, a motion detector in accordance with Specification 40, or the like, must be provided in the sole-occupancy unit of a Class 3 building, other than where providing accommodation for people with a disability or the aged, to cut power to the artificial lighting, air-conditioner, local exhaust fans and bathroom heater when the sole-occupancy unit is unoccupied.

(3) An artificial lighting switch or other control device in (1) must—
 (a) if an artificial lighting switch, be located in a visible and easily accessed position—
 (i) in the room or space being switched; or
 (ii) in an adjacent room or space from where 90% of the lighting being switched is visible; and
 (b) for other than a single functional space such as an auditorium, theatre, swimming pool, sporting stadium or warehouse—
 (i) if in a Class 5 building or a Class 8 laboratory, not operate lighting for an area of more than 250 m²; or
 (ii) if in a Class 3, 6, 7, 8 (other than a laboratory) or 9 building, not operate lighting for an area of more than—
(A) 250 m² for a space of not more than 2000 m²; or
(B) 1000 m² for a space of more than 2000 m².

(4) 95% of the light fittings in a building or storey of a building, other than a Class 2 or 3 building or a Class 4 part of a building, of more than 250 m² must be controlled by—
 (a) a time switch in accordance with Specification 40; or
 (b) an occupant sensing device such as—
 (i) a security key card reader that registers a person entering and leaving the building; or
 (ii) a motion detector in accordance with Specification 40.

(5) In a Class 5, 6 or 8 building of more than 250 m², artificial lighting in a natural lighting zone adjacent to windows must be separately controlled from artificial lighting not in a natural lighting zone in the same storey except where—
 (a) the room containing the natural lighting zone is less than 20 m²; or
 (b) the room’s natural lighting zone contains less than 4 luminaires; or
 (c) 70% or more of the luminaires in the room are in the natural lighting zone.

(6) Artificial lighting in a fire-isolated stairway, fire-isolated passageway or fire-isolated ramp, must be controlled by a motion detector in accordance with Specification 40.

(7) Artificial lighting in a foyer, corridor and other circulation spaces—
 (a) of more than 250 W within a single zone; and
 (b) adjacent to windows,
 must be controlled by a daylight sensor and dynamic lighting control device in accordance with Specification 40.

(8) Artificial lighting for daytime travel in the first 19 m of travel in a carpark entry zone must be controlled by a daylight sensor in accordance with Specification 40.

(9) The requirements of (1), (2), (3), (4), (5), (6), (7) and (8) do not apply to the following:
 (a) Emergency lighting in accordance with Part E4.
 (b) Where artificial lighting is needed for 24 hour occupancy such as for a manufacturing process, parts of a hospital, an airport control tower or within a detention centre.

(10) The requirements of (4) do not apply to the following:
 (a) Artificial lighting in a space where the sudden loss of artificial lighting would cause an unsafe situation such as—
 (i) in a patient care area in a Class 9a building or in a Class 9c building; or
 (ii) a plant room or lift motor room; or
 (iii) a workshop where power tools are used.
 (b) A heater where the heater also emits light, such as in bathrooms.

J6D5 Interior decorative and display lighting

[2019: J6.4]

(1) Interior decorative and display lighting, such as for a foyer mural or art display, must be controlled—
 (a) separately from other artificial lighting; and
 (b) by a manual switch for each area other than when the operating times of the displays are the same in a number of areas such as in a museum, art gallery or the like, in which case they may be combined; and
 (c) by a time switch in accordance with Specification 40 where the display lighting exceeds 1 kW.

(2) Window display lighting must be controlled separately from other display lighting.

J6D6 Exterior artificial lighting

[2019: J6.5]

(1) Exterior artificial lighting attached to or directed at the facade of a building, must—
(a) be controlled by—
 (i) a daylight sensor; or
 (ii) a time switch that is capable of switching on and off electric power to the system at variable pre-programmed times and on variable pre-programmed days; and
(b) when the total lighting load exceeds 100 W—
 (i) use LED luminaires for 90% of the total lighting load; or
 (ii) be controlled by a motion detector in accordance with Specification 40; or
 (iii) when used for decorative purposes, such as façade lighting or signage lighting, have a separate time switch in accordance with Specification 40.

(2) The requirements of (1)(b) do not apply to the following:
 (a) Emergency lighting in accordance with Part E4.
 (b) Lighting around a detention centre.

J6D7 Boiling water and chilled water storage units

[2019: J6.6]

Power supply to a boiling water or chilled water storage unit must be controlled by a time switch in accordance with Specification 40.

J6D8 Lifts

[2019: J6.7]

Lifts must—
 (a) be configured to ensure artificial lighting and ventilation in the car are turned off when it is unused for 15 minutes; and
 (b) achieve the idle and standby energy performance level in Table J6D8a; and
 (c) achieve—
 (i) the energy efficiency class in Table J6D8b; or
 (ii) if a dedicated goods lift, energy efficiency class D in accordance with ISO 25745-2.

<table>
<thead>
<tr>
<th>Rated load</th>
<th>Idle and standby energy performance level in accordance with ISO 25745-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than or equal to 800 kg</td>
<td>2</td>
</tr>
<tr>
<td>801 kg to less than or equal to 2000 kg</td>
<td>3</td>
</tr>
<tr>
<td>2001 kg to less than or equal to 4000 kg</td>
<td>4</td>
</tr>
<tr>
<td>Greater than 4000 kg</td>
<td>5</td>
</tr>
</tbody>
</table>

Table Notes:
Applies to the standby power used after 30 minutes.

<table>
<thead>
<tr>
<th>Usage category in accordance with ISO 25745-2</th>
<th>Energy efficiency class in accordance with ISO 25745-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>C</td>
</tr>
<tr>
<td>>5</td>
<td>D</td>
</tr>
</tbody>
</table>
Escalators and moving walkways must have the ability to slow to between 0.2 m/s and 0.05 m/s when unused for more than 15 minutes.
Introduction to this Part

This Part contains Deemed-to-Satisfy Provisions for Part J1. It sets out provisions to ensure that water heaters, and swimming and spa pool heaters and pump systems, use energy efficiently.

Deemed-to-Satisfy Provisions

J7D1 Deemed-to-Satisfy Provisions

[2019: J7.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirement J1P1 is satisfied by complying with—

(a) J2D2 to J2D6; and
(b) J3D2 to J3D7; and
(c) J4D2 to J4D8; and
(d) J5D2 to J5D13; and
(e) J6D2 to J6D9; and
(f) J7D2 to J7D4; and
(g) J8D2 to J8D3.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

J7D2 Heated water supply

[2019: J7.2]

A heated water supply system for food preparation and sanitary purposes must be designed and installed in accordance with Part B2 of NCC Volume Three — Plumbing Code of Australia.

J7D3 Swimming pool heating and pumping

[2019: J7.3]

(1) Heating for a swimming pool must be by—

(a) a solar heater; or
(b) a heater using reclaimed heat from another process such as reject heat from a refrigeration plant; or
(c) a geothermal heater; or
(d) a gas heater that—
 (i) if rated to consume 500 MJ/hour or less, achieves a minimum gross thermal efficiency of 86%; or
 (ii) if rated to consume more than 500 MJ/hour, achieves a minimum gross thermal efficiency of 90%; or
(e) a heat pump; or
(f) a combination of (a) to (e).

(2) Where some or all of the heating required by (1) is by a gas heater or a heat pump, the swimming pool must have—

(a) a cover with a minimum R-Value of 0.05; and
(b) a time switch to control the operation of the heater.
(3) A time switch must be provided to control the operation of a circulation pump for a swimming pool.

(4) Where required, a time switch must be capable of switching electric power on and off at variable pre-programmed times and on variable pre-programmed days.

(5) Pipework carrying heated or chilled water for a swimming pool must comply with the insulation requirements of J5D9.

(6) For the purpose of J7D3, a swimming pool does not include a spa pool.

J7D4 Spa pool heating and pumping

[2019: J7.4]

(1) Heating for a spa pool that shares a water recirculation system with a swimming pool must be by—
 (a) a solar heater; or
 (b) a heater using reclaimed heat from another process such as reject heat from a refrigeration plant; or
 (c) a geothermal heater; or
 (d) a gas heater that—
 (i) if rated to consume 500 MJ/hour or less, achieves a minimum gross thermal efficiency of 86%; or
 (ii) if rated to consume more than 500 MJ/hour, achieves a minimum gross thermal efficiency of 90%; or
 (e) a heat pump; or
 (f) a combination of (a) to (e).

(2) Where some or all of the heating required by (1) is by a gas heater or a heat pump, the spa pool must have—
 (a) a cover with a minimum R-Value of 0.05; and
 (b) a push button and a time switch to control the operation of the heater.

(3) A time switch must be provided to control the operation of a circulation pump for a spa pool having a capacity of 680 L or more.

(4) Where required, a time switch must be capable of switching electric power on and off at variable pre-programmed times and on variable pre-programmed days.

(5) Pipework carrying heated or chilled water for a spa pool must comply with the insulation requirements of J5D9.
Introduction to this Part

This Part contains Deemed-to-Satisfy Provisions for Part J1. It sets out provisions for the installation of facilities to enable the monitoring of energy use (other than for billing purposes) in sole-occupancy units in certain types of building.

Deemed-to-Satisfy Provisions

J8D1 Deemed-to-Satisfy Provisions

[2019: J8.0]

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirement J1P1 is satisfied by complying with—
(a) J2D2 to J2D6; and
(b) J3D2 to J3D7; and
(c) J4D2 to J4D8; and
(d) J5D2 to J5D13; and
(e) J6D2 to J6D9; and
(f) J7D2 to J7D4; and
(g) J8D2 to J8D3.

(2) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2G2(3) and A2G4(3) as applicable.

J8D2 Application of Part

[2019: J8.1]

The Deemed-to-Satisfy Provisions of this Part do not apply—
(a) within a sole-occupancy unit of a Class 2 building or a Class 4 part of a building; or
(b) to a Class 8 electricity network substation.

J8D3 Facilities for energy monitoring

[2019: J8.3]

(1) A building or sole-occupancy unit with a floor area of more than 500 m² must have an energy meter configured to record the time-of-use consumption of gas and electricity.

(2) A building with a floor area of more than 2 500 m² must have energy meters configured to enable individual time-of-use energy consumption data recording, in accordance with (3), of the energy consumption of—
(a) air-conditioning plant including, where appropriate, heating plant, cooling plant and air handling fans; and
(b) artificial lighting; and
(c) appliance power; and
(d) central hot water supply; and
(e) internal transport devices including lifts, escalators and moving walkways where there is more than one serving the building; and
(f) other ancillary plant.

(3) Energy meters required by (2) must be interlinked by a communication system that collates the time-of-use energy
consumption data to a single interface monitoring system where it can be stored, analysed and reviewed.

(4) The provisions of (2) do not apply to energy meters serving—

- a Class 2 building with a floor area of more than 2500m^2 where the total area of the common areas is less than 500m^2.

(a) a Class 2 building where the total floor area of the common areas is less than 500m^2; or

(b) individual sole-occupancy units with a floor area of 500m^2 or less.
Specification 33 Additional requirements

S33C1 Scope

This Specification contains requirements that must be complied with in addition to the modelling requirements of J1V1, J1V2 and J1V3.

S33C2 Additional requirements — general

In addition to the modelling requirements for J1V1, J1V2 and J1V3, a building must comply with—

(a) for general thermal construction, J3D3; and
(b) for floor edge insulation, J3D7(2) and J3D7(3); and
(c) for building sealing, J1V4 or J4; and
(d) for deactivation, control and insulation of air-conditioning and mechanical ventilation systems—
 (i) J5D3(1)(a); and
 (ii) J5D3(1)(b)(i); and
 (iii) J5D3(1)(d); and
 (iv) J5D3(1)(f); and
 (v) J5D3(2); and
 (vi) J5D3(3); and
 (vii) J5D4(2); and
 (viii) J5D4(4); and
 (ix) J5D5; and
 (x) J5D6; and
 (xi) J5D9; and
(e) for testing package air-conditioning equipment not less than 65 kW, AS/NZS 3823.1.2 at test condition T1; and
(f) for testing a refrigeration chiller, AHRI 551/591; and
(g) for interior artificial lighting and power control, J6D4; and
(h) for interior decorative and display lighting, J6D5; and
(i) for artificial lighting around the exterior of a building, J6D6; and
(j) for boiling water and chilled water storage units, J6D7; and
(k) for deactivation of swimming pool heating and pumping, J7D3(2)(b) and J7D3(3); and
(l) for deactivation of spa pool heating and pumping, J7D4(2)(b) and J7D4(3); and
(m) for facilities for energy monitoring, Part J8; and
(n) for deactivation of fixed outdoor space heating appliances, clause J5D10(3).

S33C3 Additional requirements — NABERS Energy for Offices

Where not included in the building energy simulation to satisfy J1V1(1), compliance must be achieved with—

(a) for a tenant supplementary heating and cooling system, J5D8; and
(b) for carpark ventilation and lighting—
 (i) J5D4; and
 (ii) J5D5; and
 (iii) J6D3; and
 (iv) J6D4; and

(c) for heating, cooling and ventilation equipment not covered by the NABERS Energy for Offices base building rating, Part J5; and

(d) for artificial lighting not covered by the NABERS Energy for Offices base building rating, Part J6.

S33C4 Additional requirements — Green Star

[2019: Spec JVa: 4]

Where not included in the building energy simulation to satisfy J1V2(1), compliance must be achieved with—

 (a) for heating, cooling and ventilation equipment outside the scope of the Green Star model, Part J5; and

 (b) for artificial lighting outside the scope of the Green Star model, Part J6.
S34C1 Scope

This Specification contains the required modelling parameters for J1V2 and J1V3.

S34C2 Reference building

The annual greenhouse gas emissions must be calculated for the reference building in accordance with the following:

(a) The reference building must—
 (i) comply with Deemed-to-Satisfy Provisions in Parts J3 to J7; and
 (ii) have the minimum amount of mechanical ventilation required by Part F4.

(b) The external walls must have a solar absorptance of 0.6.

(c) The air-conditioning must—
 (i) for 98% of the annual hours of operation, achieve temperatures between—
 (A) 18°CDB to 25°CDB for conditioned spaces with transitory occupancy; and
 (B) subject to (ii), 21°CDB to 24°CDB in all other conditioned spaces; and
 (ii) if the proposed building has no mechanically provided cooling or has mixed mode cooling, have the same method of control and control set points for non-mechanical cooling as the proposed building.

(d) The infiltration rate in each zone must be—
 (i) 0.7 air changes per hour throughout all zones when there is no mechanically supplied outdoor air; and
 (ii) 0.35 air changes per hour throughout all zones at all other times.

(e) The artificial lighting must achieve the required maximum illumination power density in Part J6 without applying the control device adjustment factors.

(f) Minimum Energy Performance Standards must be applied to services not covered by Parts J5 to J7.

S34C3 Proposed building and reference building

(1) The annual greenhouse gas emissions must be calculated for the proposed building and the reference building using the same—
 (a) annual greenhouse gas emissions calculation method; and
 (b) greenhouse gas emissions factors in accordance with (2); and
 (c) location in accordance with (3); and
 (d) adjacent structures and features; and
 (e) orientation; and
 (f) building form in accordance with (4); and
 (g) testing standards including for insulation, glazing, water heater and unitary air-conditioning equipment; and
 (h) fabric and glazing in accordance with (5); and
 (i) services in accordance with (6) and S34C4.

(2) For the purposes of (1)(b), greenhouse gas emissions factors must be based on either—
(a) the factors in Table S34C3; or
(b) the current full fuel cycle emissions factors published by the Australian Government, except, where the greenhouse gas intensity of electricity is less than half the greenhouse gas intensity of natural gas—
 (i) electricity is to be weighted as 1; and
 (ii) natural gas is to be weighted as 2.

(3) For the purposes of (1)(c), location must be either—
 (a) location where the building is to be constructed if appropriate climatic data is available; or
 (b) the nearest location with similar climatic conditions, for which climatic data is available.

(4) For the purposes of (1)(f), building form must include—
 (a) the roof geometry; and
 (b) the floor plan; and
 (c) the number of storeys; and
 (d) the location, extent and configuration of ground floors and basements; and
 (e) the size and location of glazing; and
 (f) external doors.

(5) For the purposes of (1)(h), fabric and glazing must include—
 (a) quality of insulation installation; and
 (b) thermal resistance of air films including any adjustment factors, moisture content of materials and the like; and
 (c) dimensions of external, internal and separating walls; and
 (d) internal shading devices, their colour and their criteria for operation.

(6) For the purposes of (1)(i), services must include—
 (a) range and type of services and energy sources, other than renewable energy generated on site; and
 (b) assumptions and means of calculating the temperature difference across air-conditioning zone boundaries; and
 (c) floor coverings and furniture and fittings density; and
 (d) internal artificial lighting illumination levels; and
 (e) internal heat gains including people, lighting, appliances, meals and other electric power loads; and
 (f) air-conditioning, including chiller, fan and boiler equipment, system configuration and zones; and
 (g) profiles for occupancy, air-conditioning, lighting and internal heat gains from people, hot meals, appliances, equipment and heated water supply systems based on—
 (i) Specification 35; or
 (ii) NABERS Energy for Offices simulation requirements; or
 (iii) Green Star simulation requirements; or
 (iv) the actual building if—
 (A) the operating hours per year are not less than 2 500; or
 (B) the daily operating profiles are not listed in Specification 35; and
 (h) supply heated water temperature and rate of use; and
 (i) infiltration values, subject to (7); and
 (j) sequencing for water heaters, refrigeration chillers and heat rejection equipment such as cooling towers; and
 (k) representation of clothing and metabolic rate of the occupants; and
 (l) control of air-conditioning except—
 (i) the reference building must have variable temperature control for chilled and heated water that modulates the chilled water and heated water temperatures as required to maximise the efficiency of the chiller or boiler operation during periods of low load; and
 (ii) if the controls for the proposed building are not adequately specified or cannot be simulated, the sample control specifications in Appendix B of AIRAH-DA28 must be used; and
(m) environmental conditions such as ground reflectivity, sky and ground form factors, temperature of external bounding surfaces, air velocities across external surfaces and the like; and

(n) number, sizes, floors and traffic served by lifts and escalators.

(7) For the purposes of (6)(i), the intended building leakage at 50 Pa may be converted into a whole building infiltration value for the proposed building infiltration using Tables 4.16 to 4.24 of CIBSE Guide A if all of the following have been specified:

(a) Additional sealing provisions to those required by Part J4.

(b) An intended building leakage of less than 10 m³/hr.m² at 50 Pa.

(c) Pressure testing to verify achievement of the intended building leakage.

Table S34C3: Greenhouse gas emissions factors (kgCO₂-e/GJ)

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>ACT</th>
<th>NSW</th>
<th>NT</th>
<th>QLD</th>
<th>SA</th>
<th>TAS</th>
<th>VIC</th>
<th>WA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>-</td>
<td>256</td>
<td>201</td>
<td>256</td>
<td>170</td>
<td>61</td>
<td>323</td>
<td>207</td>
</tr>
<tr>
<td>Natural gas</td>
<td>-</td>
<td>51.53</td>
<td>51.53</td>
<td>51.53</td>
<td>51343</td>
<td>51.53</td>
<td>51.53</td>
<td>51.53</td>
</tr>
</tbody>
</table>

Table Notes:

1. National emissions factors are not applicable to calculations for buildings in the ACT as they do not take into account investments in renewable electricity generation in the national electricity market made by the ACT.

2. Values for the ACT can be found in the ACT Appendix.

S34C4 Services — proposed and reference building

For the modelling of services for the purposes of calculating annual greenhouse gas emissions—

(a) system demand and response for all items of plant must be calculated on a not less frequent than hourly basis; and

(b) energy usage of all items of plant must be calculated with allowances for—

(i) part load performance; and

(ii) staging to meet system demand; and

(c) energy usage of cooling plant must be calculated with allowances for—

(i) the impact of chilled water temperature on chiller efficiency; and

(ii) the impact of condenser water temperature on water-cooled plant efficiency; and

(iii) the impact of ambient temperature on air-cooled plant efficiency; and

(iv) the energy use of primary pumps serving individual chillers; and

(v) the energy use of auxiliary equipment, including controls and oil heating for chillers; and

(vi) thermal losses in the chilled water system; and

(vii) the impact of chilled water temperature on thermal losses in the chilled water system; and

(d) energy usage of water heating systems for space heating must be calculated with allowances for—

(i) the impact of water temperature on water heater efficiency; and

(ii) the energy use of primary or feedwater pumps serving individual water heaters; and

(iii) thermal losses in water heating systems; and

(iv) the thermal mass of water heating systems, accounting for thermal losses during periods when the system is not operating; and

(e) energy usage of fan and pump systems must be calculated with allowances for—

(i) the method of capacity regulation; and
(ii) the use of either fixed or variable pressure control; and

(f) energy usage of pump systems must be calculated with allowances for the system fixed static pressure head; and

(g) energy usage of auxiliary equipment associated with co-generation and tri-generation systems, including pumps, cooling towers and jacket heaters, must be calculated; and

(h) where the energy usage of the heated water supply for food preparation and sanitary purposes or the energy usage of lifts and escalators is the same in the proposed building and the reference building, they may be omitted from the calculation of both the proposed building and the reference building; and

(i) energy use of a lift in a building with more than one classification may be apportioned according to the number of storeys of the part for which the annual greenhouse gas emissions and thermal comfort level are being calculated.
Specification 35 Modelling profiles

S35C1 Scope

[2019: Spec JVc: 1]

This Specification contains modelling profiles as referenced in S34C3(6)(f).

S35C2 Modelling profiles

[2019: Spec JVc: 2]

(1) The air-conditioning, must be modelled on the basis of—

(a) the daily occupancy and operation profiles in Tables S35C2a to S35C2k; and

(b) the internal heat gains in a building—

(i) from occupants and hot meals, in accordance with one of the options in Table S35C2n; and

(ii) from appliances and equipment, in accordance with Table S35C2l; and

(iii) from artificial lighting, determined in accordance with (2).

(2) The artificial lighting, must be modelled on the basis of the proposed level of artificial lighting in the building with the daily profile in Tables S35C2a to S35C2k.

(3) The heated water supply, must be modelled on the basis of the consumption rates of Table S35C2m.

Table S35C2a: Occupancy and operation profiles of a Class 2 common area

<table>
<thead>
<tr>
<th>Time period (local standard time)</th>
<th>Occupancy (Daily)</th>
<th>Artificial lighting (Daily)</th>
<th>Appliances and equipment (Daily)</th>
<th>Air-conditioning (Daily)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00am to 1:00am</td>
<td>0%</td>
<td>30%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>1:00am to 2:00am</td>
<td>0%</td>
<td>30%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>2:00am to 3:00am</td>
<td>0%</td>
<td>30%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>3:00am to 4:00am</td>
<td>0%</td>
<td>30%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>4:00am to 5:00am</td>
<td>0%</td>
<td>30%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>5:00am to 6:00am</td>
<td>0%</td>
<td>30%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>6:00am to 7:00am</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>7:00am to 8:00am</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>8:00am to 9:00am</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>9:00am to 10:00am</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>10:00am to 11:00am</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>11:00am to 12:00pm</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>12:00pm to 1:00pm</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>1:00pm to 2:00pm</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>2:00pm to 3:00pm</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>3:00pm to 4:00pm</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>4:00pm to 5:00pm</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>5:00pm to 6:00pm</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>6:00pm to 7:00pm</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>On</td>
</tr>
<tr>
<td>7:00pm to 8:00pm</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>On</td>
</tr>
</tbody>
</table>
Table Notes:
The artificial lighting profile is expressed as a percentage of the maximum *illumination power density* permitted under Part J6.

Table S35C2b: Occupancy and operation profiles of a Class 3 hotel

<table>
<thead>
<tr>
<th>Time period (local standard time)</th>
<th>Occupancy (Monday to Friday)</th>
<th>Artificial lighting (Monday to Friday)</th>
<th>Appliances and equipment (Monday to Friday)</th>
<th>Air-conditioning (Monday to Friday)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00am to 1:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>1:00am to 2:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>2:00am to 3:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>3:00am to 4:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>4:00am to 5:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>5:00am to 6:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>6:00am to 7:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>7:00am to 8:00am</td>
<td>10%</td>
<td>40%</td>
<td>65%</td>
<td>On</td>
</tr>
<tr>
<td>8:00am to 9:00am</td>
<td>20%</td>
<td>90%</td>
<td>80%</td>
<td>On</td>
</tr>
<tr>
<td>9:00am to 10:00am</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>10:00am to 11:00am</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>11:00am to 12:00pm</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>12:00pm to 1:00pm</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>1:00pm to 2:00pm</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>2:00pm to 3:00pm</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>3:00pm to 4:00pm</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>4:00pm to 5:00pm</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>5:00pm to 6:00pm</td>
<td>35%</td>
<td>80%</td>
<td>80%</td>
<td>On</td>
</tr>
<tr>
<td>6:00pm to 7:00pm</td>
<td>10%</td>
<td>60%</td>
<td>65%</td>
<td>Off</td>
</tr>
<tr>
<td>7:00pm to 8:00pm</td>
<td>5%</td>
<td>60%</td>
<td>55%</td>
<td>Off</td>
</tr>
<tr>
<td>8:00pm to 9:00pm</td>
<td>5%</td>
<td>50%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>9:00pm to 10:00pm</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>10:00pm to 11:00pm</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>11:00pm to 12:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
</tbody>
</table>

Table Notes:
1. The occupancy profile is expressed as a percentage of the maximum number of people that can be accommodated in the Class 3 building.
2. The artificial lighting profile is expressed as a percentage of the maximum *illumination power density* permitted under Part J6.
3. The *air-conditioning* profile is expressed as the plant status.
Table S35C2c: Weekday occupancy and operation profiles of a Class 5 building, a Class 7 warehouse, a Class 8 Laboratory or a Class 9a clinic, day surgery or procedure unit

<table>
<thead>
<tr>
<th>Time period (local standard time)</th>
<th>Occupancy (Monday to Friday)</th>
<th>Artificial lighting (Monday to Friday)</th>
<th>Appliances and equipment (Monday to Friday)</th>
<th>Air-conditioning (Monday to Friday)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00am to 1:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>1:00am to 2:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>2:00am to 3:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>3:00am to 4:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>4:00am to 5:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>5:00am to 6:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>6:00am to 7:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>7:00am to 8:00am</td>
<td>10%</td>
<td>40%</td>
<td>65%</td>
<td>On</td>
</tr>
<tr>
<td>8:00am to 9:00am</td>
<td>20%</td>
<td>90%</td>
<td>80%</td>
<td>On</td>
</tr>
<tr>
<td>9:00am to 10:00am</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>10:00am to 11:00am</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>11:00am to 12:00pm</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>12:00pm to 1:00pm</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>1:00pm to 2:00pm</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>2:00pm to 3:00pm</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>3:00pm to 4:00pm</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>4:00pm to 5:00pm</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>On</td>
</tr>
<tr>
<td>5:00pm to 6:00pm</td>
<td>35%</td>
<td>80%</td>
<td>80%</td>
<td>On</td>
</tr>
<tr>
<td>6:00pm to 7:00pm</td>
<td>10%</td>
<td>60%</td>
<td>65%</td>
<td>Off</td>
</tr>
<tr>
<td>7:00pm to 8:00pm</td>
<td>5%</td>
<td>60%</td>
<td>55%</td>
<td>Off</td>
</tr>
<tr>
<td>8:00pm to 9:00pm</td>
<td>5%</td>
<td>50%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>9:00pm to 10:00pm</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>10:00pm to 11:00pm</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>11:00pm to 12:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
</tbody>
</table>

Table Notes:
1. The occupancy profile is expressed as a percentage of the maximum number of people that can be accommodated in the building.
2. The artificial lighting profile is expressed as a percentage of the maximum illumination power density permitted under Part J6.
3. The appliances and equipment profile is expressed as a percentage of the maximum internal heat gain in Table S35C2I.
4. The air-conditioning profile is expressed as the plant status.

Table S35C2d: Weekend occupancy and operation profiles of a Class 5 building, a Class 7 warehouse, a Class 8 Laboratory or a Class 9a clinic, day surgery or procedure unit

<table>
<thead>
<tr>
<th>Time period (local standard time)</th>
<th>Occupancy (Saturday, Sunday and holidays)</th>
<th>Artificial lighting (Saturday, Sunday and holidays)</th>
<th>Appliances and equipment (Saturday, Sunday and holidays)</th>
<th>Air-conditioning (Saturday, Sunday and holidays)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00am to 1:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>1:00am to 2:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
</tbody>
</table>
Table Notes:

1. The occupancy profile is expressed as a percentage of the maximum number of people that can be accommodated in the building.

2. The artificial lighting profile is expressed as a percentage of the maximum illumination power density permitted under Part J6.

3. The appliances and equipment profile is expressed as a percentage of the maximum internal heat gain in Table S35C2i.

4. The air-conditioning profile is expressed as the plant status.

Table S35C2e: Occupancy and operation profiles of a Class 6 shop or shopping centre

<table>
<thead>
<tr>
<th>Time period (local standard time)</th>
<th>Occupancy (Daily)</th>
<th>Artificial lighting (Daily)</th>
<th>Appliances and equipment (Daily)</th>
<th>Air-conditioning (Daily)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00am to 1:00am</td>
<td>0%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>1:00am to 2:00am</td>
<td>0%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>2:00am to 3:00am</td>
<td>0%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>3:00am to 4:00am</td>
<td>0%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>4:00am to 5:00am</td>
<td>0%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>5:00am to 6:00am</td>
<td>0%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>6:00am to 7:00am</td>
<td>0%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>7:00am to 8:00am</td>
<td>0%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>8:00am to 9:00am</td>
<td>0%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>9:00am to 10:00am</td>
<td>0%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>10:00am to 11:00am</td>
<td>0%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>11:00am to 12:00am</td>
<td>0%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>12:00pm to 1:00pm</td>
<td>5%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>1:00pm to 2:00pm</td>
<td>5%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>2:00pm to 3:00pm</td>
<td>5%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>3:00pm to 4:00pm</td>
<td>5%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>4:00pm to 5:00pm</td>
<td>5%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>5:00pm to 6:00pm</td>
<td>5%</td>
<td>25%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>6:00pm to 7:00pm</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>7:00pm to 8:00pm</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>8:00pm to 9:00pm</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>9:00pm to 10:00pm</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>10:00pm to 11:00pm</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>11:00pm to 12:00am</td>
<td>0%</td>
<td>15%</td>
<td>25%</td>
<td>Off</td>
</tr>
<tr>
<td>12:00am to 1:00am</td>
<td>10%</td>
<td>25%</td>
<td>70%</td>
<td>On</td>
</tr>
<tr>
<td>1:00am to 2:00am</td>
<td>10%</td>
<td>25%</td>
<td>70%</td>
<td>On</td>
</tr>
<tr>
<td>2:00am to 3:00am</td>
<td>10%</td>
<td>25%</td>
<td>70%</td>
<td>On</td>
</tr>
<tr>
<td>3:00am to 4:00am</td>
<td>10%</td>
<td>25%</td>
<td>70%</td>
<td>On</td>
</tr>
<tr>
<td>4:00am to 5:00am</td>
<td>10%</td>
<td>25%</td>
<td>70%</td>
<td>On</td>
</tr>
<tr>
<td>5:00am to 6:00am</td>
<td>10%</td>
<td>25%</td>
<td>70%</td>
<td>On</td>
</tr>
<tr>
<td>6:00am to 7:00am</td>
<td>10%</td>
<td>25%</td>
<td>70%</td>
<td>On</td>
</tr>
<tr>
<td>7:00am to 8:00am</td>
<td>10%</td>
<td>25%</td>
<td>70%</td>
<td>On</td>
</tr>
</tbody>
</table>
Table Notes:

1. The occupancy profile is expressed as a percentage of the maximum number of people that can be accommodated in the building.
2. The artificial lighting profile is expressed as a percentage of the maximum illumination power density permitted under Part J6.
3. The appliances and equipment profile is expressed as a percentage of the maximum internal heat gain in S35C2l.
4. The air-conditioning profile is expressed as the plant status.

Table S35C2f: Occupancy and operation profiles of a Class 6 restaurant or cafe

<table>
<thead>
<tr>
<th>Time period (local standard time)</th>
<th>Occupancy (Monday to Saturday)</th>
<th>Artificial lighting (Monday to Saturday)</th>
<th>Appliances and equipment (Monday to Saturday)</th>
<th>Air-conditioning (Monday to Saturday)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00am to 1:00am</td>
<td>0%</td>
<td>5%</td>
<td>15%</td>
<td>Off</td>
</tr>
<tr>
<td>1:00am to 2:00am</td>
<td>0%</td>
<td>5%</td>
<td>15%</td>
<td>Off</td>
</tr>
<tr>
<td>2:00am to 3:00am</td>
<td>0%</td>
<td>5%</td>
<td>15%</td>
<td>Off</td>
</tr>
<tr>
<td>3:00am to 4:00am</td>
<td>0%</td>
<td>5%</td>
<td>15%</td>
<td>Off</td>
</tr>
<tr>
<td>4:00am to 5:00am</td>
<td>0%</td>
<td>5%</td>
<td>15%</td>
<td>Off</td>
</tr>
<tr>
<td>5:00am to 6:00am</td>
<td>0%</td>
<td>5%</td>
<td>15%</td>
<td>Off</td>
</tr>
<tr>
<td>6:00am to 7:00am</td>
<td>5%</td>
<td>40%</td>
<td>40%</td>
<td>Off</td>
</tr>
<tr>
<td>7:00am to 8:00am</td>
<td>5%</td>
<td>40%</td>
<td>40%</td>
<td>On</td>
</tr>
<tr>
<td>8:00am to 9:00am</td>
<td>5%</td>
<td>60%</td>
<td>60%</td>
<td>On</td>
</tr>
<tr>
<td>9:00am to 10:00am</td>
<td>5%</td>
<td>60%</td>
<td>60%</td>
<td>On</td>
</tr>
<tr>
<td>10:00am to 11:00am</td>
<td>20%</td>
<td>90%</td>
<td>90%</td>
<td>On</td>
</tr>
<tr>
<td>11:00am to 12:00pm</td>
<td>50%</td>
<td>90%</td>
<td>90%</td>
<td>On</td>
</tr>
<tr>
<td>12:00pm to 1:00pm</td>
<td>80%</td>
<td>90%</td>
<td>90%</td>
<td>On</td>
</tr>
<tr>
<td>1:00pm to 2:00pm</td>
<td>70%</td>
<td>90%</td>
<td>90%</td>
<td>On</td>
</tr>
<tr>
<td>2:00pm to 3:00pm</td>
<td>40%</td>
<td>90%</td>
<td>90%</td>
<td>On</td>
</tr>
</tbody>
</table>
Table Notes:
1. The occupancy profile is expressed as a percentage of the maximum number of people that can be accommodated in the building.
2. The artificial lighting profile is expressed as a percentage of the maximum illumination power density permitted under Part J6.
3. The appliances and equipment profile is expressed as a percentage of the maximum internal heat gain in S35C2l.
4. The air-conditioning profile is expressed as the plant status.
5. Sunday profile is 5% continuous artificial lighting and 5% continuous appliances and equipment where there is no occupancy and the air-conditioning is “off”.

Table S35C2g: Occupancy and operation profiles of a Class 9a ward area

<table>
<thead>
<tr>
<th>Time period (local standard time)</th>
<th>Occupancy (Daily)</th>
<th>Artificial lighting (Daily)</th>
<th>Air-conditioning (Daily)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00am to 1:00am</td>
<td>70%</td>
<td>5%</td>
<td>On</td>
</tr>
<tr>
<td>1:00am to 2:00am</td>
<td>70%</td>
<td>5%</td>
<td>On</td>
</tr>
<tr>
<td>2:00am to 3:00am</td>
<td>70%</td>
<td>5%</td>
<td>On</td>
</tr>
<tr>
<td>3:00am to 4:00am</td>
<td>70%</td>
<td>5%</td>
<td>On</td>
</tr>
<tr>
<td>4:00am to 5:00am</td>
<td>70%</td>
<td>5%</td>
<td>On</td>
</tr>
<tr>
<td>5:00am to 6:00am</td>
<td>70%</td>
<td>25%</td>
<td>On</td>
</tr>
<tr>
<td>6:00am to 7:00am</td>
<td>70%</td>
<td>80%</td>
<td>On</td>
</tr>
<tr>
<td>7:00am to 8:00am</td>
<td>70%</td>
<td>80%</td>
<td>On</td>
</tr>
<tr>
<td>8:00am to 9:00am</td>
<td>70%</td>
<td>50%</td>
<td>On</td>
</tr>
<tr>
<td>9:00am to 10:00am</td>
<td>70%</td>
<td>20%</td>
<td>On</td>
</tr>
<tr>
<td>10:00am to 11:00am</td>
<td>70%</td>
<td>20%</td>
<td>On</td>
</tr>
<tr>
<td>11:00am to 12:00pm</td>
<td>70%</td>
<td>20%</td>
<td>On</td>
</tr>
<tr>
<td>12:00pm to 1:00pm</td>
<td>70%</td>
<td>20%</td>
<td>On</td>
</tr>
<tr>
<td>1:00pm to 2:00pm</td>
<td>70%</td>
<td>20%</td>
<td>On</td>
</tr>
<tr>
<td>2:00pm to 3:00pm</td>
<td>70%</td>
<td>20%</td>
<td>On</td>
</tr>
<tr>
<td>3:00pm to 4:00pm</td>
<td>70%</td>
<td>20%</td>
<td>On</td>
</tr>
<tr>
<td>4:00pm to 5:00pm</td>
<td>70%</td>
<td>20%</td>
<td>On</td>
</tr>
<tr>
<td>5:00pm to 6:00pm</td>
<td>70%</td>
<td>50%</td>
<td>On</td>
</tr>
<tr>
<td>6:00pm to 7:00pm</td>
<td>70%</td>
<td>50%</td>
<td>On</td>
</tr>
<tr>
<td>7:00pm to 8:00pm</td>
<td>70%</td>
<td>50%</td>
<td>On</td>
</tr>
</tbody>
</table>
Table Notes:
1. The occupancy profile is expressed as a percentage of the maximum number of people that can be accommodated in the building.
2. The artificial lighting profile is expressed as a percentage of the maximum illumination power density permitted under Part J6.
3. The air-conditioning profile is expressed as the plant status.

Table S35C2h: Occupancy and operation profiles of a Class 9b theatre or cinema

<table>
<thead>
<tr>
<th>Time period (local standard time)</th>
<th>Occupancy (Monday to Saturday)</th>
<th>Occupancy (Saturday and Sunday)</th>
<th>Artificial lighting (Monday to Saturday)</th>
<th>Artificial lighting (Saturday and Sunday)</th>
<th>Air-conditioning (Monday to Friday)</th>
<th>Air-conditioning (Saturday and Sunday)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00am to 1:00am</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>1:00am to 2:00am</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>2:00am to 3:00am</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>3:00am to 4:00am</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>4:00am to 5:00am</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>5:00am to 6:00am</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>6:00am to 7:00am</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>7:00am to 8:00am</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>8:00am to 9:00am</td>
<td>0%</td>
<td>20%</td>
<td>100%</td>
<td>100%</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>9:00am to 10:00am</td>
<td>0%</td>
<td>70%</td>
<td>10%</td>
<td>10%</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>10:00am to 11:00am</td>
<td>0%</td>
<td>70%</td>
<td>10%</td>
<td>10%</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>11:00am to 12:00pm</td>
<td>0%</td>
<td>70%</td>
<td>10%</td>
<td>10%</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>12:00pm to 1:00pm</td>
<td>80%</td>
<td>20%</td>
<td>100%</td>
<td>100%</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>1:00pm to 2:00pm</td>
<td>70%</td>
<td>70%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>2:00pm to 3:00pm</td>
<td>40%</td>
<td>70%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>3:00pm to 4:00pm</td>
<td>20%</td>
<td>70%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
<td>On</td>
</tr>
</tbody>
</table>
Table Notes:
1. The occupancy profile is expressed as a percentage of the maximum number of people that can be accommodated in the building.
2. The artificial lighting profile is expressed as a percentage of the maximum illumination power density permitted under Part J6.
3. The air-conditioning profile is expressed as the plant status.

Table S35C2i: Occupancy and operation profiles of a Class 9b conference facility

<table>
<thead>
<tr>
<th>Hour</th>
<th>Occupancy (Daily)</th>
<th>Artificial lighting and equipment (Daily)</th>
<th>Air-conditioning (Monday to Friday)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00am to 1:00am</td>
<td>0%</td>
<td>15%</td>
<td>Off</td>
</tr>
<tr>
<td>1:00am to 2:00am</td>
<td>0%</td>
<td>15%</td>
<td>Off</td>
</tr>
<tr>
<td>2:00am to 3:00am</td>
<td>0%</td>
<td>15%</td>
<td>Off</td>
</tr>
<tr>
<td>3:00am to 4:00am</td>
<td>0%</td>
<td>15%</td>
<td>Off</td>
</tr>
<tr>
<td>4:00am to 5:00am</td>
<td>0%</td>
<td>15%</td>
<td>Off</td>
</tr>
<tr>
<td>5:00am to 6:00am</td>
<td>0%</td>
<td>15%</td>
<td>Off</td>
</tr>
<tr>
<td>6:00am to 7:00am</td>
<td>5%</td>
<td>25%</td>
<td>On</td>
</tr>
<tr>
<td>7:00am to 8:00am</td>
<td>10%</td>
<td>45%</td>
<td>On</td>
</tr>
<tr>
<td>8:00am to 9:00am</td>
<td>20%</td>
<td>45%</td>
<td>On</td>
</tr>
<tr>
<td>9:00am to 10:00am</td>
<td>20%</td>
<td>45%</td>
<td>On</td>
</tr>
<tr>
<td>10:00am to 11:00am</td>
<td>25%</td>
<td>60%</td>
<td>On</td>
</tr>
<tr>
<td>11:00am to 12:00pm</td>
<td>30%</td>
<td>60%</td>
<td>On</td>
</tr>
<tr>
<td>12:00pm to 1:00pm</td>
<td>30%</td>
<td>60%</td>
<td>On</td>
</tr>
<tr>
<td>1:00pm to 2:00pm</td>
<td>35%</td>
<td>60%</td>
<td>On</td>
</tr>
<tr>
<td>2:00pm to 3:00pm</td>
<td>30%</td>
<td>45%</td>
<td>On</td>
</tr>
<tr>
<td>3:00pm to 4:00pm</td>
<td>30%</td>
<td>60%</td>
<td>On</td>
</tr>
<tr>
<td>4:00pm to 5:00pm</td>
<td>35%</td>
<td>60%</td>
<td>On</td>
</tr>
<tr>
<td>5:00pm to 6:00pm</td>
<td>25%</td>
<td>60%</td>
<td>On</td>
</tr>
</tbody>
</table>
Energy efficiency

Table Notes:
1. The occupancy profile is expressed as a percentage of the maximum number of people that can be accommodated in the building.
2. The artificial lighting profile is expressed as a percentage of the maximum illumination power density permitted under Part J6.
3. The appliances and equipment profile is expressed as a percentage of the maximum internal heat gain in S35C2i.
4. The air-conditioning profile is expressed as the plant status.

Table S35C2j: Occupancy and operation profiles of a Class 9b school

<table>
<thead>
<tr>
<th>Time period (local standard time)</th>
<th>Occupancy (Monday to Friday)</th>
<th>Artificial lighting (Monday to Friday)</th>
<th>Appliances and equipment (Monday to Friday)</th>
<th>Air-conditioning (Monday to Friday)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00am to 1:00am</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
</tr>
<tr>
<td>1:00am to 2:00am</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
</tr>
<tr>
<td>2:00am to 3:00am</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
</tr>
<tr>
<td>3:00am to 4:00am</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
</tr>
<tr>
<td>4:00am to 5:00am</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
</tr>
<tr>
<td>5:00am to 6:00am</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
</tr>
<tr>
<td>6:00am to 7:00am</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
</tr>
<tr>
<td>7:00am to 8:00am</td>
<td>5%</td>
<td>30%</td>
<td>30%</td>
<td>On</td>
</tr>
<tr>
<td>8:00am to 9:00am</td>
<td>75%</td>
<td>85%</td>
<td>85%</td>
<td>On</td>
</tr>
<tr>
<td>9:00am to 10:00am</td>
<td>90%</td>
<td>95%</td>
<td>95%</td>
<td>On</td>
</tr>
<tr>
<td>10:00am to 11:00am</td>
<td>90%</td>
<td>95%</td>
<td>95%</td>
<td>On</td>
</tr>
<tr>
<td>11:00am to 12:00pm</td>
<td>90%</td>
<td>95%</td>
<td>95%</td>
<td>On</td>
</tr>
<tr>
<td>12:00pm to 1:00pm</td>
<td>50%</td>
<td>80%</td>
<td>70%</td>
<td>On</td>
</tr>
<tr>
<td>1:00pm to 2:00pm</td>
<td>50%</td>
<td>80%</td>
<td>70%</td>
<td>On</td>
</tr>
<tr>
<td>2:00pm to 3:00pm</td>
<td>90%</td>
<td>95%</td>
<td>95%</td>
<td>On</td>
</tr>
<tr>
<td>3:00pm to 4:00pm</td>
<td>70%</td>
<td>90%</td>
<td>80%</td>
<td>On</td>
</tr>
<tr>
<td>4:00pm to 5:00pm</td>
<td>55%</td>
<td>70%</td>
<td>60%</td>
<td>On</td>
</tr>
<tr>
<td>5:00pm to 6:00pm</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>Off</td>
</tr>
<tr>
<td>6:00pm to 7:00pm</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>Off</td>
</tr>
<tr>
<td>7:00pm to 8:00pm</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>Off</td>
</tr>
<tr>
<td>8:00pm to 9:00pm</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>Off</td>
</tr>
<tr>
<td>9:00pm to 10:00pm</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
</tr>
<tr>
<td>10:00pm to 11:00pm</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
</tr>
<tr>
<td>11:00pm to 12:00am</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>Off</td>
</tr>
</tbody>
</table>
Table Notes:
1. The occupancy profile is expressed as a percentage of the maximum number of people that can be accommodated in the building.
2. The artificial lighting profile is expressed as a percentage of the maximum illumination power density permitted under Part J6.
3. The appliances and equipment profile is expressed as a percentage of the maximum internal heat gain in S35C2l.
4. The air-conditioning profile is expressed as the plant status.
5. Saturday and Sunday profiles are 5% continuous artificial lighting and 5% continuous appliances and equipment, where there is no occupancy and the air-conditioning is “off”.

Table S35C2k: Occupancy and operation profiles of a Class 9c aged care facility

<table>
<thead>
<tr>
<th>Time period (local standard time)</th>
<th>Occupancy (Monday to Friday)</th>
<th>Occupancy (Saturday, Sunday and holidays)</th>
<th>Artificial lighting (Monday-to-Friday Daily)</th>
<th>Air-conditioning (Monday to Friday)</th>
<th>Air-conditioning (Saturday, Sunday and holidays)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00am to 1:00am</td>
<td>85%</td>
<td>85%</td>
<td>5%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>1:00am to 2:00am</td>
<td>85%</td>
<td>85%</td>
<td>5%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>2:00am to 3:00am</td>
<td>85%</td>
<td>85%</td>
<td>5%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>3:00am to 4:00am</td>
<td>85%</td>
<td>85%</td>
<td>5%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>4:00am to 5:00am</td>
<td>85%</td>
<td>85%</td>
<td>5%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>5:00am to 6:00am</td>
<td>85%</td>
<td>85%</td>
<td>25%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>6:00am to 7:00am</td>
<td>85%</td>
<td>85%</td>
<td>80%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>7:00am to 8:00am</td>
<td>80%</td>
<td>85%</td>
<td>80%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>8:00am to 9:00am</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>9:00am to 10:00am</td>
<td>10%</td>
<td>50%</td>
<td>20%</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>10:00am to 11:00am</td>
<td>10%</td>
<td>20%</td>
<td>20%</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>11:00am to 12:00pm</td>
<td>10%</td>
<td>20%</td>
<td>20%</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>12:00pm to 1:00pm</td>
<td>10%</td>
<td>20%</td>
<td>20%</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>1:00pm to 2:00pm</td>
<td>10%</td>
<td>20%</td>
<td>20%</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>2:00pm to 3:00pm</td>
<td>10%</td>
<td>20%</td>
<td>20%</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>3:00pm to 4:00pm</td>
<td>10%</td>
<td>30%</td>
<td>20%</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>4:00pm to 5:00pm</td>
<td>50%</td>
<td>50%</td>
<td>20%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>5:00pm to 6:00pm</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>6:00pm to 7:00pm</td>
<td>70%</td>
<td>50%</td>
<td>50%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>7:00pm to 8:00pm</td>
<td>70%</td>
<td>70%</td>
<td>50%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>8:00pm to 9:00pm</td>
<td>80%</td>
<td>80%</td>
<td>50%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>9:00pm to 10:00pm</td>
<td>85%</td>
<td>80%</td>
<td>50%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>10:00pm to 11:00pm</td>
<td>85%</td>
<td>85%</td>
<td>50%</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>11:00pm to 12:00am</td>
<td>85%</td>
<td>85%</td>
<td>5%</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>
Table Notes:
1. The occupancy profile is expressed as a percentage of the maximum number of people that can be accommodated in the Class 9c building.
2. The artificial lighting profile is expressed as a percentage of the maximum illumination power density permitted under Part J6.
3. The air-conditioning profile is expressed as the plant status.

Table S35C2i: Internal heat gains for appliances and equipment

<table>
<thead>
<tr>
<th>Application</th>
<th>Internal sensible heat gain rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 9a building ward area</td>
<td>5 W/m² averaged for 24 hours per day, 7 days per week, continuous operation</td>
</tr>
<tr>
<td>Class 8 laboratory and a Class 9a clinic, day surgery and a procedure unit</td>
<td>15 W/m²</td>
</tr>
<tr>
<td>Class 6 shop and shopping centre, Class 6 cafe and restaurant and Class 9b school</td>
<td>5 W/m²</td>
</tr>
<tr>
<td>Other applications</td>
<td>No load</td>
</tr>
<tr>
<td>Class 3 (sole-occupancy unit)</td>
<td>160 W per room</td>
</tr>
<tr>
<td>Class 3 dormitories</td>
<td>No load</td>
</tr>
<tr>
<td>Class 5 building</td>
<td>11 W/m²</td>
</tr>
<tr>
<td>Class 9c building</td>
<td>160 W per room</td>
</tr>
<tr>
<td>Class 9b (conference facilities only)</td>
<td>150 W per room plus 10 W per person</td>
</tr>
</tbody>
</table>

Table S35C2m: Heated water supply consumption rates

<table>
<thead>
<tr>
<th>Application</th>
<th>Daily consumption rate at 60°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential part of a hotel or motel</td>
<td>100 L/sole-occupancy unit</td>
</tr>
<tr>
<td>Dormitory, boarding house, guest house, hostel, lodging house and backpackers accommodation</td>
<td>50 L/person</td>
</tr>
<tr>
<td>Residential part of a school, accommodation for the aged, children or people with a disability and a detention centre or a health-care building which accommodates members of staff</td>
<td></td>
</tr>
<tr>
<td>Class 9c building</td>
<td></td>
</tr>
<tr>
<td>Office, laboratory, shop and assembly building</td>
<td>4 L/person</td>
</tr>
<tr>
<td>Dining room, restaurant and cafe</td>
<td>9 L/meal</td>
</tr>
<tr>
<td>Health-care building, ward area</td>
<td>70 L/patient</td>
</tr>
<tr>
<td>School</td>
<td>7 L/person</td>
</tr>
<tr>
<td>Other applications</td>
<td>4 L/person</td>
</tr>
</tbody>
</table>

Table S35C2n: Internal heat gains for occupants and hot meals

<table>
<thead>
<tr>
<th>Application</th>
<th>Internal heat gains per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dining room, restaurant or cafe</td>
<td>80 W sensible heat gain and 80 W latent heat gain</td>
</tr>
<tr>
<td></td>
<td>The average adjusted metabolic rate for sedentary work from Table 45 of AIRAH-DA09</td>
</tr>
<tr>
<td></td>
<td>The heat emission rate for sedentary work from Table 6.3 of CIBSE Guide A</td>
</tr>
<tr>
<td>Other applications</td>
<td>75 W sensible heat gain and 55 W latent heat gain</td>
</tr>
</tbody>
</table>
Table Notes:
1. The number of people must be calculated in accordance with D2D18.
2. For a dining room, restaurant or cafe, the internal heat gains per person account for heat gains from both occupants and hot meals.
3. For other applications, the internal heat gains per person only account for heat gains from occupants.

<table>
<thead>
<tr>
<th>Application</th>
<th>Internal heat gains per person</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>An average adjusted metabolic rate from Table 45 of AIRAH-DA09</td>
</tr>
<tr>
<td></td>
<td>A heat emission rate from Table 6.3 of CIBSE Guide A</td>
</tr>
</tbody>
</table>

Table Notes:
Specification 36 Material properties

S36C1 Scope

This Specification lists the thermal properties of some common construction materials.

S36C2 Construction Deemed-to-Satisfy

(1) Tables S36C2a to S36C2e list the thermal conductivity considered to be achieved by some common construction materials.

(2) For the purposes of Tables S36C2a to S36C2e:
 (a) For materials which incorporate cores or hollows in regular patterns (such as cored brickwork, hollow blockwork and cored floor or wall panels), the tabulated material densities and thermal conductivities are based on the gross density (mass divided by external dimensions).
 (b) The R-Value of a material is determined by dividing the thickness of the material in metres by the thermal conductivity in W/m.K.

(3) Tables S36C2f to S36C2i list the R-Value considered to be achieved by air films and airspaces.

(4) For the purposes of Tables S36C2f to S36C2i, R-Values are for a temperature of 10°C and temperature difference of 15 K.

(5) The thermal properties considered to be achieved by reflective surfaces are—
 (a) within a wall—
 (i) with an inner reflective surface of 0.05 emittance and a 20 mm airspace to the wall lining, an added R-Value of 0.48; and
 (ii) with an inner reflective surface of 0.05 emittance and a 70 mm airspace to the wall lining, an added R-Value of 0.43; and
 (iii) with an inner reflective surface of 0.05 emittance and a 70 mm airspace to the wall lining and an outer anti-glare reflective surface of 0.20 emittance and a 25 mm airspace to the wall cladding, an added R-Value of 0.95; and
 (iv) with an outer anti-glare reflective surface of 0.20 emittance and a 35 mm airspace to the wall cladding, an added R-Value of 0.50; and
 (b) within a roof where the reflective insulation is laid directly under the roof, those in Tables S36C2j to S36C2l.

(6) A ventilated roof space is a roof space with—
 (a) gable vents, ridge vents, eave vents, roof vents or the like that—
 (i) are evenly distributed to allow an unobstructed flow of air; and
 (ii) are located to ensure, where practicable, there are no dead airspaces; and
 (iii) have an aggregate fixed open area of not less than 1.0% of the ceiling area; or
 (b) not less than 2 wind-driven roof ventilators having an aggregate opening area of not less than 0.14 m² in conjunction with gable vents, ridge vents, eave vents, roof vents or the like having an aggregate fixed open area of not less than 0.2% of the ceiling area; or
 (c) a tiled roof without sarking-type material at roof level.
Table S36C2a: Thermal conductivity of typical framing materials

<table>
<thead>
<tr>
<th>Description</th>
<th>Density (kg/m3)</th>
<th>Thermal conductivity (W/m.K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>7850</td>
<td>47.5</td>
</tr>
<tr>
<td>Timber – kiln dried hardwood (across the grain)</td>
<td>677</td>
<td>0.16</td>
</tr>
<tr>
<td>Timber – Radiata pine (across the grain)</td>
<td>506</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Table Notes:

The *R-Value* of a material is determined by the thickness of the material in metres by the thermal conductivity in W/m.K.

Table S36C2b: Thermal conductivity of typical roof cladding materials

<table>
<thead>
<tr>
<th>Description</th>
<th>Density (kg/m3)</th>
<th>Thermal conductivity (W/m.K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium sheeting</td>
<td>2680</td>
<td>210</td>
</tr>
<tr>
<td>Concrete or terra cotta tiles</td>
<td>1922</td>
<td>0.81</td>
</tr>
<tr>
<td>Steel sheeting</td>
<td>7850</td>
<td>47.5</td>
</tr>
</tbody>
</table>

Table Notes:

The *R-Value* of a material is determined by dividing the thickness of the material in metres by the thermal conductivity in W/m.K.

Table S36C2c: Thermal conductivity of typical wall cladding materials

<table>
<thead>
<tr>
<th>Description</th>
<th>Density (kg/m3)</th>
<th>Thermal conductivity (W/m.K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium sheeting</td>
<td>2680</td>
<td>210</td>
</tr>
<tr>
<td>Autoclaved aerated concrete</td>
<td>350</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>0.27</td>
</tr>
<tr>
<td>Cement render (1 part cement to 4 parts sand)</td>
<td>1570</td>
<td>0.53</td>
</tr>
<tr>
<td>Clay brick: 2.75 kg</td>
<td>1430</td>
<td>0.55</td>
</tr>
<tr>
<td>Clay brick: 3.25 kg</td>
<td>1690</td>
<td>0.65</td>
</tr>
<tr>
<td>Clay brick: 3.75 kg</td>
<td>1950</td>
<td>0.78</td>
</tr>
<tr>
<td>Concrete block: 190 mm dense or 90 mm dense solid</td>
<td>1100/2200</td>
<td>1.1</td>
</tr>
<tr>
<td>Concrete block: 140 mm dense or 190 mm lightweight</td>
<td>1250/910</td>
<td>0.85</td>
</tr>
<tr>
<td>Concrete block: 90 mm hollow or 90 mm lightweight solid</td>
<td>1650 / 1800</td>
<td>0.75</td>
</tr>
<tr>
<td>Concrete block: 140 mm lightweight</td>
<td>1050</td>
<td>0.67</td>
</tr>
<tr>
<td>Concrete block: 90 mm lightweight</td>
<td>1360</td>
<td>0.55</td>
</tr>
<tr>
<td>Fibre-cement</td>
<td>1360</td>
<td>0.25</td>
</tr>
<tr>
<td>Gypsum plasterboard</td>
<td>880</td>
<td>0.17</td>
</tr>
<tr>
<td>Pine weatherboards</td>
<td>506</td>
<td>0.10</td>
</tr>
<tr>
<td>Plywood</td>
<td>530</td>
<td>0.14</td>
</tr>
<tr>
<td>Solid concrete</td>
<td>2400</td>
<td>1.44</td>
</tr>
<tr>
<td>Steel sheeting</td>
<td>7850</td>
<td></td>
</tr>
</tbody>
</table>
Table Notes:
1. For materials which incorporate cores or hollows in regular patterns (such as cored brickwork, hollow blockwork and cored floor or wall panels), the tabulated material densities and thermal conductivities are based on the gross density (mass divided by external dimensions).
2. The R-Value of a material is determined by dividing the thickness of the material in metres by the thermal conductivity in W/m.K.

Table S36C2d: Thermal conductivity of typical flooring materials

<table>
<thead>
<tr>
<th>Description</th>
<th>Density (kg/m3)</th>
<th>Thermal conductivity (W/m.K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpet underlay</td>
<td>-</td>
<td>0.04</td>
</tr>
<tr>
<td>Carpet</td>
<td>-</td>
<td>0.05</td>
</tr>
<tr>
<td>Prestressed hollow core concrete planks</td>
<td>1680</td>
<td>0.80</td>
</tr>
<tr>
<td>Particleboard</td>
<td>640</td>
<td>0.12</td>
</tr>
<tr>
<td>Plywood</td>
<td>530</td>
<td>0.14</td>
</tr>
<tr>
<td>Timber – kiln dried hardwood (across the grain)</td>
<td>677</td>
<td>0.16</td>
</tr>
<tr>
<td>Timber – Radiata pine (across the grain)</td>
<td>506</td>
<td>0.10</td>
</tr>
<tr>
<td>Solid concrete</td>
<td>2400</td>
<td>1.44</td>
</tr>
<tr>
<td>Vinyl floor tiles</td>
<td>2050</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Table Notes:
1. For materials which incorporate cores or hollows in regular patterns (such as cored brickwork, hollow blockwork and cored floor or wall panels), the tabulated material densities and thermal conductivities are based on the gross density (mass divided by external dimensions).
2. The R-Value of a material is determined by dividing the thickness of the material in metres by the thermal conductivity in W/m.K.

Table S36C2e: Thermal conductivity of other materials not listed in Tables S36C2a to S36C2d

<table>
<thead>
<tr>
<th>Description</th>
<th>Density (kg/m3)</th>
<th>Thermal conductivity (W/m.K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay soil (10% moisture content)</td>
<td>1300</td>
<td>0.6</td>
</tr>
<tr>
<td>PMMA (polymethylmethacrylate)</td>
<td>1180</td>
<td>1.0</td>
</tr>
<tr>
<td>Polycarbonates</td>
<td>1200</td>
<td>0.2</td>
</tr>
<tr>
<td>Sand (6% moisture content)</td>
<td>1800</td>
<td>1.64</td>
</tr>
<tr>
<td>Soda lime glass</td>
<td>2500</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table Notes:
The R-Value of a material is determined by dividing the thickness of the material in metres by the thermal conductivity in W/m.K.

Table S36C2f: Typical R-Values for airspaces and air films: airspaces non-reflective unventilated

<table>
<thead>
<tr>
<th>Position of airspace</th>
<th>Direction of heat flow</th>
<th>R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>In a roof with a pitch of not more than 5°</td>
<td>Up</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Table S36C2g: Typical R-Values for airspaces and air films: airspaces non-reflective ventilated

<table>
<thead>
<tr>
<th>Position of airspace</th>
<th>Direction of heat flow</th>
<th>R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>In any roof with a pitch not more than 5° and 100 mm deep airspace</td>
<td>Up</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td>Down</td>
<td>0.19</td>
</tr>
<tr>
<td>In any roof space with a horizontal ceiling, with a pitch more than 5°</td>
<td>Up</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td>Down</td>
<td>0.46</td>
</tr>
<tr>
<td>In a wall</td>
<td>Horizontal</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Table Notes:

R-Values are for a temperature of 10°C and a temperature difference of 15 K.

Table S36C2h: Typical R-Values for airspaces and air films: air films – still air

<table>
<thead>
<tr>
<th>Position of airspace</th>
<th>Direction of heat flow</th>
<th>R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>On a surface with a pitch of not more than 5°</td>
<td>Up</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Down</td>
<td>0.16</td>
</tr>
<tr>
<td>On a surface with a pitch of more than 5° and not more than 30°</td>
<td>Up</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Down</td>
<td>0.15</td>
</tr>
<tr>
<td>On a surface with a pitch of more than 30° and not more than 45°</td>
<td>Up</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Down</td>
<td>0.13</td>
</tr>
<tr>
<td>In a wall</td>
<td>Horizontal</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Table Notes:

R-Values are for a temperature of 10°C and a temperature difference of 15 K.

Table S36C2i: Typical R-Values for airspaces and air films: air films – moving air

<table>
<thead>
<tr>
<th>Position of airspace</th>
<th>Direction of heat flow</th>
<th>R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not more than 3 m/s wind</td>
<td>Any</td>
<td>0.04</td>
</tr>
<tr>
<td>More than 3 m/s wind speed and not more than 7 m/s wind speed</td>
<td>Any</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table Notes:

R-Values are for a temperature of 10°C and a temperature difference of 15 K.
Table S36C2j: Typical thermal properties for reflective surfaces with airspaces in roofs: Pitched roof (>10°) with horizontal ceiling

<table>
<thead>
<tr>
<th>Emittance of added reflective insulation</th>
<th>Direction of heat flow</th>
<th>R-Value added by reflective surface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ventilated roof space</td>
</tr>
<tr>
<td>0.2 outer</td>
<td>Down</td>
<td>1.21</td>
</tr>
<tr>
<td>0.05 inner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2 outer</td>
<td>Up</td>
<td>0.59</td>
</tr>
<tr>
<td>0.05 inner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9 outer</td>
<td>Down</td>
<td>1.01</td>
</tr>
<tr>
<td>0.05 inner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9 outer</td>
<td>Up</td>
<td>0.40</td>
</tr>
<tr>
<td>0.05 inner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
R-Values are for a temperature of 10°C and a temperature difference of 15 K.

Table S36C2k: Typical thermal properties for reflective surfaces with airspaces in roofs: Flat, skillion or pitched roof (≤10°) with horizontal ceiling

<table>
<thead>
<tr>
<th>Emittance of added reflective insulation</th>
<th>Direction of heat flow</th>
<th>R-Value added by reflective surface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2 outer</td>
<td>Down</td>
<td>1.28</td>
</tr>
<tr>
<td>0.05 inner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2 outer</td>
<td>Up</td>
<td>0.68</td>
</tr>
<tr>
<td>0.05 inner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9 outer</td>
<td>Down</td>
<td>1.06</td>
</tr>
<tr>
<td>0.05 inner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9 outer</td>
<td>Up</td>
<td>0.49</td>
</tr>
<tr>
<td>0.05 inner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
R-Values are for a temperature of 10°C and a temperature difference of 15 K.

Table S36C2l: Typical thermal properties for reflective surfaces with airspaces in roofs: Pitched roof with cathedral ceiling

<table>
<thead>
<tr>
<th>Emittance of added reflective insulation</th>
<th>Direction of heat flow</th>
<th>R-Value added by reflective surface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>15° to not more than 25° pitch</td>
</tr>
<tr>
<td>0.2 outer</td>
<td>Down</td>
<td>0.96</td>
</tr>
<tr>
<td>0.05 inner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2 outer</td>
<td>Up</td>
<td>0.72</td>
</tr>
<tr>
<td>0.05 inner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9 outer</td>
<td>Down</td>
<td>0.74</td>
</tr>
<tr>
<td>0.05 inner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Notes:

R-Values are for a temperature of 10°C and a temperature difference of 15 K.
S37C1 Scope

This specification describes the methods of calculating the U-Value and solar admittance of a wall-glazing construction.

S37C2 General

For determining the aspect of a wall-glazing construction—

(a) the northern aspect is at or within 45° of true north; and
(b) the southern aspect is at or within 45° of true south; and
(c) the eastern aspect is within 45° of true east; and
(d) the western aspect is within 45° of true west.

S37C3 U-Value — Method 1 (Single Aspect)

(1) For the purposes of this method, a wall-glazing construction only includes the walls and glazing facing a single aspect.

(2) The Total System U-Value of the wall component of a wall-glazing construction must be calculated as the inverse of the Total R-Value, including allowance for thermal bridging, in accordance with—

(a) AS/NZS 4859.2; or
(b) Specification 38 for spandrel panels.

(3) The Total System U-Value of a wall-glazing construction must be calculated as the area-weighted average of the Total System U-Value of each of the components of the wall-glazing construction.

(4) The Total System U-Value must not exceed the applicable value in J3D6(1).

S37C4 U-Value — Method 2 (Multiple Aspects)

(1) For the purposes of this method, a wall-glazing construction only includes the walls and glazing facing multiple aspects.

(2) The Total System U-Value of the wall component of a wall-glazing construction must be calculated as the inverse of the Total R-Value, including allowance for thermal bridging, in accordance with—

(a) AS/NZS 4859.2; or
(b) Specification 38 for spandrel panels.

(3) The Total System U-Value of a wall-glazing construction must be calculated as the area-weighted average of the Total System U-Value of each of the components of the wall-glazing construction.

(4) The Total System U-Value must not exceed the applicable value in J3D6(1).

S37C5 Solar admittance — Method 1 (Single Aspect)

(1) The solar admittance of a wall-glazing construction must be calculated in accordance with the following formula:
(2) In the formula at (1)—
 (a) $SA = \text{the wall-glazing construction solar admittance};$ and
 (b) $AW1, AW2, = \text{the area of each glazing element};$ and
 (c) $SW1, SW2, = \text{the shading multiplier for each glazing element in accordance with S37C7};$ and
 (d) $SHGCW1, W2, = \text{the total system SHGC of each glazing element};$ and
 (e) $AWall = \text{the total wall-glazing construction area}.$

(3) The solar admittance of the wall-glazing construction must not exceed the applicable value in J3D6(5).

S37C6 Solar admittance — Method 2 (Multiple Aspects)

[2019: Spec J1.5a: 6]

(1) The solar admittance of wall-glazing construction must achieve a representative air-conditioning energy value less than that achieved by the reference solar admittance, when using the following formula:

$$ER = AN\alpha NSAN + AE\alpha ESAE + AS\alpha SSAS + AW\alpha WSAW$$

(2) In the formula at (1)—
 (a) $ER = \text{the representative air-conditioning energy value};$ and
 (b) $AN, E, S, W = \text{the area of the wall-glazing construction facing each aspect};$ and
 (c) $AN, E, S, W = \text{the solar admittance weighting coefficient of each aspect} =$—
 (i) $\text{where the glazing area on an aspect is less than 20% of the wall-glazing construction area, 0; and}$
 (ii) $\text{the values in Table S37C6a and Table S37C6b};$ and
 (d) $SAN, E, S, W = \text{the wall-glazing construction solar admittance of each aspect—}$
 (i) $\text{equal to the applicable value in J3D6(5) in the reference case; and}$
 (ii) $\text{calculated in accordance with S37C5(1) in the proposed case.}$

| Table S37C6a: Solar admittance weighting coefficient — Class 2 common area, Class 5, 6, 7, 8 or 9b building or Class 9a building other than a ward area |
|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Aspect | Climate zone 1 | Climate zone 2 | Climate zone 3 | Climate zone 4 | Climate zone 5 | Climate zone 6 | Climate zone 7 | Climate zone 8 |
| Northern | 1.47 | 1.95 | 1.95 | 2.05 | 2.28 | 2.12 | 2.40 | 1.88 |
| Southern | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Eastern | 1.39 | 1.58 | 1.63 | 1.72 | 1.72 | 1.62 | 1.84 | 1.92 |
| Western | 1.41 | 1.68 | 1.65 | 1.69 | 1.75 | 1.67 | 1.92 | 1.25 |

| Table S37C6b: Solar admittance weighting coefficient — Class 3 or 9c building or Class 9a ward area |
|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Aspect | Climate zone 1 | Climate zone 2 | Climate zone 3 | Climate zone 4 | Climate zone 5 | Climate zone 6 | Climate zone 7 | Climate zone 8 |
| Northern | 1.42 | 1.77 | 1.72 | 1.55 | 1.88 | 1.52 | 1.60 | 1.24 |
| Southern | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Eastern | 1.30 | 1.49 | 1.48 | 1.37 | 1.48 | 1.28 | 1.35 | 1.26 |
For the purpose of calculating solar admittance, the shading multiplier is—

(a) for shading provided by an external permanent projection that extends horizontally on both sides of the glazing for the same projection distance \(P \), as shown in Figure S37C7—

(i) the value in Table S37C7a for shading on the northern, eastern or western aspects; or

(ii) the value in Table S37C7b for shading on the southern aspect; or

(b) 0.35 for shading that is provided by an external shading device such as a shutter, blind, vertical or horizontal building screen with blades, battens or slats, which—

(i) is capable of restricting at least 80% of summer solar radiation; and

(ii) if adjustable, will operate automatically in response to the level of solar radiation.

Table S37C7a: Shading multipliers — Northern, eastern and western aspects

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Climate zone 1</th>
<th>Climate zone 2</th>
<th>Climate zone 3</th>
<th>Climate zone 4</th>
<th>Climate zone 5</th>
<th>Climate zone 6</th>
<th>Climate zone 7</th>
<th>Climate zone 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western</td>
<td>1.37</td>
<td>1.54</td>
<td>1.50</td>
<td>1.36</td>
<td>1.52</td>
<td>1.33</td>
<td>1.40</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Table S37C7b: Shading multipliers — Southern aspect

<table>
<thead>
<tr>
<th>G/H</th>
<th>P/H = 0</th>
<th>P/H = 0.1</th>
<th>P/H = 0.2</th>
<th>P/H = 0.3</th>
<th>P/H = 0.4</th>
<th>P/H = 0.5</th>
<th>P/H = 0.6</th>
<th>P/H = 0.7</th>
<th>P/H = 0.8</th>
<th>P/H = 0.9</th>
<th>P/H = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>0.93</td>
<td>0.87</td>
<td>0.82</td>
<td>0.77</td>
<td>0.73</td>
<td>0.69</td>
<td>0.65</td>
<td>0.62</td>
<td>0.60</td>
<td>0.58</td>
</tr>
<tr>
<td>0.1</td>
<td>1.00</td>
<td>0.97</td>
<td>0.93</td>
<td>0.88</td>
<td>0.84</td>
<td>0.79</td>
<td>0.75</td>
<td>0.71</td>
<td>0.67</td>
<td>0.64</td>
<td>0.62</td>
</tr>
<tr>
<td>0.2</td>
<td>1.00</td>
<td>0.98</td>
<td>0.96</td>
<td>0.93</td>
<td>0.89</td>
<td>0.85</td>
<td>0.81</td>
<td>0.77</td>
<td>0.73</td>
<td>0.70</td>
<td>0.68</td>
</tr>
<tr>
<td>0.3</td>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
<td>0.96</td>
<td>0.93</td>
<td>0.90</td>
<td>0.87</td>
<td>0.83</td>
<td>0.80</td>
<td>0.77</td>
<td>0.74</td>
</tr>
<tr>
<td>0.4</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
<td>0.96</td>
<td>0.94</td>
<td>0.91</td>
<td>0.89</td>
<td>0.86</td>
<td>0.84</td>
<td>0.81</td>
</tr>
<tr>
<td>0.5</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
<td>0.96</td>
<td>0.96</td>
<td>0.95</td>
<td>0.93</td>
<td>0.91</td>
<td>0.90</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Figure S37C7: Permanent external shading – measurement of P, G and H

Shading projection

P (upper story glazing)

G (upper storey glazing)

H (upper storey glazing)

G (lower storey glazing)

H (lower storey glazing)

P (lower storey glazing)
Specification 38 Spandrel panel thermal performance

S38C1 Scope

This Specification describes methods of determining the thermal performance of spandrel panels.

S38C2 Spandrel panel R-Value: Calculation method 1

Spandrel panels are deemed to have the thermal properties nominated in Table S38C2, where—

(a) Configuration 1 consists of—
 (i) a thermally unbroken (bridged) frame; and
 (ii) a centre of spandrel panel consisting of—
 (A) a single-glazed opaque or clear face; and
 (B) a 100 mm air gap; and
 (C) a 3 mm aluminium, 0.8 mm galvanised steel or zinc back pan; and

(b) Configuration 2 consists of—
 (i) a thermally unbroken (bridged) frame; and
 (ii) a centre of spandrel panel consisting of—
 (A) a double-glazed opaque face; and
 (B) a 50 mm air gap; and
 (C) a 3 mm aluminium, 0.8 mm galvanised steel or zinc back pan; and

(c) Configuration 3 consists of—
 (i) a thermally unbroken (bridged) frame; and
 (ii) a centre of spandrel panel consisting of—
 (A) a double-glazed clear face; and
 (B) a 50 mm air gap; and
 (C) a 3 mm aluminium, 0.8 mm galvanised steel or zinc back pan; and

(d) Configuration 4 consists of—
 (i) a thermally unbroken (bridged) frame; and
 (ii) a centre of spandrel panel consisting of—
 (A) a double-glazed low-e clear face; and
 (B) a 50 mm air gap; and
 (C) a 3 mm aluminium, 0.8 mm galvanised steel or zinc back pan.

Table S38C2: Achieved Total R-Value of spandrel panels

<table>
<thead>
<tr>
<th>Type</th>
<th>No insulation</th>
<th>R0.5 insulation</th>
<th>R1.0 insulation</th>
<th>R1.5 insulation</th>
<th>R2.0 insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration 1</td>
<td>0.3</td>
<td>0.39</td>
<td>0.42</td>
<td>0.44</td>
<td>0.45</td>
</tr>
<tr>
<td>Configuration 2</td>
<td>0.35</td>
<td>0.41</td>
<td>0.43</td>
<td>0.44</td>
<td>0.45</td>
</tr>
<tr>
<td>Configuration 3</td>
<td>0.84</td>
<td>0.96</td>
<td>1.03</td>
<td>1.07</td>
<td>1.09</td>
</tr>
<tr>
<td>Configuration 4</td>
<td>0.91</td>
<td>1.00</td>
<td>1.03</td>
<td>1.07</td>
<td>1.09</td>
</tr>
</tbody>
</table>
S38C3 Spandrel panel R-Value: Calculation method 2

[2019: Spec J1.5b: 3]

(1) The Total system U-Value of a spandrel panel is determined in accordance with the following formula:

\[
U_{sp} = \frac{U_{cs}A_{cs} + \sum U_{es}A_{es} + \sum U_{fs}A_{fs}}{A_{cs} + \sum A_{es} + \sum A_{fs}}
\]

(2) In the formula at (1)—

(a) \(A_{cs}\) = the area of the centre region of the spandrel panel; and

(b) \(A_{es}\) = the area of the edge region of the spandrel panel, where the edge has a defined width of 127 mm; and

(c) \(A_{fs}\) = the area of the frame region of the spandrel panel; and

(d) \(U_{cs}\) = the U-value of the centre region of the spandrel panel; and

(e) \(U_{es}\) = the U-value of the edge region of the spandrel panel, where the edge has a defined width of 127 mm; and

(f) \(U_{fs}\) = the U-value of the frame region of the spandrel panel; and

(g) \(U_{sp}\) = the Total System U-Value of the spandrel panel.
S39C1 Scope

This Specification describes the thermal performance of sub-floor spaces and soil in direct contact with a floor for the purposes of calculating the Total R-Value of a floor.

S39C2 Sub-floor thermal performance

(1) Table S39C2a details the R-Values considered to be achieved by enclosed sub-floor spaces that are—
 (a) mechanically ventilated by not more than 1.5 air changes per hour; or
 (b) provided with not more than 150% of the aggregate sub-floor ventilation area required by Part F1 and are not mechanically ventilated.

(2) Table S39C2b details the R-Values considered to be achieved by the soil for floors that are in direct contact with the ground.

Table S39C2a: R-Value of sub-floor spaces

<table>
<thead>
<tr>
<th>Ratio of floor area to floor perimeter (m)</th>
<th>Sub-floor space R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.10</td>
</tr>
<tr>
<td>1.5</td>
<td>0.15</td>
</tr>
<tr>
<td>2.0</td>
<td>0.20</td>
</tr>
<tr>
<td>2.5</td>
<td>0.25</td>
</tr>
<tr>
<td>3.0</td>
<td>0.30</td>
</tr>
<tr>
<td>3.5</td>
<td>0.35</td>
</tr>
<tr>
<td>4.0</td>
<td>0.40</td>
</tr>
<tr>
<td>4.5</td>
<td>0.45</td>
</tr>
<tr>
<td>5.0</td>
<td>0.50</td>
</tr>
<tr>
<td>5.5</td>
<td>0.55</td>
</tr>
<tr>
<td>6.0</td>
<td>0.60</td>
</tr>
<tr>
<td>6.5</td>
<td>0.65</td>
</tr>
<tr>
<td>7.0</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Table Notes:
Where the ratio of floor area to floor perimeter is between the values stated, interpolation may be used to determine the sub-floor space R-Values.

Table S39C2b: R-Value of soil in contact with a floor

<table>
<thead>
<tr>
<th>Ratio of floor area to floor perimeter (m)</th>
<th>Wall thickness of 50 mm</th>
<th>Wall thickness of 100 mm</th>
<th>Wall thickness of 150 mm</th>
<th>Wall thickness of 200 mm</th>
<th>Wall thickness of 250 mm</th>
<th>Wall thickness of 300 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>1.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Table Notes:
Where a wall thickness or ratio of floor area to floor perimeter is between the values stated, interpolation may be used to determine the soil R-Value.
Specification 40 Lighting and power control devices

S40C1 Scope

This Specification contains the requirements for lighting and power control devices including timers, time switches, motion detectors and daylight control devices.

S40C2 Lighting timers

A lighting timer must—

- (a) be located within 2 m of every entry door to the space; and
- (b) have an indicator light that is illuminated when the artificial lighting is off; and
- (c) not control more than—
 - (i) an area of 100 m2 with a single push button timer; and
 - (ii) 95% of the lights in spaces of area more than 25 m2; and
- (d) be capable of maintaining the artificial lighting—
 - (i) for not less than 5 minutes; and
 - (ii) for not more than 12 hours if the timer is reset.

S40C3 Time switch

(1) A time switch must be—

- (a) capable of switching on and off electric power at variable pre-programmed times and on variable pre-programmed days; and
- (b) configured so that the lights are switched off at any time the space is designated to be unoccupied.

(2) A time switch for internal lighting must be capable of being overridden by—

- (a) a means of turning the lights on, either by—
 - (i) a manual switch, remote control or an occupant sensing device that on sensing a person’s presence, overrides the time switch for a period of up to 2 hours, after which if there is no further presence detected, the time switch must resume control; or
 - (ii) an occupant sensing device that overrides the time switch upon a person’s entry and returns control to the time switch upon the person's exiting, such as a security card reader or remote control; and
- (b) a manual “off” switch.

(3) A time switch for external lighting must be—

- (a) configured to limit the period the system is switched on to between 30 minutes before sunset and 30 minutes after sunrise is determined or detected including any pre-programmed period between these times; and
- (b) capable of being overridden by a manual switch, remote control or a security access system for a period of up to 8 hours, after which the time switch must resume control.

(4) A time switch for boiling water or chilled water storage units must be capable of being overridden by a manual switch or a security access system that senses a person’s presence, overrides for a period of up to 2 hours, after which if there is no further presence detected, the time switch must resume control.
S40C4 Motion detectors

(1) In a Class 2, 3 or 9c residential care building other than within a sole-occupancy unit, a motion detector must—
 (a) be capable of sensing movement such as by infra-red, ultrasonic or microwave detection or by a combination of these means; and
 (b) be capable of detecting a person before they are 1 m into the space; and
 (c) other than within a sole-occupancy unit of a Class 3 building, not control more than—
 (i) an area of 100 m²; and
 (ii) 95% of the lights in spaces of area more than 25 m²; and
 (d) be configured so that the lights are turned off when the space is unoccupied for more than 15 minutes; and
 (e) be capable of being overridden by a manual switch only enabling the lights to be turned off.

(2) In a Class 5, 6, 7, 8, 9a or 9b building, a motion detector must—
 (a) be capable of sensing movement such as by infra-red, ultrasonic or microwave detection or by a combination of these means; and
 (b) be capable of detecting—
 (i) a person before they have entered 1 m into the space; and
 (ii) movement of 500 mm within the useable part of the space; and
 (c) not control more than—
 (i) in other than a Carpark, an area of 500 m² with a single sensor or group of parallel sensors; and
 (ii) 75% of the lights in spaces using high intensity discharge; and
 (d) be configured so that the lights are turned off when the space is unoccupied for more than 15 minutes; and
 (e) be capable of being overridden by a manual switch that only enables the lights to be turned off.

(3) When outside a building, a motion detector must—
 (a) be capable of sensing movement such as by pressure, infra-red, ultrasonic or microwave detection or by a combination of these means; and
 (b) be capable of detecting a person within a distance from the light equal to—
 (i) twice the mounting height; or
 (ii) 80% of the ground area covered by the light’s beam; and
 (c) not control more than five lights; and
 (d) be operated in series with a photoelectric cell or astronomical time switch so that the light will not operate in daylight hours; and
 (e) be configured so that the lights are turned off when the area is unoccupied for more than 15 minutes; and
 (f) have a manual override switch which is reset after a maximum period of 4 hours.

(4) When in a fire-isolated stairway, fire-isolated passageway or fire-isolated ramp, a motion detector must—
 (a) be capable of sensing movement such as by infra-red, ultrasonic or microwave detection or by a combination of these means; and
 (b) be capable of detecting—
 (i) movement of 500 mm within the useable part of the space; and
 (ii) a person before they have entered 1 m into the space; and
 (c) be configured so that the lights dim to a 30% peak power or less when the space is unoccupied for more than 15 minutes.
S40C5 Daylight sensor and dynamic lighting control device

[2019: Spec J6: 5]

(1) A daylight sensor and dynamic control device for artificial lighting must—
 (a) for switching on and off—
 (i) be capable of having the switching level set point adjusted between 50 and 1000 lux; and
 (ii) have—
 (A) a delay of more than 2 minutes; and
 (B) a differential of more than 100 lux for a sensor controlling high pressure discharge lighting, and 50 lux
 for a sensor controlling other than high pressure discharge lighting; and
 (b) for dimmed or stepped switching, be capable of reducing the power consumed by the controlled lighting in
 proportion to the incident daylight on the working plane either—
 (i) continuously down to a power consumption that is less than 50% of full power; or
 (ii) in no less than 4 steps down to a power consumption that is less than 50% of full power.

(1) Where a daylight sensor and dynamic control device has a manual override switch, the manual override switch must
not be able to switch the lights permanently on or bypass the lighting controls.
Schedule 1 Definitions

Abbreviations

Symbols

Glossary
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCB</td>
<td>Australian Building Codes Board</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ACP</td>
<td>Aluminium Composite Panel</td>
</tr>
<tr>
<td>AS</td>
<td>Australian Standard</td>
</tr>
<tr>
<td>ASET</td>
<td>Available Safe Egress Time</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BCA</td>
<td>Building Code of Australia</td>
</tr>
<tr>
<td>BE</td>
<td>Fire blocks evacuation route</td>
</tr>
<tr>
<td>CCT</td>
<td>Correlated Colour Temperature</td>
</tr>
<tr>
<td>CF</td>
<td>Challenging fire</td>
</tr>
<tr>
<td>CHF</td>
<td>Critical Heat Flux</td>
</tr>
<tr>
<td>CRF</td>
<td>Critical Radiant Flux</td>
</tr>
<tr>
<td>CS</td>
<td>Fire starts in a concealed space</td>
</tr>
<tr>
<td>CSHGC</td>
<td>Constant for solar heat gain</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>CU</td>
<td>Constant for conductance</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>FED</td>
<td>Fractional Effective Dose</td>
</tr>
<tr>
<td>FI</td>
<td>Fire brigade intervention</td>
</tr>
<tr>
<td>FRL</td>
<td>Fire Resistance Level</td>
</tr>
<tr>
<td>GRP</td>
<td>Glass fibre reinforced polyester</td>
</tr>
<tr>
<td>HRR</td>
<td>Heat Release Rate</td>
</tr>
<tr>
<td>HS</td>
<td>Horizontal fire spread</td>
</tr>
<tr>
<td>IS</td>
<td>Rapid fire spread involving internal surface linings</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organisation for Standardisation</td>
</tr>
<tr>
<td>LED</td>
<td>Light-Emitting Diode</td>
</tr>
<tr>
<td>MEPS</td>
<td>Minimum Energy Performance Standards</td>
</tr>
<tr>
<td>NABERS</td>
<td>National Australian Built Environment Rating System</td>
</tr>
<tr>
<td>NATA</td>
<td>National Association of Testing Authorities</td>
</tr>
<tr>
<td>NatHERS</td>
<td>Nationwide House Energy Rating Scheme</td>
</tr>
<tr>
<td>NCC</td>
<td>National Construction Code</td>
</tr>
<tr>
<td>PBDB</td>
<td>Performance-based design brief</td>
</tr>
<tr>
<td>PCA</td>
<td>Plumbing Code of Australia</td>
</tr>
<tr>
<td>PMV</td>
<td>Predicted Mean Vote</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>RC</td>
<td>Robustness check</td>
</tr>
<tr>
<td>RSET</td>
<td>Required Safe Egress Time</td>
</tr>
<tr>
<td>RW</td>
<td>Weighted sound reduction index</td>
</tr>
<tr>
<td>SF</td>
<td>Smouldering fire</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definitions</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SHGC</td>
<td>Solar Heat Gain Coefficient</td>
</tr>
<tr>
<td>SS</td>
<td>Structural stability and other property</td>
</tr>
<tr>
<td>STC</td>
<td>Sound Transmission Class</td>
</tr>
<tr>
<td>UF</td>
<td>Unexpected catastrophic failure</td>
</tr>
<tr>
<td>UPVC</td>
<td>Unplasticized polyvinyl chloride</td>
</tr>
<tr>
<td>UT</td>
<td>Fire in normally unoccupied room threatening occupants of other rooms</td>
</tr>
<tr>
<td>U-Value</td>
<td>Thermal transmittance</td>
</tr>
<tr>
<td>VS</td>
<td>Vertical fire spread involving external cladding or external openings</td>
</tr>
</tbody>
</table>
Symbols

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>°</td>
<td>degree(s)</td>
</tr>
<tr>
<td>°C</td>
<td>degree(s) Celsius</td>
</tr>
<tr>
<td>°CDB</td>
<td>degree(s) Celsius Dry Bulb</td>
</tr>
<tr>
<td>°CWB</td>
<td>degree(s) Celsius Wet Bulb</td>
</tr>
<tr>
<td>-e/MJ</td>
<td>equivalent per Megajoule(s)</td>
</tr>
<tr>
<td>μm</td>
<td>micrometre</td>
</tr>
<tr>
<td>dB(A)</td>
<td>decibels "A" scale weighting network</td>
</tr>
<tr>
<td>f'c</td>
<td>Characteristic compressive strength of concrete at 28 days</td>
</tr>
<tr>
<td>f'y</td>
<td>Yield stress used in design</td>
</tr>
<tr>
<td>G</td>
<td>Dead load</td>
</tr>
<tr>
<td>J</td>
<td>Joule(s)</td>
</tr>
<tr>
<td>J/kg.K</td>
<td>Joules per kilogram degree Kelvin</td>
</tr>
<tr>
<td>J/s.m2</td>
<td>Joules per second square metre</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin(s)</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram(s)</td>
</tr>
<tr>
<td>kg/m</td>
<td>kilogram(s) per metre</td>
</tr>
<tr>
<td>kg/m2</td>
<td>kilogram(s) per square metre</td>
</tr>
<tr>
<td>kg/m3</td>
<td>kilogram(s) per cubic metre</td>
</tr>
<tr>
<td>kJ/m2.hour</td>
<td>kilojoules per square metre hour</td>
</tr>
<tr>
<td>km</td>
<td>kilometre(s)</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal(s)</td>
</tr>
<tr>
<td>kW/m2</td>
<td>kilowatt(s) per square metre</td>
</tr>
<tr>
<td>kWHeating</td>
<td>kilowatt(s) of heating</td>
</tr>
<tr>
<td>kWr</td>
<td>kilowatt(s) of refrigeration</td>
</tr>
<tr>
<td>L</td>
<td>litre(s)</td>
</tr>
<tr>
<td>L/min</td>
<td>litre(s) per minute</td>
</tr>
<tr>
<td>L/s</td>
<td>litre(s) per second</td>
</tr>
<tr>
<td>L/s.m2</td>
<td>litre(s) per second square metre</td>
</tr>
<tr>
<td>Lumens/W</td>
<td>Lumens per Watt</td>
</tr>
<tr>
<td>lx</td>
<td>lux</td>
</tr>
<tr>
<td>m</td>
<td>metre(s)</td>
</tr>
<tr>
<td>m/s</td>
<td>metre(s) per second</td>
</tr>
<tr>
<td>m2</td>
<td>square metre(s)</td>
</tr>
<tr>
<td>m2.K/W</td>
<td>square metre Kelvin(s) per Watt</td>
</tr>
<tr>
<td>m3</td>
<td>cubic metre(s)</td>
</tr>
<tr>
<td>m3/hour</td>
<td>cubic metre(s) per hour</td>
</tr>
<tr>
<td>m3/s</td>
<td>cubic metre(s) per second</td>
</tr>
<tr>
<td>mcd/m2</td>
<td>millicandelas per square metre</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>MJ/hour</td>
<td>Megajoules per hour</td>
</tr>
</tbody>
</table>
Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJ/m².annum</td>
<td>Megajoules per square metre annum</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre(s)</td>
</tr>
<tr>
<td>mm²</td>
<td>square millimetre(s)</td>
</tr>
<tr>
<td>MW</td>
<td>megawatt(s)</td>
</tr>
<tr>
<td>N</td>
<td>newton(s)</td>
</tr>
<tr>
<td>N/m</td>
<td>Newton(s) per metre</td>
</tr>
<tr>
<td>Pa</td>
<td>pascal(s)</td>
</tr>
<tr>
<td>Pa/m</td>
<td>pascal(s) per metre</td>
</tr>
<tr>
<td>Q</td>
<td>Live load</td>
</tr>
<tr>
<td>s</td>
<td>second(s)</td>
</tr>
<tr>
<td>ULS</td>
<td>Ultimate limit state</td>
</tr>
<tr>
<td>V</td>
<td>Volt(s)</td>
</tr>
<tr>
<td>W</td>
<td>Watt(s)</td>
</tr>
<tr>
<td>Winput power</td>
<td>Watts of input power</td>
</tr>
<tr>
<td>Wr /Winput power</td>
<td>Watts of thermal refrigeration per watt of input power</td>
</tr>
<tr>
<td>W/kWrej</td>
<td>Watts per kilowatt of heat rejected</td>
</tr>
<tr>
<td>W/m²</td>
<td>Watts per square metre</td>
</tr>
<tr>
<td>°south</td>
<td>degree south</td>
</tr>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>></td>
<td>greater than</td>
</tr>
<tr>
<td><</td>
<td>less than</td>
</tr>
<tr>
<td>≤</td>
<td>less than or equal to</td>
</tr>
<tr>
<td>≥</td>
<td>equal to or more than</td>
</tr>
</tbody>
</table>
Glossary

Above ground rainwater tank: A rainwater tank that is not in any way set into the ground.

Accessible: Having features to enable use by people with a disability.

Accessway: A continuous accessible path of travel (as defined in AS 1428.1) to, into or within a building.

Accredited Testing Laboratory: One of the following:

(a) An organisation accredited by the National Association of Testing Authorities (NATA) to undertake the relevant tests.

(b) An organisation outside Australia accredited to undertake the relevant tests by an authority recognised by NATA through a mutual recognition agreement.

(c) An organisation recognised as being an Accredited Testing Laboratory under legislation at the time the test was undertaken.

Activity support level: The degree to which occupants can undertake activities with respect to the likely activity traits and occupant traits.

Explanatory Information:

This term is used to articulate whether the height of a room or space is sufficient and by what degree. This is achieved by having regard to the room or space's intended use by occupants, through consideration of the defined terms ‘activity traits’ and ‘occupant traits’.

(a) For the purposes of Volume One, the features of the activities that will be undertaken in a habitable room or space.

(b) For the purposes of Volume Two, the features of the activities that will be undertaken in a room or space.

Explanatory Information:

This term is used to describe the characteristics of the activities that will be undertaken in a room or space.

For example, the activities likely to be undertaken in a bedroom, and the associated features are—

- sleeping — a person laying horizontally; and
- resting — a person laying horizontally or sitting upright on the bed; and
- leisure activities, such as reading a book — a person sitting upright on the bed, with enough space to stretch their arms vertically; and
- dressing/changing clothes — a person standing with enough space to stretch their arms vertically.

Administering body: The body responsible for administering the WaterMark Certification Scheme.

Aged care building: A Class 9c building for residential accommodation of aged persons who, due to varying degrees of incapacity associated with the ageing process, are provided with personal care services and 24 hour staff assistance to evacuate the building during an emergency.

NSW

Air-conditioning: For the purposes of Section J of Volume One, a service that actively cools or heats the air within a space, but does not include a service that directly—

(a) cools or heats cold or hot rooms; or

(b) maintains specialised conditions for equipment or processes, where this is the main purpose of the service.

Alarm zone: For the purposes of Specification 23, an area of a building protected by one or more smoke alarms connected to one alarm circuit.

Alteration: In relation to a building, includes an addition or extension to a building.

Aluminium Composite Panel (ACP): Flat or profiled aluminium sheet material in composite with any type of materials.

Amenity: An attribute which contributes to the health, physical independence, comfort and well-being of people.
Ancillary element: An element that is secondary to and not an integral part of another element to which it is attached.

Annual exceedance probability: The probability that a given rainfall total accumulated over a given duration will be exceeded in any one year.

Annual greenhouse gas emissions: The theoretical amount of greenhouse gas emissions attributable to the energy used annually by a building’s services, excluding kitchen exhaust and the like.

Appropriate authority: For the purposes of the Fire Safety Verification Method, means the relevant authority with the statutory responsibility to determine the particular matter satisfies the relevant **Performance Requirement**.

Explanatory Information:
The Appropriate Authority is typically the building surveyor or building certifier charged with the statutory responsibility to determine building compliance and issue the building permit / approval and occupancy certificate / approval.

NSW Appropriate authority
Appropriate authority: The relevant authority with the statutory responsibility to determine the particular matter.

Appropriately qualified person: A person recognised by the **appropriate authority** as having qualifications and/or experience in the relevant discipline in question.

Approved disposal system: A system for the disposal of sewage, sullage or stormwater approved by an authority having jurisdiction.

Articulated masonry: Masonry construction in which special provisions have been made for movement by articulation.

NSW Assembly building
SA Assembly building
Assembly building: A building where people may assemble for—

(a) civic, theatrical, social, political or religious purposes including a library, theatre, public hall or place of worship; or

(b) educational purposes in a school, early childhood centre, preschool, or the like; or

(c) entertainment, recreational or sporting purposes including—

(i) a discotheque, nightclub or a bar area of a hotel or motel providing live entertainment or containing a dance floor; or

(ii) a cinema; or

(iii) a sports stadium, sporting or other club; or

(d) transit purposes including a bus station, railway station, airport or ferry terminal.

Assessment Method: A method that can be used for determining that a **Performance Solution** or **Deemed-to-Satisfy Solution** complies with the **Performance Requirements**.

Atrium: A space within a building that connects 2 or more storeys and—

(a) is enclosed at the top by a floor or roof (including a glazed roof structure); and

(b) includes any adjacent part of the building not separated by an appropriate barrier to fire; but

(c) does not include a stairwell, rampwell or the space within a shaft; and

(d) for the purposes of (a) a space is considered enclosed if the area of the enclosing floor or roof is greater than 50% of the area of the space, measured in plan, of any of the storeys connected by the space.

Atrium well: A space in an atrium bounded by the perimeter of the openings in the floors or by the perimeter of the floors and the external walls.

Automatic: Designed to operate when activated by a heat, smoke or fire sensing device.

(a) The time between ignition of a fire and the onset of untenable conditions in a specific part of a building.

(b) The time referred to in (1) is the calculated interval between the time of ignition of a fire and the time at which conditions become such that the occupant is unable to take effective action to escape to a place of safety.

Average daylight factor: The ratio of the illumination level within a room provided by daylight to the level of daylight outside the building during overcast conditions.
Average recurrence interval: Applied to rainfall, means the expected or average interval between exceedances for a 5-minute duration rainfall intensity.

Average specific extinction area: The average specific extinction area for smoke as determined by AS 5637.1.

Backflow prevention device: An air gap, break tank or mechanical device that is designed to prevent the unplanned reversal of flow of water or contaminants into the water service or a Network Utility Operator’s water supply.

Backpressure: A reversal of water flow caused by the downstream pressure becoming greater than the supply pressure.

Backsiphonage: A reversal of flow of water caused by negative pressure in the distributing pipes of a water service or supply.

Backstage: A space associated with, and adjacent to, a stage in a Class 9b building for scenery, props, equipment, dressing rooms, or the like.

Battery system: One or more chemical cells connected in series, parallel or a combination of the two for the purpose of electrical energy storage.

Blockage: An obstruction within a water service or sanitary plumbing or drainage system.

Boiler: A vessel or an arrangement of vessels and interconnecting parts, wherein steam or other vapour is generated, or water or other liquid is heated at a pressure above that of the atmosphere, by the application of fire, the products of combustion, electrical power, or similar high temperature means, and—

(a) includes superheaters, reheaters, economisers, boiler piping, supports, mountings, valves, gauges, fittings, controls, the boiler settings and directly associated equipment; but
(b) excludes a fully flooded or pressurised system where water or other liquid is heated to a temperature lower than the normal atmospheric boiling temperature of the liquid.

Bond breaker: A material used as part of a waterproofing system that prevents the membrane bonding to the substrate, bedding or lining.

Breaking surf: Any area of salt water in which waves break on an average of at least 4 days per week but does not include white caps or choppy water.

Explanatory Information:
Breaking surf normally occurs in areas exposed to the open sea. Breaking surf does not normally occur in sheltered areas, such as that which occurs around Port Phillip Bay, Sydney Harbour, Swan River, Derwent River and similar locations.

Brittle failure: Loss of strength to resist design actions without first undergoing significant deformation which, for the purposes of the Performance Requirements, may be taken to include (but is not limited to) buckling, fatigue failure and soil bearing failure.

Building complexity criteria: Are used to determine whether all or part of a building is low, medium, high or very high building complexity — the building complexity criteria are:

(a) Attributes — the building is designed or constructed with any of the following sub-criteria:
 (i) An effective height of more than 25 m.
 (ii) One or more Performance Solutions used to demonstrate compliance with Performance Requirements relating to material and systems for structural safety.
 (iii) One or more Performance Solutions used to demonstrate compliance with Performance Requirements relating to material and systems for fire safety.
 (iv) In an area prone to natural disaster or adverse environmental conditions.
(b) Class 2 — all or part of the building is Class 2 of three or more storeys.
(c) Occupant numbers — the building is to be occupied by more than 100 people determined in accordance with D2D18.
(d) Occupant characteristics — the building is to be occupied by more than 10 people who will require assistance to evacuate the building in an emergency.
(e) Building Importance Level 4 — the building is determined to be Importance Level 4 in accordance with Table B1D3a.

Building complexity: high: Where a building meets three of building complexity criteria (a) (Attributes), (b) (Class 2), (c) (Occupant numbers), or (d) (Occupant characteristics).
Building complexity: low: Where a building meets one only of building complexity criteria (a) (Attributes), (b) (Class 2), (c) (Occupant numbers), or (d) (Occupant characteristics).

Building complexity: medium: Where a building meets two of building complexity criteria (a) (Attributes), (b) (Class 2), (c) (Occupant numbers), or (d) (Occupant characteristics).

Building complexity: very high: Where a building meets—
(a) all building complexity criteria (a) (Attributes), (b) (Class 2), (c) (Occupant numbers), and (d) (Occupant characteristics); or
(b) building complexity criterion (e) (Building Importance Level 4).

Notes:
The NCC currently does not include corresponding technical requirements relating to the defined term ‘building complexity criteria’ and the various building complexity levels. It is intended that these terms will be integrated into future editions of the NCC.

Buried rainwater tank: A rainwater tank that is set into and completely covered by earth.

Burnout: Exposure to fire for a time that includes fire growth, full development, and decay in the absence of intervention or automatic suppression, beyond which the fire is no longer a threat to building elements intended to perform loadbearing or fire separation functions, or both.

Carpark: A building that is used for the parking of motor vehicles but is neither a private garage nor used for the servicing of vehicles, other than washing, cleaning or polishing.

Cavity: A void between 2 leaves of masonry, or in masonry veneer construction, a void between a leaf of masonry and the supporting frame.

Cavity wall: For the purposes of F1V1 and H2V1, a wall that incorporates a drained cavity.

Certificate of Accreditation: A certificate issued by a State or Territory accreditation authority stating that the properties and performance of a building material or method of construction or design fulfill specific requirements of the NCC.

Certificate of Conformity: A certificate issued under the ABCB scheme for products and systems certification stating that the properties and performance of a building material or method of construction or design fulfill specific requirements of the NCC.

Certification body: A person or organisation operating in the field of material, product, form of construction or design certification that has been accredited by the Joint Accreditation System of Australia and New Zealand (JAS-ANZ), and is accredited for a purpose other than as part of the CodeMark Australia Certification Scheme or WaterMark Certification Scheme.

Characteristic: The occupant data to be used in the modelling of access solutions which define how an occupant interacts with a building, i.e. occupant movement speeds, turning ability, reach capability, perception of luminance contrast and hearing threshold.

Clad frame: Timber or metal frame construction with exterior timber or sheet wall cladding that is not sensitive to minor movement and includes substructure masonry walls up to 1.5 m high.

Climate zone: Climate zone means an area defined in Figure 2 and in Tables 2a to 2h for specific locations, having energy efficiency provisions based on a range of similar climatic characteristics.

Table 2a: Climate zones for thermal design — Australian Capital Territory

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canberra</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 2b: Climate zones for thermal design — New South Wales

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albury</td>
<td>4</td>
</tr>
<tr>
<td>Armidale</td>
<td>7</td>
</tr>
<tr>
<td>Batemans Bay</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 2c: Climate zones for thermal design — Northern Territory

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathurst</td>
<td>7</td>
</tr>
<tr>
<td>Bega</td>
<td>6</td>
</tr>
<tr>
<td>Bellingen Shire - Dorrigo Plateau</td>
<td>7</td>
</tr>
<tr>
<td>Bellingen Shire - Valley & seaboard</td>
<td>2</td>
</tr>
<tr>
<td>Bourke</td>
<td>4</td>
</tr>
<tr>
<td>Broken Hill</td>
<td>4</td>
</tr>
<tr>
<td>Byron Bay</td>
<td>2</td>
</tr>
<tr>
<td>Cobar</td>
<td>4</td>
</tr>
<tr>
<td>Coffs Harbour</td>
<td>2</td>
</tr>
<tr>
<td>Dubbo</td>
<td>4</td>
</tr>
<tr>
<td>Goulburn</td>
<td>7</td>
</tr>
<tr>
<td>Grafton</td>
<td>2</td>
</tr>
<tr>
<td>Griffith</td>
<td>4</td>
</tr>
<tr>
<td>Ivanhoe</td>
<td>4</td>
</tr>
<tr>
<td>Lismore</td>
<td>2</td>
</tr>
<tr>
<td>Lord Howe Island</td>
<td>2</td>
</tr>
<tr>
<td>Moree</td>
<td>4</td>
</tr>
<tr>
<td>Newcastle</td>
<td>5</td>
</tr>
<tr>
<td>Nowra</td>
<td>6</td>
</tr>
<tr>
<td>Orange</td>
<td>7</td>
</tr>
<tr>
<td>Perisher - Smiggins</td>
<td>8</td>
</tr>
<tr>
<td>Port Macquarie</td>
<td>5</td>
</tr>
<tr>
<td>Sydney East</td>
<td>5</td>
</tr>
<tr>
<td>Sydney West</td>
<td>6</td>
</tr>
<tr>
<td>Tamworth</td>
<td>4</td>
</tr>
<tr>
<td>Thredbo</td>
<td>8</td>
</tr>
<tr>
<td>Wagga Wagga</td>
<td>4</td>
</tr>
<tr>
<td>Williamtown</td>
<td>5</td>
</tr>
<tr>
<td>Wollongong</td>
<td>5</td>
</tr>
<tr>
<td>Yass</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 2d: Climate zones for thermal design — Queensland

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birdsville</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 2e: Climate zones for thermal design — South Australia

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brisbane</td>
<td>2</td>
</tr>
<tr>
<td>Bundaberg</td>
<td>2</td>
</tr>
<tr>
<td>Cairns</td>
<td>1</td>
</tr>
<tr>
<td>Cooktown</td>
<td>1</td>
</tr>
<tr>
<td>Cunnamulla</td>
<td>3</td>
</tr>
<tr>
<td>Gladstone</td>
<td>2</td>
</tr>
<tr>
<td>Hervey Bay</td>
<td>2</td>
</tr>
<tr>
<td>Hughenden</td>
<td>3</td>
</tr>
<tr>
<td>Longreach</td>
<td>3</td>
</tr>
<tr>
<td>Mackay</td>
<td>2</td>
</tr>
<tr>
<td>Mount Isa</td>
<td>3</td>
</tr>
<tr>
<td>Normanton</td>
<td>1</td>
</tr>
<tr>
<td>Rockhampton</td>
<td>2</td>
</tr>
<tr>
<td>Roma</td>
<td>3</td>
</tr>
<tr>
<td>Southport</td>
<td>2</td>
</tr>
<tr>
<td>Toowoomba</td>
<td>5</td>
</tr>
<tr>
<td>Townsville</td>
<td>1</td>
</tr>
<tr>
<td>Warwick</td>
<td>5</td>
</tr>
<tr>
<td>Weipa</td>
<td>1</td>
</tr>
<tr>
<td>Adelaide</td>
<td>5</td>
</tr>
<tr>
<td>Bordertown</td>
<td>6</td>
</tr>
<tr>
<td>Ceduna</td>
<td>5</td>
</tr>
<tr>
<td>Cook</td>
<td>4</td>
</tr>
<tr>
<td>Elliston</td>
<td>5</td>
</tr>
<tr>
<td>Kingscote</td>
<td>6</td>
</tr>
<tr>
<td>Leigh Creek</td>
<td>5</td>
</tr>
<tr>
<td>Lobethal</td>
<td>6</td>
</tr>
<tr>
<td>Loxton</td>
<td>5</td>
</tr>
<tr>
<td>Naracoorte</td>
<td>6</td>
</tr>
<tr>
<td>Marree</td>
<td>4</td>
</tr>
<tr>
<td>Mount Gambier</td>
<td>6</td>
</tr>
<tr>
<td>Murray Bridge</td>
<td>6</td>
</tr>
<tr>
<td>Oodnadatta</td>
<td>4</td>
</tr>
<tr>
<td>Port Augusta</td>
<td>4</td>
</tr>
<tr>
<td>Port Lincoln</td>
<td>5</td>
</tr>
<tr>
<td>Renmark</td>
<td>5</td>
</tr>
<tr>
<td>Tarcoola</td>
<td>4</td>
</tr>
<tr>
<td>Victor Harbour</td>
<td>6</td>
</tr>
<tr>
<td>Whyalla</td>
<td>4</td>
</tr>
</tbody>
</table>
Table 2f: Climate zones for thermal design — Tasmania

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burnie</td>
<td>7</td>
</tr>
<tr>
<td>Bicheno</td>
<td>7</td>
</tr>
<tr>
<td>Deloraine</td>
<td>7</td>
</tr>
<tr>
<td>Devonport</td>
<td>7</td>
</tr>
<tr>
<td>Flinders Island</td>
<td>7</td>
</tr>
<tr>
<td>Hobart</td>
<td>7</td>
</tr>
<tr>
<td>Huonville</td>
<td>7</td>
</tr>
<tr>
<td>King Island</td>
<td>7</td>
</tr>
<tr>
<td>Launceston</td>
<td>7</td>
</tr>
<tr>
<td>New Norfolk</td>
<td>7</td>
</tr>
<tr>
<td>Oatlands</td>
<td>7</td>
</tr>
<tr>
<td>Orford</td>
<td>7</td>
</tr>
<tr>
<td>Rossarden</td>
<td>7</td>
</tr>
<tr>
<td>Smithton</td>
<td>7</td>
</tr>
<tr>
<td>St Marys</td>
<td>7</td>
</tr>
<tr>
<td>Zeehan</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 2g: Climate zones for thermal design — Victoria

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglesea</td>
<td>6</td>
</tr>
<tr>
<td>Ararat</td>
<td>7</td>
</tr>
<tr>
<td>Bairnsdale</td>
<td>6</td>
</tr>
<tr>
<td>Ballarat</td>
<td>7</td>
</tr>
<tr>
<td>Benalla</td>
<td>6</td>
</tr>
<tr>
<td>Bendigo</td>
<td>6</td>
</tr>
<tr>
<td>Bright</td>
<td>7</td>
</tr>
<tr>
<td>Colac</td>
<td>6</td>
</tr>
<tr>
<td>Dandenong</td>
<td>6</td>
</tr>
<tr>
<td>Echuca</td>
<td>4</td>
</tr>
<tr>
<td>Geelong</td>
<td>6</td>
</tr>
<tr>
<td>Hamilton</td>
<td>7</td>
</tr>
<tr>
<td>Horsham</td>
<td>6</td>
</tr>
<tr>
<td>Melbourne</td>
<td>6</td>
</tr>
<tr>
<td>Mildura</td>
<td>4</td>
</tr>
<tr>
<td>Portland</td>
<td>6</td>
</tr>
<tr>
<td>Sale</td>
<td>6</td>
</tr>
<tr>
<td>Shepparton</td>
<td>4</td>
</tr>
<tr>
<td>Swan Hill</td>
<td>4</td>
</tr>
<tr>
<td>Traralgon</td>
<td>6</td>
</tr>
<tr>
<td>Wangaratta</td>
<td>7</td>
</tr>
<tr>
<td>Warrnambool</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 2h: Climate zones for thermal design — Western Australia

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wodonga</td>
<td>6</td>
</tr>
<tr>
<td>Albany</td>
<td>6</td>
</tr>
<tr>
<td>Balladonia</td>
<td>4</td>
</tr>
<tr>
<td>Broome</td>
<td>1</td>
</tr>
<tr>
<td>Bunbury</td>
<td>5</td>
</tr>
<tr>
<td>Carnarvon</td>
<td>3</td>
</tr>
<tr>
<td>Christmas Island</td>
<td>1</td>
</tr>
<tr>
<td>Cocos Island</td>
<td>1</td>
</tr>
<tr>
<td>Derby</td>
<td>1</td>
</tr>
<tr>
<td>Esperance</td>
<td>5</td>
</tr>
<tr>
<td>Exmouth</td>
<td>1</td>
</tr>
<tr>
<td>Geraldton</td>
<td>5</td>
</tr>
<tr>
<td>Halls Creek</td>
<td>3</td>
</tr>
<tr>
<td>Kalgoorlie-Boulder</td>
<td>4</td>
</tr>
<tr>
<td>Karratha</td>
<td>1</td>
</tr>
<tr>
<td>Meekatharra</td>
<td>4</td>
</tr>
<tr>
<td>Northam</td>
<td>4</td>
</tr>
<tr>
<td>Pemberton</td>
<td>6</td>
</tr>
<tr>
<td>Perth</td>
<td>5</td>
</tr>
<tr>
<td>Port Hedland</td>
<td>1</td>
</tr>
<tr>
<td>Wagin</td>
<td>4</td>
</tr>
<tr>
<td>Wyndham</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 2: Climate zones for thermal design

Figure Notes:

(a) This map can be viewed in enlargeable form on the ABCB website at abcb.gov.au.

(b) A Zone 4 area in South Australia, other than a council area, at an altitude greater than 300 m above the Australian Height Datum is to be considered as Zone 5.

(c) The areas referred to in (2) have been defined in an enlarged format on the following maps produced by the Department of Planning, Transport and Infrastructure (these maps can be viewed on the Government of South Australia website at www.sa.gov.au):

(i) Adelaide Hills Climate Zone Map.
(ii) Barossa Council Climate Zone Map.
(iii) Regional Council of Goyder Climate Zone Map.

(d) Locations in climate zone 8 are in alpine areas.

Combustible: Applied to—

(a) a material — means combustible as determined by AS 1530.1; and
(b) construction or part of a building — means constructed wholly or in part of combustible materials.

(a) For the purposes of Volume One, a wall that is common to adjoining buildings.
(b) For the purposes of Volume Two and the ABCB Housing Provisions, a wall that is common to adjoining buildings other than Class 1 buildings.

Condensation: The formation of moisture on the surface of a building element or material as a result of moist air coming into contact with a surface which is at a lower temperature.

(a) For the purposes of Volume One, a space within a building, including a ceiling or under-floor supply air plenum or return air plenum, where the environment is likely, by the intended use of the space, to have its temperature controlled by air-conditioning.

(b) For the purposes of Volume Two, a space within a building that is heated or cooled by the building’s domestic services, excluding a non-habitable room in which a heater with a capacity of not more than 1.2 kW or 4.3 MJ/hour is installed.

Connections: The parts that fix the members into the structure, through which the loads pass.
Definitions

Construction activity actions: Actions due to stacking of building materials or the use of equipment, including cranes and trucks, during construction or actions which may be induced by floor to floor propping.

Containment protection: The installation of a backflow prevention device at the point of connection of a Network Utility Operator’s water supply to a site.

Contaminant: Any substance (including gases, liquids, solids or micro-organisms), energy (excluding noise) or heat, that either by itself or in combination with the same, similar or other substances, energy or heat, changes or is likely to change the physical, chemical or biological condition of water.

Controlled fill: Material that has been placed and compacted in layers with compaction equipment (such as a vibrating plate) within a defined moisture range to a defined density requirement.

Cooling load: The calculated amount of energy removed from the cooled spaces of the building annually by artificial means to maintain the desired temperatures in those spaces.

Critical radiant flux (CRF): The critical heat flux at extinguishment (CHF in kW/m²) as determined by AS ISO 9239.1.

Cross-connection: Any actual or potential connection between a water supply and any contaminant.

Curtain wall: A non-loadbearing external wall that is not a panel wall.

Damp-proof course (DPC): A continuous layer of impervious material placed in a masonry wall or pier, or between a wall or pier and a floor, to prevent the upward or downward migration of water.

Deemed-to-Satisfy Provisions: Provisions which are deemed to satisfy the Performance Requirements.

Deemed-to-Satisfy Solution: A method of satisfying the Deemed-to-Satisfy Provisions.

Defined flood event (DFE): The flood event selected for the management of flood hazard for the location of specific development as determined by the appropriate authority.

Defined flood level (DFL): The flood level associated with a defined flood event relative to a specified datum (see Figure 3).
NSW Designated bushfire prone area

Designated bushfire prone area: Land which has been designated under a power of legislation as being subject, or likely to be subject, to bushfires.

Design bushfire: The characteristics of a bushfire, its initiation, spread and development, which arises from weather conditions, topography and fuel (vegetation) in a given setting, used to determine fire actions.

Design fire: The quantitative description of a representation of a fire within the design scenario.

Design scenario: The specific scenario of which the sequence of events is quantified and a fire safety engineering analysis is conducted against.

Design wind speed: The design gust wind speed for the area where the building is located, calculated in accordance with AS/NZS 1170.2 or AS 4055 (see Table 4 for wind classes).

Wind classes

<table>
<thead>
<tr>
<th>Non-cyclonic Region A and B</th>
<th>Cyclonic Region C and D</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1, N2, N3</td>
<td>C1</td>
</tr>
<tr>
<td>N4, N5, N6 (these wind classes are covered in the Housing Provisions Part 2.2, Structural provisions).</td>
<td>C2, C3, C4 (these wind classes are covered in the Housing Provisions Part 2.2, Structural provisions).</td>
</tr>
</tbody>
</table>

Table Notes:

(a) Wind classification map identifying wind regions is contained in Housing Provisions Part 2.2 (see Figure 2.2.3).

(b) Information on wind classes for particular areas may be available from the appropriate authority.
Definitions

“N” = non-cyclonic winds and “C” = cyclonic winds.

Detention centre: A building in which persons are securely detained by means of the built structure including a prison, remand centre, juvenile detention centre, holding cells or psychiatric detention centre.

Direct fix cladding wall: For the purposes of F1V1 and H2V1, means a wall with cladding attached directly to the wall framing without the use of a drained cavity.

(a) A wall having a minimum 20 mm cavity between 2 separate leaves, and—
 (i) for masonry, where wall ties are used to connect leaves, the ties are of the resilient type; and
 (ii) for other than masonry, there is no mechanical linkage between the leaves, except at the periphery.

(b) A staggered stud wall is not deemed to be discontinuous construction.

Display glazing: Glazing used to display retail goods in a shop or showroom directly adjacent to a walkway or footpath, but not including that used in a café or restaurant.

Domestic services: The basic engineering systems that use energy or control the use of energy; and—

(a) includes—
 (i) heating, air-conditioning, mechanical ventilation and artificial lighting; and
 (ii) pumps and heaters for swimming pools and spa pools; and
 (iii) heated water systems; but

(b) excludes cooking facilities and portable appliances.

Drainage: Any part of sanitary drainage, liquid trade waste drainage or stormwater drainage system.

(a) a sanitary drainage system, including any liquid trade waste drainage; or

(b) a stormwater drainage system.

Drainage flange: A flange connected to a waste pipe, at the point at which it passes through the floor substrate, to prevent leakage and which enables tile bed drainage into the waste pipe.

Drainage riser: A waste pipe between the floor waste and the drainage system.

Drinking water: Water intended primarily for human consumption but which has other domestic uses.

Explanatory Information:
See also the Australian Drinking Water Guidelines produced by the National Health and Medical Research Council.

Ductile failure: Significant deformation of a member without loss of strength to resist design actions which, for the purposes of the Performance Requirements, may be taken to include (but not limited to) soil settlement and creep failure.

TAS Early childhood centre
VIC Early childhood centre

Early childhood centre: Any premises or part thereof providing or intending to provide a centre-based education and care service within the meaning of the Education and Care Services National Law Act 2010 (Vic), the Education and Care Services National Regulations and centre-based services that are licensed or approved under State and Territory children’s services law, but excludes education and care primarily provided to school aged children in outside school hours settings.

Effective height: The vertical distance between the floor of the lowest storey included in the calculation of rise in storeys and the floor of the topmost storey (excluding the topmost storey if it contains only heating, ventilating, lift or other equipment, water tanks or similar service units).

Efficacy: The degree to which a system achieves a design objective given that it performs to a level consistent with the system specification during the relevant fire scenario.

Electricity network substation: A building in which high voltage supply is converted or transformed and which is controlled by a licensed network service provider designated under a power of legislation.

Electric passenger lift: A power-operated lift for raising or lowering people in a car in which the motion of the car is obtained from an electric motor mechanically coupled to the hoisting mechanism.

Electrohydraulic passenger lift: A power-operated lift for raising or lowering people in a car in which the motion of the
car is obtained from the action of liquid under pressure acting on a piston or ram, the pressure being generated by a pump driven by an individual electric motor.

Engaged pier: A pier bonded to a masonry wall by course bonding of masonry units or by masonry ties.

(a) For the purposes of Section J in Volume One, the parts of a building’s **fabric** that separate a **conditioned space** or **habitable room** from—
 (i) the exterior of the building; or
 (ii) a non-**conditioned space** including—
 (A) the floor of a rooftop plant room, lift-machine room or the like; and
 (B) the floor above a **carpark** or warehouse; and
 (C) the **common wall** with a **carpark**, warehouse or the like.

(b) For the purposes of Part H6 in Volume Two and Section 13 of the Housing Provisions, the parts of a building’s **fabric** that separate artificially heated or cooled spaces from—
 (i) the exterior of the building; or
 (ii) other spaces that are not artificially heated or cooled.

Equivalent: Equivalent to the level of health, safety and amenity provided by the **Deemed-to-Satisfy Provisions**.

Evacuation route: The continuous path of travel (including **exits**, **public corridors** and the like) from any part of a building, including within a **sole-occupancy unit** in a Class 2 or 3 building or Class 4 part, to a **safe place**.

Evacuation time: The time calculated from when the emergency starts for the occupants of the building to evacuate to a **safe place**.

(a) Any, or any combination of the following if they provide egress to a road or **open space**:
 (i) An internal or external stairway.
 (ii) A ramp.
 (iii) A **fire-isolated passageway**.
 (iv) A doorway opening to a road or **open space**.

(b) A **horizontal exit** or a **fire-isolated passageway** leading to a **horizontal exit**.

TAS Expert Judgement

Expert Judgement: The judgement of an expert who has the qualifications and experience to determine whether a **Performance Solution** or **Deemed-to-Satisfy Solution** complies with the **Performance Requirements**.

Explanatory Information:

Contemporary and relevant qualifications and/or experience are necessary to determine whether a **Performance Solution** complies with the **Performance Requirements**. The level of qualification and/or experience may differ depending on the complexity of the proposal and the requirements of the regulatory authority. Practitioners should seek advice from the authority having jurisdiction or **appropriate authority** for clarification as to what will be accepted.

Exposed joint: A construction joint, control joint, expansion joint, contraction joint or movement joint that is exposed to rainwater.

(a) For the purposes of Volume One, an outer wall of a building which is not a **common wall**.

(b) For the purposes of Volume Two, an outer wall of a building which is not a **separating wall**.

Extra-low voltage: A **voltage** not exceeding 50 V AC or 120 V ripple-free DC.

Fabric: The basic building structural elements and components of a building including the roof, ceilings, walls, glazing and floors.

SA Farm building

Farm building: A Class 7 or 8 building located on land primarily used for **farming**—

(a) that is—
 (i) used in connection with **farming**; or
 (ii) used primarily to store one or more **farm vehicles**; or
Definitions

(iii) a combination of (i) and (ii); and

(b) in which the total number of persons accommodated at any time does not exceed one person per 200 m² of floor area or part thereof, up to a maximum of 8 persons; and

(c) with a total floor area of not more than 3500 m².

Farming: Includes—

(a) cultivating, propagating and harvesting plants or fungi or their products or parts, including seeds, spores, bulbs or the like, but does not include forestry; or

(b) maintaining animals in any physical environment for the purposes of—

(i) breeding them; or

(ii) selling them; or

(iii) acquiring and selling their bodily produce such as milk, wool, eggs or the like; or

(c) a combination of (a) and (b),

but does not include forestry or maintaining animals for sport or recreational purposes.

Farm shed: A single story Class 7 or 8 building located on land primarily used for farming—

(a) that is—

(i) used in connection with farming; or

(ii) used primarily to store one or more farm vehicles; or

(iii) a combination of (i) and (ii); and

(b) occupied neither frequently nor for extended periods by people; and

(c) in which the total number of persons accommodated at any time does not exceed 2; and

(d) with a total floor area of more than 500 m² but not more than 2000 m².

Farm vehicle: A vehicle used in connection with farming.

Fatigue failure: Fracture of a material through progressive brittle cracking under repeated alternating or cyclic stresses of an intensity considerably less than strength under static load.

Finished ground level: For the purposes of H1D4 and H2D3 in Volume Two and Section 4 of the Housing Provisions, means the ground level adjacent to footing systems at the completion of construction and landscaping.

Fire actions: Each of the following—

(a) airborne embers; and

(b) burning debris and/or accumulated embers adjacent to building elements; and

(c) heat transfer from combustible materials within the site; and

(d) radiant heat from a bushfire front; and

(e) flame contact from a bushfire front.

Fire brigade: A statutory authority constituted under an Act of Parliament having as one of its functions, the protection of life and property from fire and other emergencies.

Fire brigade station: For the purposes of E1D2(1)(b) and I3D9, means a state or territory government operated premises which is a station for a fire brigade.

Fire compartment: Either—

(a) the total space of a building; or

(b) when referred to in—

(i) the Performance Requirements — any part of a building separated from the remainder by barriers to fire such as walls and/or floors having an appropriate resistance to the spread of fire with any openings adequately protected; or

(ii) the Deemed-to-Satisfy Provisions — any part of a building separated from the remainder by walls and/or floors each having an FRL not less than that required for a fire wall for that type of construction and where all openings in the separating construction are protected in accordance with the Deemed-to-Satisfy Provisions of the relevant Part.
Fire growth: The stage of fire development during which the heat release rate and the temperature of the fire are generally increasing.

Fire hazard: The danger in terms of potential harm and degree of exposure arising from the start and spread of fire and the smoke and gases that are thereby generated.

Fire hazard properties: The following properties of a material or assembly that indicate how they behave under specific fire test conditions:

(a) Average specific extinction area, critical radiant flux and Flammability Index, determined as defined in Schedule 2.
(b) Smoke-Developed Index, smoke development rate and Spread-of-Flame Index, determined in accordance with Specification 3.
(c) Group number and smoke growth rate index (SMOGRA$_{RC}$), determined in accordance with Specification 7.

Fire intensity: The rate of release of calorific energy in watts, determined either theoretically or empirically, as applicable.

Fire-isolated passageway: A corridor, hallway or the like, of fire-resisting construction, which provides egress to or from a fire-isolated stairway or fire-isolated ramp or to a road or open space.

Fire-isolated ramp: A ramp within a fire-resisting enclosure which provides egress from a storey.

Fire-isolated stairway: A stairway within a fire-resisting shaft and includes the floor and roof or top enclosing structure.

For the purposes of (1), the calorific values must be determined at the ambient moisture content or humidity (the unit of measurement is MJ).

Fire-protective covering: Any one or more of the following:

(a) 13 mm fire-protective grade plasterboard.
(b) 12 mm cellulose cement flat sheeting complying with AS/NZS 2908.2 or ISO 8336.
(c) 12 mm fibrous plaster reinforced with 13 mm x 13 mm x 0.7 mm galvanised steel wire mesh located not more than 6 mm from the exposed face.
(d) Other material not less fire-protective than 13 mm fire-protective grade plasterboard, fixed in accordance with the normal trade practice for a fire-protective covering.

Fire-resistance level (FRL): The grading periods in minutes determined in accordance with Specifications 1 and 2, for the following criteria—

(a) structural adequacy; and
(b) integrity; and
(c) insulation,
and expressed in that order.

Notes:
A dash means there is no requirement for that criterion. For example, 90/–/– means there is no requirement for an FRL for integrity and insulation, and –/–/– means there is no requirement for an FRL.

Fire-resisting construction: For the purposes of Volume One, means one of the Types of construction referred to in Part C2 of Volume One.

(a) For the purposes of Volume One, applied to a building element, having an FRL appropriate for that element.
(b) For the purposes of Volume Two, applied to a structural member or other part of a building, having the FRL required for that structural member or other part.

Fire safety engineering: Application of engineering principles, rules and expert judgement based on a scientific appreciation of the fire phenomenon, often using specific design scenario, of the effects of fire and of the reaction and behaviour of people in order to—

(a) save life, protect property and preserve the environment and heritage from destructive fire; and
(b) quantify the hazards and risk of fire and its effects; and
mitigate fire damage by proper design, construction, arrangement and use of buildings, materials, structures, industrial processes and transportation systems; and

evaluate analytically the optimum protective and preventive measures, including design, installation and maintenance of active and passive fire and life safety systems, necessary to limit, within prescribed levels, the consequences of fire.

Fire safety system: One or any combination of the methods used in a building to—

(a) warn people of an emergency; or
(b) provide for safe evacuation; or
(c) restrict the spread of fire; or
(d) extinguish a fire,

and includes both active and passive systems.

Fire-source feature: Any one or more of the following:

(a) The far boundary of a road, river, lake or the like adjoining the allotment.
(b) A side or rear boundary of the allotment.
(c) An *external wall* of another building on the allotment which is not a Class 10 building.

Fire wall: A wall with an appropriate resistance to the spread of fire that divides a *storey* or building into *fire compartments*.

Fixed wired: For the purposes of Specification 23, a system of electrical wiring (either AC or DC), in which cables are fixed or supported in position.

Flammability Index: The index number as determined by AS 1530.2.

Flashing: A strip or sleeve of impervious material dressed, fitted or built-in to provide a barrier to moisture movement, or to divert the travel of moisture, or to cover a joint where water would otherwise penetrate to the interior of a building.

(a) Perimeter flashing: *A flashing used at the floor-wall junction*.
(b) Vertical flashing: *A flashing used at wall junctions within shower areas*.

Flashover: In relation to fire hazard properties, means a *heat release rate* of 1 MW.

Flight: That part of a stair that has a continuous series of *risers*, including *risers of winders*, not interrupted by a *landing* or floor.

Explanatory Information:

A flight is the part of a stair that has a continuous slope created by the nosing line of treads. The length of a flight is limited to restrict the distance a person could fall down a stair.

Quarter *landings*, as shown in Explanatory Figure 1, are considered sufficient to halt a person's fall and therefore are considered for the purposes of Volume Two and the ABCB Housing Provisions not to be part of the flight.
Definitions

VIC Flood hazard area

Flood hazard area: The site (whether or not mapped) encompassing land lower than the flood hazard level which has been determined by the appropriate authority.

Flood hazard level (FHL): The flood level used to determine the height of floors in a building and represents the defined flood level plus the freeboard (see Figure 3).

(a) For the purposes of Volume One—

(i) in relation to a building — the total area of all storeys; and

(ii) in relation to a storey — the area of all floors of that storey measured over the enclosing walls, and includes—

(A) the area of a mezzanine within the storey, measured within the finished surfaces of any external walls; and

(B) the area occupied by any internal wall or partitions, any cupboard, or other built-in furniture, fixture or fitting; and

(C) if there is no enclosing wall, an area which has a use that contributes to the fire load or impacts on the safety, health or amenity of the occupants in relation to the provisions of the BCA; and

(iii) in relation to a room — the area of the room measured within the internal finished surfaces of the walls, and includes the area occupied by any cupboard or other built-in furniture, fixture or fitting; and

(iv) in relation to a fire compartment — the total area of all floors within the fire compartment measured within the finished internal surfaces of the bounding construction, and if there is no bounding construction, includes an area which has a use which contributes to the fire load; and

(v) in relation to an atrium — the total area of all floors within the atrium measured within the finished surfaces of the bounding construction and if no bounding construction, within the external walls.

Figure 1 (explanatory): Identification of stair flights — Plan view

- **Quarter Landing stairway – 2 flights**
- **Half Landing stairway – 2 flights**
- **Continuous stairway – 1 flight (90º change in direction)**
- **Continuous stairway – 1 flight (180º change in direction)**
For the purposes of Volume Two and the ABCB Housing Provisions, in relation to a room, the area of the room measured within the finished surfaces of the walls, and includes the area occupied by any cupboard or other built-in furniture, fixture or fitting (see Figure 4).

Figure 4: Identification of floor area of a room

![Identification of floor area of a room](image)

Floor waste: A grated inlet within a graded floor intended to drain the floor surface.

Foundation: The ground which supports the building (see Figure 5).

Figure 5: Identification of foundation

![Identification of foundation](image)

Fractional effective dose (FED): The fraction of the dose (of thermal effects) that would render a person of average susceptibility incapable of escape.

Explanatory Information: The definition for FED has been modified from the ISO definition to be made specific for the Fire Safety Verification Method. The use of CO or CO$_2$ as part of FED is not part of that Verification Method. This is because the ability to measure CO in a repeatable test varies by two orders of magnitude for common cellulose fuel.

VIC Freeboard

Freeboard: The height above the defined flood level as determined by the appropriate authority, used to compensate for effects such as wave action and localised hydraulic behaviour.

Fully developed fire: The state of total involvement of the majority of available combustible materials in a fire.

(a) For the purposes of Section J, a transparent or translucent element and its supporting frame located in the envelope, and includes a window other than a roof light.

(b) For the purposes of Part H6 and Section 13 of the Housing Provisions—

(i) a transparent or translucent element and its supporting frame located in the external fabric of the building; and

(ii) includes a window other than a roof light.

Going: The horizontal dimension from the front to the back of a tread less any overhang from the next tread or landing above (see Figure 11.2.2f in the Housing Provisions).
Gradual failure: Relatively slow collapse of a structure that occurs through significant plastic deformation and/or moment redistribution.

Green Star: The building sustainability rating scheme managed by the Green Building Council of Australia.

Group number: The number of one of 4 groups of materials used in the regulation of fire hazard properties and applied to materials used as a finish, surface, lining, or attachment to a wall or ceiling.

Habitable room: A room used for normal domestic activities, and—
 (a) includes a bedroom, living room, lounge room, music room, television room, kitchen, dining room, sewing room, study, playroom, family room, home theatre and sunroom; but
 (b) excludes a bathroom, laundry, water closet, pantry, walk-in wardrobe, corridor, hallway, lobby, photographic darkroom, clothes-drying room, and other spaces of a specialised nature occupied neither frequently nor for extended periods.

Hazard Rating: A level of potential toxicity that may cause contamination in a drinking water system, having a Thee of either Low Hazard, Medium Hazard or High Hazard, is determined in accordance with NCC Volume Three, Specification 41, for any Deemed-to-Satisfy Solution.

Health-care building: A building whose occupants or patients undergoing medical treatment generally need physical assistance to evacuate the building during an emergency and includes—
 (a) a public or private hospital; or
 (b) a nursing home or similar facility for sick or disabled persons needing full-time care; or
 (c) a clinic, day surgery or procedure unit where the effects of the predominant treatment administered involve patients becoming non-ambulatory and requiring supervised medical care on the premises for some time after the treatment.

Heated water: Water that has been intentionally heated; normally referred to as hot water or warm water.

Heating load: The calculated amount of energy delivered to the heated spaces of the building annually by artificial means to maintain the desired temperatures in those spaces.

Heat release: The thermal energy produced by combustion (measured in kJ).

Heat release rate (HRR): The rate of thermal energy production generated by combustion, measured in kW (preferred) or MW.

High Hazard: Any condition, device or practice which, in connection with a water supply, has the potential to cause death.

High wind area: A region that is subject to design wind speed more than N3 or C1 (see Table 3).

Hob: The upstand at the perimeter to a shower area.

Horizontal exit: A required doorway between 2 parts of a building separated from each other by a fire wall.

Hours of operation: The number of hours when the occupancy of the building is greater than 20% of the peak occupancy.
 (a) For the purposes of Volume One, means software accredited under the Nationwide House Energy Rating Scheme.
 (b) For the purposes of Volume Two—
 (i) applied to H6V2—software accredited or previously accredited under the Nationwide House Energy Rating Scheme and the additional functionality provided in non-regulatory mode; and
 (ii) applied to H6D3—software accredited under the Nationwide House Energy Rating Scheme.

Explanatory Information:
The Nationwide House Energy Rating Scheme (NatHERS) refers to the Australian Governments’ scheme that facilitates consistent energy ratings from software tools which are used to assess the potential thermal efficiency of dwelling envelopes.

Housing Provisions: The requirements for Class 1 and 10 buildings referenced in Volume Two of the National Construction Code, as published by the Australian Building Codes Board.

Illuminance: The luminous flux falling onto a unit area of surface.

Illumination power density: The total of the power that will be consumed by the lights in a space, including any lamps, ballasts, current regulators and control devices other than those that are plugged into socket outlets for intermittent use such as floor standing lamps, desk lamps or work station lamps, divided by the area of the space, and expressed...
Definitions

Explanatory Information:
Illumination power density relates to the power consumed by the lighting system and includes the light source or luminaire and any control device. The power for the lighting system is the illumination power load. This approach is more complicated than the lamp power density approach but provides more flexibility for a dwelling with sophisticated control systems.

The area of the space refers to the area the lights serve. This could be considered a single room, open plan space, verandah, balcony or the like, or the total area of all these spaces.

Importance Level: A number which ranks the relative importance of structures and buildings (shown in Table 3) based on the potential risk to life resulting from their scale and/or use.

Table 3: Importance Levels for building types

<table>
<thead>
<tr>
<th>Importance Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Structures presenting a low degree of hazard to life and other property</td>
</tr>
<tr>
<td>2</td>
<td>Normal structures and structures not in other Importance Levels</td>
</tr>
<tr>
<td>3</td>
<td>Structures that as a whole may contain people in crowds or contents of high value to the community or pose risks to people in crowds</td>
</tr>
<tr>
<td>4</td>
<td>Structures with special post-disaster functions</td>
</tr>
<tr>
<td>5</td>
<td>Special structures</td>
</tr>
</tbody>
</table>

Explanatory Information:

Examples of Importance Levels of certain buildings, structures and facilities

(a) Importance Level 1, include but not limited to:
 (i) Structures with a total floor area < 30 m²;
 (ii) Farm buildings, isolated structures, towers in rural situations.

(b) Importance Level 2, include but not limited to:
 (i) Buildings not included in Importance Level 1, 3 or 4.
 (ii) Single family dwellings.

(c) Importance Level 3, include but not limited to:
 (i) Where more than 300 people can congregate in one area.
 (ii) Day care facilities with a capacity greater than 150.
 (iii) Primary school or secondary school facilities with a capacity greater than 250.
 (iv) Colleges or adult education facilities with a capacity greater than 500.
 (v) Health care facilities with a capacity of 50 or more residents.
 (vi) Airport terminals, principal railway stations with a capacity greater than 250.
 (vii) Correctional institutions.
 (viii) Multi-occupancy residential, commercial (including shops), industrial, office and retailing buildings designed to accommodate more than 5000 people and with a gross area greater than 10,000 m².
 (ix) Public assembly buildings, theatres and cinemas of greater than 1,000 m².
 (x) Emergency medical and other emergency facilities not designated as post-disaster.
 (xi) Power-generating facilities, water treatment and waste-water treatment facilities and other public utilities not designated as post-disaster.
 (xii) Buildings and facilities not designated as post-disaster containing hazardous materials capable of causing hazardous conditions that do not extend beyond the property boundaries.

(d) Importance Level 4, include but not limited to:
Buildings and facilities designated as essential facilities buildings and facilities with special post-disaster functions medical emergency or surgical facilities.

Emergency service facilities such as fire, police stations and emergency vehicle garages.

Utilities or emergency supplies or installations required as backup for buildings and facilities of *Importance Level 4*.

Designated emergency shelters, designated emergency centres and ancillary facilities.

Buildings and facilities containing hazardous materials capable of causing hazardous conditions that extend beyond the property boundaries.

Importance Level 5, include but not limited to:

Structures that have special functions or whose failure poses catastrophic risk to a large area (e.g. 100 km²) or a large number of people (e.g. 100,000).

Major dams, extreme hazard facilities.

Inclined lift: A power-operated device for raising or lowering people within a carriage that has one or more rigid guides on an inclined plane.

Individual protection: The installation of a *backflow prevention device* at the point where a water service connects to a single fixture or appliance.

Individual risk: The frequency at which an individual may be expected to sustain a given level of harm from the realisation of a specified hazard.

Insulation: In relation to an FRL, the ability to maintain a temperature on the surface not exposed to the furnace below the limits specified in AS 1530.4.

Integrity: In relation to an FRL, the ability to resist the passage of flames and hot gases specified in AS 1530.4.

(a) For the purposes of Volume One, excludes a *common wall* or a party wall.

(b) For the purposes of Volume Two, excludes a *separating wall*, *common wall* or party wall.

Interstitial condensation: The condensation of moisture on surfaces between material layers inside the building component.

Irrigation system: An irrigation system of the following types:

(a) *Type A*— all permanently open outlets and piping more than 150mm above finished ground level, not subject to ponding or back-pressure and not involving injection systems.

(b) *Type B*— irrigation systems in domestic or residential buildings with piping or outlets installed less than 150mm above finished surface level and not involving injection systems.

(c) *Type C*— irrigation systems in other than domestic or residential buildings with piping outlets less than 150mm above finished surface level and not involving injection systems.

(d) *Type D*— irrigation systems where fertilizers, herbicides, nemacides or the like are injected or siphoned into the system.

JAS-ANZ: The Joint Accreditation System of Australia and New Zealand.

Lamp power density: The total of the maximum power rating of the lamps in a space, other than those that are plugged into socket outlets for intermittent use such as floor standing lamps, desk lamps or work station lamps, divided by the area of the space, and expressed in W/m².

Explanatory Information:

Lamp power density is a simple means of setting energy consumption at an efficient level for Class 1 and associated Class 10a buildings.

Lamp refers to the globe or globes that are to be installed in a permanently wired light fitting. The maximum power of a lamp is usually marked on the fitting as the maximum allowable wattage.

The area of the space refers to the area the lights serve. This could be considered a single room, open plan space, verandah, balcony or the like, or the total area of all these spaces.

Landing: An area at the top or bottom of a *flight* or between two *flights*.

Latent heat gain: The heat gained by the vapourising of liquid without change of temperature.
Definitions

Lateral support: A support (including footing, buttress, cross wall, beam, floor or braced roof structure) that effectively restrains the wall or pier at right angles to the face of the wall or pier.

Lightweight construction: Construction which incorporates or comprises—

(a) sheet or board material, plaster, render, sprayed application, or other material similarly susceptible to damage by impact, pressure or abrasion; or

(b) concrete and concrete products containing pumice, perlite, vermiculite, or other soft material similarly susceptible to damage by impact, pressure or abrasion; or

(c) masonry having a width of less than 70 mm.

Loadbearing: Intended to resist vertical forces additional to those due to its own weight.

Loadbearing wall: For the purposes of H1D4, H2D3 and Section 4 of the Housing Provisions, means any wall imposing on the footing a load greater than 10 kN/m.

Loss: Physical damage, financial loss or loss of amenity.

Low Hazard: Any condition, device or practice which, in connection with a water supply, would constitute a nuisance by colour, odour or taste but does not have the potential to injure or endanger health.

Low lead: Where a plumbing product or material in contact with drinking water is calculated using a weighted average lead content of no more than 0.25%.

Low rainfall intensity area: An area with a 5 minute rainfall intensity for an annual exceedance probability of 5% average recurrence interval of 20 years of not more than 125 mm/hour.

Explanatory Information: Rainfall intensity figures can be obtained from Tables 7.4.3d to 7.4.3k in the Housing Provisions.

Low-rise, low-speed constant pressure lift: A power-operated low-rise, low-speed device for raising or lowering people with limited mobility on a carriage that is controlled by the application of constant pressure to a control.

Low-rise platform lift: A power-operated device for raising or lowering people with limited mobility on a platform, that is controlled automatically or by the application of constant pressure to a control.

Low voltage: A voltage exceeding extra-low voltage, but not exceeding 1000 V AC or 1500 V DC.

Luminance contrast: The light reflected from one surface or component, compared to the light reflected from another surface or component.

Massive timber: An element not less than 75 mm thick as measured in each direction formed from solid and laminated timber.

Maximum acceptable annual probability of structural failure of structures, buildings, members and connections: The probability that, in any year, there could be a structural failure leading to collapse of either the whole of the structure or building, or significant members and/or their connections, expressed as 1 in … (e.g. 1 in 1,000 meaning a probability of 1 in 1,000 that the failure could occur).

Maximum retained water level: The point where surface water will start to overflow out of the shower area.

Medium Hazard: Any condition, device or practice which, in connection with a water supply, has the potential to injure or endanger health.

Members: The parts of a structure or component that provide resistance to structural actions.

Members and connections that do not provide primary building support: Those components of a building or other structure that are not necessary to resist collapse of other members, parts of the building or the whole building, including but are not limited to—

(a) non-loadbearing walls including framing, wall cladding, roof cladding, roof purlins and battens, mezzanine floors; and

(b) connections and fixings that fix in position only those members that do not provide primary building support.

Members and connections that provide primary building support: Those components of a building or other structure that provide the structural system resisting collapse of other members, parts of the building or the whole building under the design actions, including but are not limited to—

(a) beams, columns, trusses, portal frames, posts, loadbearing walls, floor systems, footings, foundations and earth retaining structures; and
Definitions

(b) connections and fixings that transfer loads between members that provide primary building support.

Membrane: A barrier impervious to moisture.

Explanatory Information:
A barrier may be a single or multi-part system.

Mezzanine: An intermediate floor within a room.

Minimum Acceptable Annual Structural Reliability Index of Structures, Buildings, Members and Connections: The Structural Reliability Index (β), determined in accordance with the ABCB Structural Reliability Handbook (Version 2022.1) that corresponds to the maximum acceptable annual probability of structural failure tabulated in Table B1P1.

Mixed construction: A building consisting of more than one form of construction, particularly in double-storey buildings.

Mould: A fungal growth that can be produced from conditions such as dampness, darkness, or poor ventilation.

Multiple resistance paths: Situations where the failure of a part of a building or structure is resisted collectively by more than one member or connection, such that the failure of any member or connection will result in the transfer of loads to the other members and connections with sufficient combined capacity to resist the total applied loads.

NABERS Energy for Apartment Buildings: The National Australian Built Environment Rating System for apartment building energy efficiency, which is managed by the New South Wales Government.

NABERS Energy for Hotels: The National Australian Built Environment Rating System for hotel building energy efficiency, which is managed by the New South Wales Government.

NABERS Energy for Offices: The National Australian Built Environment Rating Systems for office energy efficiency, which is managed by the New South Wales Government.

NABERS Energy for Shopping Centres: The National Australian Built Environment Rating System for shopping centre energy efficiency, which is managed by the New South Wales Government.

TAS Network Utility Operator

Network Utility Operator: A person who—
(a) undertakes the piped distribution of drinking water or non-drinking water for supply; or
(b) is the operator of a sewerage system or a stormwater drainage system.

Explanatory Information:
A Network Utility Operator in most States and Territories is the water and sewerage authority licensed to supply water and receive sewage and/or stormwater. The authority operates or proposes to operate a network that undertakes the distribution of water for supply and undertakes to receive sewage and/or stormwater drainage. This authority may be a licensed utility, local government body or council.

(a) Applied to a material — means not deemed combustible as determined by AS 1530.1 — Combustibility Tests for Materials.
(b) Applied to construction or part of a building — means constructed wholly of materials that are not deemed combustible.

Non-drinking water: Water which is not intended primarily for human consumption, but which may have other uses, drinking water.

Non-transient actions: The combination of structural actions in which the combined magnitude of the permanent gravity action and imposed gravity action is equal to or greater than 50% of the magnitude of the total combined actions.
(a) For the purposes of Volume One, the features, needs and profile of the occupants in a habitable room or space.
(b) For the purposes of Volume Two, the features, needs and profile of the occupants in a room or space.

Explanatory Information:
For the purpose of Volume Two, this term is used to describe the characteristics of the occupants and their associated requirements in relation to a room or space.
For example, in relation to a bedroom, the following occupant characteristics and associated requirements should be considered:

- Characteristics: height, mobility and how often the space will be used.
- Requirements: a sleeping space and a space to undertake leisure activities.

Occupiable outdoor area: A space on a roof, balcony or similar part of a building—

(a) that is open to the sky; and
(b) to which access is provided, other than access only for maintenance; and
(c) that is not open space or directly connected with open space.

TAS On-site wastewater management system

On-site wastewater management system: A system installed on premises that receives and/or treats wastewater generated and discharges on the premises and applies the resulting effluent to an approved disposal system or reuse system.

Open-deck carpark: A carpark in which all parts of the parking storeys are cross-ventilated by permanent unobstructed openings in not fewer than 2 opposite or approximately opposite sides, and—

(a) each side that provides ventilation is not less than \(\frac{1}{6} \) of the area of any other side; and
(b) the openings are not less than \(\frac{1}{2} \) of the wall area of the side concerned.

Open space: A space on the allotment, or a roof or similar part of a building adequately protected from fire, open to the sky and connected directly with a public road.

Open spectator stand: A tiered stand substantially open at the front.

Other property: All or any of the following—

(a) any building on the same or an adjoining allotment; and
(b) any adjoining allotment; and
(c) a road.

Outdoor air: Air outside the building.

Outdoor air economy cycle: A mode of operation of an air-conditioning system that, when the outdoor air thermodynamic properties are favourable, increases the quantity of outdoor air used to condition the space.

Outfall: That part of the disposal system receiving surface water from the drainage system and may include a natural water course, kerb and channel, or soakage system.

Overflow devices: A device that provides relief to a water service, sanitary plumbing and drainage system, rainwater service harvesting system or stormwater system to avoid the likelihood of uncontrolled discharge.

Panel wall: A non-loadbearing external wall, in frame or similar construction, that is wholly supported at each storey.

Partially buried rainwater tank: A rainwater tank that is not completely covered by earth but is partially set into the ground.

Patient care area: A part of a health-care building normally used for the treatment, care, accommodation, recreation, dining and holding of patients including a ward area and treatment area.

Performance-based design brief (PBDB): The process and the associated report that defines the scope of work for the performance-based analysis, the technical basis for analysis, and the criteria for acceptance of any relevant Performance Solution as agreed by stakeholders.

Performance Requirement: A requirement which states the level of performance which a Performance Solution or Deemed-to-Satisfy Solution must meet.

Performance Solution: A method of complying with the Performance Requirements other than by a Deemed-to-Satisfy Solution.

Perimeter of building: For the purposes of Section 8 of the Housing Provisions, means the external envelope of a building.

Personal care services: Any of the following:

(a) The provision of nursing care.
(b) Assistance or supervision in—
 (i) bathing, showering or personal hygiene; or
toileting or continence management; or
(iii) dressing or undressing; or
(iv) consuming food.

(c) The provision of direct physical assistance to a person with mobility problems.

(d) The management of medication.

(e) The provision of substantial rehabilitative or development assistance.

Piping: For the purposes of Section J in Volume One or Part H6 in Volume Two, and Section 13 of the Housing Provisions, means an assembly of pipes, with or without valves or other fittings, connected together for the conveyance of liquids and gases.

Pliable building membrane: A water barrier as classified by AS/NZS 4200.1.

Plumbing: Any water service, plumbing or roof plumbing, sanitary plumbing system or heating, ventilation and air-conditioning plumbing.

Plumbing or Drainage Solution: A solution which complies with the *Performance Requirement* and is a—

(a) *Performance Solution*; or

(b) *Deemed-to-Satisfy Solution*; or

(c) combination of (a) and (b).

Point of connection: Any of the following:

(a) For a *heated water* service means the point where the water heater connects to the cold water service downstream of the isolation valve.

(b) For sanitary plumbing means the point where the sanitary plumbing system connects to the sanitary drainage system.

(c) For sanitary drainage sewage disposal means the point where the on-site sanitary drainage system connects to the Network Utility Operator’s sewerage system or to an on-site wastewater management system.

(i) the Network Utility Operator’s sewerage system; or

(ii) an on-site wastewater management system.

(d) For stormwater disposal means the point where the on-site stormwater drainage system connects to the Network Utility Operator’s stormwater system or to an approved disposal system.

(i) the Network Utility Operator’s stormwater system; or

(ii) an approved on-site disposal system.

(e) For a fire-fighting water service means the point where the service connects to—

(i) a cold water service, downstream of a backflow prevention device; or

(ii) the Network Utility Operator’s water supply system; or

(iii) the point of isolation to an alternative water source.

(f) For a cold water service means the point where the cold water service connects to—pipe within the premises connects to the Network Utility Operator’s property service or to an alternative water supply system.

(i) the Network Utility Operator’s water supply system; or

(ii) the point of isolation to an alternative water source where there is no Network Utility Operator’s water supply available or is not utilised.

(g) For a rainwater service means the point where the rainwater service connects to the point of isolation to the rainwater storage.

Notes:

A domestic fire sprinkler service conforming to FPAA101D is considered part of the cold water service.

Explanatory Information:

The point of connection is usually determined by the Network Utility Operator according to the water and sewerage
Point of discharge: The outlet of a—

(a) tap or outlet that discharges water over plumbing fixtures; or
(b) cistern inlet valve or flushing device of a sanitary fixture; or
(c) water service used for the connection of an appliance which is readily accessible and easily connected or disconnected; or
(d) tap, outlet or end of line valve where water is discharged to the atmosphere under normal operating conditions; or
(e) isolating valve or the outlet provided for the connection of industrial or specialist equipment to the water service; or
(f) backflow prevention device connected to a fire service or irrigation system; or
(g) relief drain line or vent pipe from a water heater, temperature and pressure relief valve or expansion control valve.

Explanatory Information:

The point of discharge of a tap or fixture commonly includes the outlets of a basin or bath taps, shower heads, drinking fountains, flush valves or cistern inlet valves.

The point of discharge of a water service used for the connection of an appliance commonly includes outlets of an isolation valve provided for the connection of dishwashers, clothes washers, coffee machines and fridges with beverage dispensing and ice making capabilities.

The point of discharge for a tap discharging to atmosphere may include hose cocks. It does not include any subsequent connections to this outlet such as garden hoses.

Contamination control may be required to avoid contamination of the water service where a hazard exists beyond the point of discharge.

Water services downstream of the backflow prevention device are considered an unprotected water service.

Predicted Mean Vote (PMV): The Predicted Mean Vote of the thermal perception of building occupants determined in accordance with ANSI/ASHRAE Standard 55.

Preformed shower base: A preformed, prefinished vessel installed as the finished floor of a shower compartment, and which is provided with a connection point to a sanitary drainage system.

Explanatory Information:

Shower bases are commonly made of plastics, composite materials, vitreous enamelled pressed steel, or stainless steel.

Pressure vessel: A vessel subject to internal or external pressure, including interconnected parts and components, valves, gauges and other fittings up to the first point of connection to connecting piping, and—

(a) includes fire heaters and gas cylinders; but
(b) excludes—

(i) any vessel that falls within the definition of a boiler; and
(ii) storage tanks and equipment tanks intended for storing liquids where the pressure at the top of the tank is not exceeding 1.4 kPa above or 0.06 kPa below atmospheric pressure; and
(iii) domestic-type hot water supply heaters and tanks; and
(iv) pressure vessels installed for the purposes of fire suppression or which serve a fire suppression system.

QLD Primary building element

(a) For the purposes of Volume One, a member of a building designed specifically to take part of the loads specified in B1D3 and includes roof, ceiling, floor, stairway or ramp and wall framing members including bracing members designed for the specific purpose of acting as a brace to those members.

(b) For the purposes of Part 3.4 of the Housing Provisions, means a member of a building designed specifically to
take part of the building loads and includes roof, ceiling, floor, stairway or ramp and wall framing members including bracing members designed for the specific purpose of acting as a brace to those members.

Explanatory Information:
The loads to which a building may be subjected are dead, live, wind, snow and earthquake loads. Further information on building loads can be found in the AS 1170 series of Standards.

Private bushfire shelter: A structure associated with, but not attached to, or part of a Class 1a dwelling that may, as a last resort, provide shelter for occupants from immediate life threatening effects of a bushfire.

(a) For the purposes of Volume One—
 (i) any garage associated with a Class 1 building; or
 (ii) any single storey of a building of another Class containing not more than 3 vehicle spaces, if there is only one such storey in the building; or
 (iii) any separate single storey garage associated with another building where such garage contains not more than 3 vehicle spaces.

(b) For the purposes of Volume Two—
 (i) any garage associated with a Class 1 building; or
 (ii) any separate single storey garage associated with another building where such garage contains not more than 3 vehicle spaces.

Product: *Plumbing* and *drainage* items within the scope of Volume Three including but not limited to—
(a) materials, fixtures and components used in a *plumbing* or *drainage* installation; and
(b) appliances and equipment connected to a *plumbing* or *drainage* system.

Product Technical Statement: A form of documentary evidence stating that the properties and performance of a building material, product or form of construction fulfil specific requirements of the NCC, and describes—
(a) the application and intended use of the building material, product or form of construction: and
(b) how the use of the building material, product or form of construction complies with the requirements of the NCC Volume One and Volume Two; and
(c) any limitations and conditions of the use of the building material, product or form of construction relevant to (b).

TAS Professional engineer

Professional engineer: A person who is—
(a) if legislation is applicable — a registered professional engineer in the relevant discipline who has appropriate experience and competence in the relevant field; or
(b) if legislation is not applicable—
 (i) registered in the relevant discipline on the National Engineering Register (NER) of the Institution of Engineers Australia (which trades as ‘Engineers Australia’); or
 (ii) eligible to become registered on the Institution of Engineers Australia’s NER and has appropriate experience and competence in the relevant field.

Public corridor: An enclosed corridor, hallway or the like which—
(a) serves as a means of egress from 2 or more *sole-occupancy units* to a *required exit* from the *storey* concerned; or
(b) is required to be provided as a means of egress from any part of a *storey* to a *required exit*.

Rainwater service harvesting system: A water service which distributes water from the isolation valve of the rainwater storage to the rainwater points of discharge for purposes such as for clothes washing, urinal and water closet flushing and external hose cocks. A plumbing installation that comprises—
(a) any plumbing that connects a rainwater tank to any drinking water or non-drinking water outlets; and
(b) any top-up line that conveys drinking water from a Network Utility Operator’s water supply to a rainwater tank.

Rainwater storage: Any storage of rainwater collected from a roof catchment area which is used to supply water for the
primary purposes of drinking, personal hygiene or other uses.

Notes:
Generally this applies to water which is not supplied by a Network Utility Operator. This does not include rainwater storage for non-drinking purposes.

Rapid roller door: A door that opens and closes at a speed of not less than 0.5 m/s.

TAS Recognised expert

Recognised expert: A person with qualifications and experience in the area of plumbing or drainage in question recognised by the authority having jurisdiction.

Explanatory Information:
A recognised expert is a person recognised by the authority having jurisdiction as qualified to provide evidence under A5G4(5). Generally, this means a hydraulic consultant or engineer, however the specific requirements are determined by the authority having jurisdiction.

Under A5G4(5), a report from a recognised expert may be used as evidence of suitability that a product listed on the WaterMark Schedule of Excluded Products, or a plumbing or drainage system, complies with a Performance Requirement or Deemed-to-Satisfy Provisions.

(a) For the purposes of Volume One, a hypothetical building that is used to calculate the maximum allowable annual greenhouse gas emissions and determine the thermal comfort level for the proposed building.

(b) For the purposes of Volume Two, means a hypothetical building that is used to determine the maximum allowable heating load and cooling load for the proposed building.

Reflective insulation: A building membrane with a reflective surface such as a reflective foil laminate, reflective barrier, foil batt or the like capable of reducing radiant heat flow.

Explanatory Information:
For Volume Two:

(a) Typical R-Value achieved by adding reflective insulation are given in the explanatory information accompanying Section 13 of the Housing Provisions. Information on specific products may be obtained from reflective insulation manufacturers.

(b) The surface of reflective insulation may be described in terms of its emittance (or infra-red emittance) or in terms of its reflectance (or solar reflectance). Generally, for the surface of a particular reflective insulation –

(c) emittance + reflectance = 1.

(d) Some types of reflective insulation may also serve the purposes of waterproofing or vapour proofing.

Regulated energy: The energy consumed by a building’s services minus the amount of renewable energy generated and used on site.

Reinforced masonry: Masonry reinforced with steel reinforcement that is placed in a bed joint or grouted into a core to strengthen the masonry.

Reliability: The probability that a system performs to a level consistent with the system specification.

Renewable energy: Energy that is derived from sources that are regenerated, replenished, or for all practical purposes cannot be depleted and the energy sources include, but are not limited to, solar, wind, hydroelectric, wave action and geothermal.

Reportable fire: A fire that would be reported to the fire brigade.

Required: Required to satisfy a Performance Requirement or a Deemed-to-Satisfy Provision of the NCC as appropriate.

Required safe egress time (RSET): The time required for safe evacuation of occupants to a place of safety prior to the onset of untenable conditions.

Residential aged care building: A Class 3 or 9a building whose residents, due to their incapacity associated with the ageing process, are provided with physical assistance in conducting their daily activities and to evacuate the building during an emergency.
Residential care building: A Class 3, 9a or 9c building which is a place of residence where 10% or more of persons who reside there need physical assistance in conducting their daily activities and to evacuate the building during an emergency (including any aged care building or residential aged care building) but does not include a hospital.

Resident use area: Part of a Class 9c building normally used by residents, and—
(a) includes sole-occupancy units, lounges, dining areas, activity rooms and the like; but
(b) excludes offices, storage areas, commercial kitchens, commercial laundries and other spaces not for the use of residents.

Resistance to the incipient spread of fire: In relation to a ceiling membrane, means the ability of the membrane to insulate the space between the ceiling and roof, or ceiling and floor above, so as to limit the temperature rise of materials in this space to a level which will not permit the rapid and general spread of fire throughout the space.

Resistance to the incipient spread of fire refers to the ability of a ceiling to prevent the spread of fire and thermally insulate the space between the ceiling and the roof or floor above. “Resistance to the incipient spread of fire” is superior to “fire-resistance” because it requires a higher standard of heat insulation.

The definition is used in Volume Two for separating floors/ceilings for a Class 1a dwelling located above a non-appurtenant private garage.

Rise in storeys: The greatest number of storeys calculated in accordance with C2D3 of Volume One.

Riser: The height between consecutive treads and between each landing and continuous tread.

Rolled fill: Material placed in layers and compacted by repeated rolling by an excavator.

Roof light: For the purposes of Section J and Part F4 in Volume One, Part H6 in Volume Two, and Part 10.5 and Section 13 of the Housing Provisions, a skylight, window or the like installed in a roof—
(a) to permit natural light to enter the room below; and
(b) at an angle between 0 and 70 degrees measured from the horizontal plane.

R-Value: The thermal resistance of a component calculated by dividing its thickness by its thermal conductivity, expressed in $m^2\cdot K/W$.

Safe place: Either—
(a) a place of safety within a building—
 (i) which is not under threat from a fire; and
 (ii) from which people must be able to safely disperse after escaping the effects of an emergency to a road or open space; or
(b) a road or open space.

Sanitary compartment: A room or space containing a closet pan or urinal (see Figures 6a and 6b).
Figure 6a: Identification of a sanitary compartment (diagram a)
Definitions

Sarking-type material: A material such as a *reflective insulation* or other flexible membrane of a type normally used for a purpose such as waterproofing, vapour management or thermal reflectance.

School: Includes a primary or secondary school, college, university or similar educational establishment.

Screed: A layer of material (usually cement based) of defined minimum thickness which sets in situ between a structural base and the finished floor material.

Self-closing: Is defined—

(a) For the purposes of Volume One, applied to a door, means equipped with a device which returns the door to the fully closed position immediately after each opening.

(b) For the purposes of Volume Two, applied to a door or *window*, means equipped with a device which returns the door or *window* to the fully closed and latched position immediately after each manual opening.

Self draining: Materials, systems or ballast that—

(a) are above the structural substrate; and

(b) have sufficient gaps or openings to permit drainage of rainwater to a membrane on the structural substrate below.

Sensible heat gain: The heat gained which causes a change in temperature.

Separating element: A barrier that exhibits fire *integrity, structural adequacy, insulation*, or a combination of these for a period of time under specified conditions (often in accordance with AS 1530.4).

Separating wall: A wall that is common to adjoining Class 1 buildings (see Figure 7).
Figure 7: Separating wall

Figure Notes:
In Volume Two a separating wall may also be known as a party wall and typically is required to be fire-resisting construction (see Housing Provisions Parts and).

Service: For the purposes of Section J in Volume One, means a mechanical or electrical system that uses energy to provide air-conditioning, mechanical ventilation, heated water supply, artificial lighting, vertical transport and the like within a building, but which does not include—
(a) systems used solely for emergency purposes; and
(b) cooking facilities; and
(c) portable appliances.

Service station: A garage which is not a private garage and is for the servicing of vehicles, other than only washing, cleaning or polishing.

Shaft: The walls and other parts of a building bounding—
(a) a well, other than an atrium well; or
(b) a vertical chute, duct or similar passage, but not a chimney or flue.

Shower area: The area affected by water from a shower, including a shower over a bath.
(a) Enclosed — The area enclosed by walls or screens including hinged or sliding doors that control the spread of water to within the enclosure but excludes—
 (i) a shower fitted with a frameless or semi frameless shower screen, shower curtain or the like; and
 (ii) a shower fitted over a bath with a screen less than 1500 mm long.
(b) Unenclosed — The area where, under normal use, water out of the shower rose is not contained within 1500 mm of the shower rose.

Shower screen: The panels, doors or windows enclosing or partially enclosing a shower area.

Single leaf masonry: Outer walls constructed with a single thickness of masonry unit.

Single resistance paths: Situations where the failure of a part of a building or structure is resisted by only one member or connection, such that the failure of that member or connection will result in the collapse of a significant part of the building or structure.

Site: The part of the allotment of land on which a building stands or is to be erected.

Sitework: Work on or around a site, including earthworks, preparatory to or associated with the construction, alteration, demolition or removal of a building.

Small-sized, low-speed automatic lift: A restricted use power-operated device for the infrequent raising or lowering of people with limited mobility on a platform that is controlled automatically but has the capability of being electrically isolated by a key-lockable control.
Smoke-and-heat vent: A vent, located in or near the roof for smoke and hot gases to escape if there is a fire in the building.

Smoke-Developed Index: The index number for smoke as determined by AS/NZS 1530.3.

Smoke development rate: The development rate for smoke as determined by testing flooring materials in accordance with AS ISO 9239.1.

Smoke growth rate index (SMOGRA): The index number for smoke used in the regulation of fire hazard properties and applied to materials used as a finish, surface, lining or attachment to a wall or ceiling.

Societal risk: Frequency and the number of people suffering from a specified level of harm in a given population from the realisation of specified hazards.

Solar admittance: The fraction of incident irradiance on a wall-glazing construction that adds heat to a building’s space.

Sole-occupancy unit: A room or other part of a building for occupation by one or joint owner, lessee, tenant, or other occupier to the exclusion of any other owner, lessee, tenant, or other occupier and includes—

(a) a dwelling; or
(b) a room or suite of rooms in a Class 3 building which includes sleeping facilities; or
(c) a room or suite of associated rooms in a Class 5, 6, 7, 8 or 9 building; or
(d) a room or suite of associated rooms in a Class 9c building, which includes sleeping facilities and any area for the exclusive use of a resident.

Spandrel panel: For the purposes of Section J, means the opaque part of a façade in curtain wall construction which is commonly adjacent to, and integrated with, glazing.

Specialist equipment: Equipment used within hospitality or health care industries which is installed by specialist technicians.

Notes:
Examples may include medical equipment, commercial chemical or beverage dispensers, dental chairs or similar specialist equipment.

Spiral stairway: A stairway with a circular plan, winding around a central post with steps that radiate from a common centre or several radii (see Figures 11.2.2d and 11.2.2e in the Housing Provisions).

Spread-of-Flame Index: The index number for spread of flame as determined by AS/NZS 1530.3.

Sprinkler alarm switch: For the purposes of Specification 23, a device capable of sending an electrical signal to activate an alarm when a residential sprinkler head is activated (e.g. a flow switch).

Stage: A floor or platform in a Class 9b building on which performances are presented before an audience.

Stairway platform lift: A power-operated device for raising or lowering people with limited mobility on a platform (with or without a chair) in the direction of a stairway.

Storey: A space within a building which is situated between one floor level and the floor level next above, or if there is no floor above, the ceiling or roof above, but not—

(a) a space that contains only—
 (i) a lift shaft, stairway or meter room; or
 (ii) a bathroom, shower room, laundry, water closet, or other sanitary compartment; or
 (iii) accommodation intended for not more than 3 vehicles; or
 (iv) a combination of the above; or
(b) a mezzanine.

Structural adequacy: In relation to an FRL, means the ability to maintain stability and adequate loadbearing capacity as determined by AS 1530.4.

Structural member: A component or part of an assembly which provides vertical or lateral support to a building or structure.

Substantive parts of a building or structure: Those parts of a building or other structure that serve the purpose for which the building or structure has been constructed, including but are not limited to—
(a) the whole of a building or structure; and
(b) any significant portion of a building or structure (such as habitable or non-habitable storey, a roof system, a floor system, a system of loadbearing walls and the like) which could result in loss of life or injury should it fail.

Sudden failure: Relatively rapid collapse of a structure that occurs with little warning with little plastic deformation and/or moment redistribution.

Surface water: All naturally occurring water, other than sub-surface water, which results from rainfall on or around the site or water flowing onto the site.

Swimming pool: Any excavation or structure containing water and principally used, or that is designed, manufactured or adapted to be principally used for swimming, wading, paddling, or the like, including a bathing or wading pool, or spa.

Tapered tread: A stair tread with a walking area that grows smaller towards one end.

Thermal comfort level: The level of thermal comfort in a building expressed as a PMV sensation scale.

Total R-Value: The sum of the R-Values of the individual component layers in a composite element including any building material, insulating material, airspace, thermal bridging and associated surface resistances, expressed in m².K/W.

(a) For the purposes of Volume One, the fraction of incident irradiance on a wall-glazing construction or a roof light that adds heat to a building’s space.

(b) For the purposes of Volume Two, the fraction of incident irradiance on glazing or a roof light that adds heat to a building’s space.

(a) For the purposes of Volume One, the thermal transmittance of the composite element allowing for the effect of any airspaces, thermal bridging and associated surface resistances, expressed in W/m².K.

(b) For the purposes of Volume Two, means the thermal transmittance of the composite element allowing for the effect of any airspaces and associated surface resistances, expressed in W/m².K.

Transient actions: The combination of structural actions in which the combined magnitude of the permanent gravity action and imposed gravity action is less than 50% of the magnitude of the total combined actions.

Treatment area: An area within a patient care area such as an operating theatre and rooms used for recovery, minor procedures, resuscitation, intensive care and coronary care from which a patient may not be readily moved.

Uncontrolled discharge: Any unintentional release of fluid from a plumbing and drainage system and includes leakage and seepage.

Unique wall: For the purposes of F1V1 in Volume One and H2V1 in Volume Two, a wall which is neither a cavity wall nor a direct fix cladding wall.

Unobstructed opening: For the purposes of Section 8 of the Housing Provisions, a glazed area that a person could mistake for an open doorway or clearway and walk into the glazed panel.

Unreinforced masonry: Masonry that is not reinforced.

Vapour pressure: The pressure at which water vapour is in thermodynamic equilibrium with its condensed state.

Ventilation opening: An opening in the external wall, floor or roof of a building designed to allow air movement into or out of the building by natural means including a permanent opening, an openable part of a window, a door or other device which can be held open.

Verification Method: A test, inspection, calculation or other method that determines whether a Performance Solution complies with the relevant Performance Requirements.

Vessel: For the purposes of Volume One and Part 10.2 of the Housing Provisions, an open, pre-formed, pre-finished concave receptacle capable of holding water, usually for the purpose of washing, including a basin, sink, bath, laundry tub and the like.

Visibility: The maximum distance at which an object of defined size, brightness and contrast can be seen and recognised.

Voltage: A difference of potential, measured in Volts (V) and includes extra-low voltage and low voltage.

(a) In relation to a building — the volume of the total space of the building measured above the lowest floor (including, for a suspended floor, any subfloor space), over the enclosing walls, and to the underside of the roof covering.

(b) In relation to a fire compartment — the volume of the total space of the fire compartment measured within the inner finished surfaces of the enclosing fire-resisting walls and/or floors, and—

(i) if there is no fire-resisting floor at the base of the fire compartment, measured above the finished surface of the lowest floor in the fire compartment; and

(ii) if there is no fire-resisting floor at the top of the fire compartment, measured to the underside of the roof.
covering of the fire compartment; and

(iii) if there is no fire-resisting wall, measured over the enclosing wall and if there is no enclosing wall, includes any space within the fire compartment that has a use which contributes to the fire load.

(c) In relation to an atrium — the volume of the total space of the atrium measured within the finished surfaces of the bounding construction and if no bounding construction, within the external walls.

Waffle raft: A stiffened raft with closely spaced ribs constructed on the ground and with slab panels supported between ribs.

Wall-glazing construction: For the purposes of Section J in Volume One, the combination of wall and glazing components comprising the envelope of a building, excluding—

(a) display glazing; and

(b) opaque non-glazed openings such as doors, vents, penetrations and shutters.

Ward area: That part of a patient care area for resident patients and may contain areas for accommodation, sleeping, associated living and nursing facilities.

Water control layer: A pliable building membrane or the exterior cladding when no pliable building membrane is present.

WaterMark Certification Scheme: The ABCB scheme for certifying and authorising plumbing and drainage products.

WaterMark Conformity Assessment Body (WMCAB): A conformity assessment body registered with and accredited by the JAS-ANZ to conduct evaluations leading to product certification and contracted with the administering body to issue the WaterMark Licence.

WaterMark Licence: A licence issued by a WaterMark Conformity Assessment Body.

WaterMark Schedule of Excluded Products: The list maintained by the administering body of products excluded from the WaterMark Certification Scheme.

WaterMark Schedule of Products: The list maintained by the administering body of products included in the WaterMark Certification Scheme, and the specifications to which the products can be certified.

Explanatory Information:
The WaterMark Schedule of Products and the WaterMark Schedule of Excluded Products can be viewed on the ABCB website at www.abcb.gov.au.

Waterproof: The property of a material that does not allow moisture to penetrate through it.

Waterproofing system: A combination of elements that are required to achieve a waterproof barrier as required by H4D2 and H4D3 including substrate, membrane, bond breakers, sealants, finishes and the like.

Water resistant: The property of a system or material that restricts moisture movement and will not degrade under conditions of moisture.

Water sensitive materials: Materials that have an inherent capacity to absorb water vapour and include timber, plasterboard, plywood, oriented strand board and the like.

Waterstop: A vertical extension of the waterproofing system forming a barrier to prevent the passage of moisture in the floor.

Watertight: Will not allow water to pass from the inside to the outside of the component or joint and vice versa.

Weighted average: Is calculated across the wetted surface area of a pipe, pipe fitting or plumbing fixture.

Wet area: An area within a building supplied with water from a water supply system, which includes bathrooms, showers, laundries and sanitary compartments and excludes kitchens, bar areas, kitchenettes or domestic food and beverage preparation areas.

Wetted surface area: Is calculated by the total sum of diameter (D) in contact with drinking water.

Winders: Treads within a straight flight that are used to change direction of the stair (see Figure 4).

Window: includes a roof light, glass panel, glass block or brick, glass louvre, glazed sash, glazed door, or other device which transmits natural light directly from outside a building to the room concerned when in the closed position.

Withstand: For the purposes of A8G3(1) means that in response to an imposed fire action the following conditions must not occur:

(a) Fire spread more than 5m above an opening in the façade through which flames are venting.
(b) **Fire spread more than 2m beyond the extent of flames from a burning item adjacent to the structure such as a vehicle, waste bin, collection of combustible rubbish depending on the use and access to adjacent areas.**

(c) **Ignition and propagation as the result of the imposed heat flux from a fire in an adjacent building or potential building on an adjoining allotment (embers are likely to be present and therefore piloted ignition should be considered if combustible materials are present).**

(d) **Ignition and fire propagation within cladding materials and building cavities.**

(e) **Release of flaming droplets.**

(f) **Release of significant quantities of debris (criteria should be developed during the PBDB process having regard for the proximity of other property and the requirements of the emergency services).**

(g) **Structural failure.**

Explanatory Information:

For item (f), the risk to life of occupants evacuating the building from falling debris should be evaluated under A8G2.

Yield: The mass of a combustion product generated during combustion divided by the mass loss of the test specimen as specified in the *design fire*.

Zone protection: The installation of a *backflow prevention device* at the point where a water service is connected to multiple fixtures or appliances, with no *backflow prevention device* installed as *individual protection* downstream of this point.
Schedule 2 Referenced documents

Referenced documents
The Standards and other documents listed in this Schedule are referenced in the NCC.
<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Title</th>
<th>Volume One</th>
<th>Volume Two</th>
<th>Housing Provisions</th>
<th>Volume Three</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS/NZS ISO 717 Part 1</td>
<td>2004</td>
<td>Acoustics — Rating of sound insulation in buildings and of building elements — Airborne sound insulation (See Note 1)</td>
<td>F57V1, F57V2, F57V3, F57V4, F57D3</td>
<td>H4V4</td>
<td>10.7.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS ISO 717 Part 2</td>
<td>2004</td>
<td>Acoustics — Rating of sound insulation in buildings and of building elements — Impact sound insulation</td>
<td>F57V1, F57V3, F57D4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1056 Part 1</td>
<td>1991</td>
<td>Storage water heaters — General requirements (incorporating amendments 1, 2, 3, 4 and 5)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>B2D2</td>
</tr>
<tr>
<td>AS/NZS 1170 Part 0</td>
<td>2002</td>
<td>Structural design actions — General principles (incorporating amendments 1, 3 and 4)</td>
<td>B1V1, B1D2, Spec 4</td>
<td>H1V1, H2D6</td>
<td>2.2.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1170 Part 1</td>
<td>2002</td>
<td>Structural design actions — Permanent, imposed and other actions (incorporating amendments 1 and 2)</td>
<td>B1D3</td>
<td>N/A</td>
<td>2.2.3, 2.2.4, 8.3.1, 11.2.2, 11.2.3, 11.3, 11.3.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1170 Part 2</td>
<td>2011</td>
<td>Structural design actions — Wind actions (incorporating amendments 1, 2, 3, 4 and 5)</td>
<td>B1D3, B1D4, Spec 4, F43V1, Schedule 2</td>
<td>H4V4, H2D6</td>
<td>2.2.3, Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS/NZS 1170 Part 3</td>
<td>2003</td>
<td>Structural design actions — Snow and ice actions (incorporating amendments 1 and 2)</td>
<td>B1D3, Schedule 2</td>
<td>N/A</td>
<td>2.2.3, Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS 1170 Part 4</td>
<td>2007</td>
<td>Structural design actions — Earthquake actions in Australia (incorporating amendments 1 and 2)</td>
<td>B1D3</td>
<td>H1D4, H1D5, H1D6, H1D9</td>
<td>2.2.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1191</td>
<td>2002</td>
<td>Acoustics — Method for laboratory measurement of airborne sound transmission insulation of building elements</td>
<td>Spec 29</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1273</td>
<td>1991</td>
<td>Unplasticized PVC (UPVC) downpipe and fittings for rainwater</td>
<td>N/A</td>
<td>N/A</td>
<td>7.4.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1288</td>
<td>2006</td>
<td>Glass in buildings — Selection and installation (incorporating amendments 1, 2 and 3)</td>
<td>B1D4, Spec 11, Spec 12</td>
<td>H1D8, H2D7</td>
<td>8.2.1</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1289.6.3.3</td>
<td>1997</td>
<td>Methods of testing soils for engineering purposes — Method 6.3.3: Soil strength and consolidation tests — Determination of the penetration resistance of a soil — Perth</td>
<td>N/A</td>
<td>N/A</td>
<td>4.2.4</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>AS 1397</td>
<td>2011</td>
<td>Continuous hot-dip metallic coated steel sheet and strip — Coatings of</td>
<td>N/A</td>
<td>N/A</td>
<td>7.2.2</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zinc and zinc alloyed with aluminium and magnesium (incorporating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>amendment 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS 1428 Part 1</td>
<td>2009</td>
<td>Design for access and mobility — General requirements for access —</td>
<td>D3D11, D3D16,</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New building work (incorporating amendments 1 and 2)</td>
<td>D3D22, D4D2,</td>
<td></td>
<td></td>
<td>E1D2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D4D3, D4D4,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D4D7, D4D10,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D4D11, D4D13,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spec 16, E3D10,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F24D5, G4D5,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Schedule 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS 1428 Part 1</td>
<td>2001</td>
<td>Design for access and mobility — General requirements for access —</td>
<td>I2D6, I2D8,</td>
<td>N/A</td>
<td>N/A</td>
<td>E1D2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New building work</td>
<td>I2D10, I2D15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS 1428 Part 1 (Supplement 1)</td>
<td>1993</td>
<td>Design for access and mobility — General requirements for access — Buildings — Commentary</td>
<td>I2D2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1428 Part 2</td>
<td>1992</td>
<td>Design for access and mobility — Enhanced and additional requirements—</td>
<td>I2D2, I2D3, I2D4,</td>
<td>N/A</td>
<td>N/A</td>
<td>E1D2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buildings and facilities</td>
<td>I2D5, I2D7,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I2D10, I2D11,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I2D12, I2D13,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I2D14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS 1428 Part 4</td>
<td>1992</td>
<td>Design for access and mobility — Tactile ground surface indicators for</td>
<td>I2D11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the orientation of people with vision impairment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS/NZS 1428 Part 4.1</td>
<td>2009</td>
<td>Design for access and mobility — Means to assist the orientation of people with vision impairment — Tactile ground surface indicators (incorporating amendments 1 and 2)</td>
<td>D4D9</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1530 Part 1</td>
<td>1994</td>
<td>Methods for fire tests on building materials, components and structures — Combustibility test for materials (See Note 2)</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS 1530 Part 2</td>
<td>1993</td>
<td>Methods for fire tests on building materials, components and structures — Test for flammability of materials (incorporating amendment 1) (See Note 2)</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS/NZS 1530 Part</td>
<td>1999</td>
<td>Methods for fire tests on building materials,</td>
<td>Schedule 2, Spec</td>
<td>Schedule 2, Spec</td>
<td>Schedule 2, Spec 3</td>
<td>Schedule 2, Spec</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>-------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>AS 1530 Part 4</td>
<td>2014</td>
<td>Methods for fire tests on building materials, components and structures — Fire resistance tests for elements of construction (See Note 2)</td>
<td>A5G7, C4D15, C4D16, Spec 9, Spec 10, Spec 13, Spec 14, Schedule 2, Spec 3</td>
<td>A5G7, Schedule 2, Spec 3</td>
<td>A5G7, Schedule 2, Spec 3</td>
<td>A5G7, Schedule 2, Spec 3</td>
</tr>
<tr>
<td>AS 1562 Part 1</td>
<td>2018</td>
<td>Design and installation of sheet roof and wall cladding — Metal (See Note 3)</td>
<td>B1D4, F43D24</td>
<td>H2D6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1562 Part 2</td>
<td>1999</td>
<td>Design and installation of sheet roof and wall cladding — Corrugated fibre-reinforced cement</td>
<td>F43D24</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1562 Part 3</td>
<td>2006</td>
<td>Design and installation of sheet roof and wall cladding — Plastic</td>
<td>B1D4, F4D4F3D24</td>
<td>H2D6H1D7</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1657</td>
<td>2018</td>
<td>Fixed platforms, walkways, stairways and ladders — Design, construction and installation</td>
<td>D2D21, D2D22, D3D23, I1D6, I3D5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1664 Part 1</td>
<td>1997</td>
<td>Aluminium structures — Limit state design (incorporating amendment 1)</td>
<td>B1D4</td>
<td>N/A</td>
<td>2.2.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1664 Part 2</td>
<td>1997</td>
<td>Aluminium structures — Allowable stress design (incorporating amendment 1)</td>
<td>B1D4</td>
<td>N/A</td>
<td>2.2.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1668 Part 1</td>
<td>2015</td>
<td>The use of ventilation and air conditioning in buildings — Fire and smoke control in buildings (incorporating amendment 1)</td>
<td>C3D13, C4D15, Spec 11, D2D12, Spec 19, E2D3, E2D4, F46D12, Spec 21, Spec 31</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1668 Part 2</td>
<td>2012</td>
<td>The use of ventilation and air conditioning in buildings — Mechanical ventilation in buildings (incorporating amendments 1 and 2)</td>
<td>E2D4, F46V1, F46D6, F46D11, F46D12, J5D4</td>
<td>H4V3</td>
<td>9.5.5</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1668 Part 4</td>
<td>2012</td>
<td>The use of ventilation and air conditioning in buildings — Natural ventilation of buildings</td>
<td>F46D11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1670 Part 1</td>
<td>2018</td>
<td>Fire detection, warning, control and intercom</td>
<td>C4D6, C4D7, N/A</td>
<td>9.5.1, 9.5.5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>--</td>
<td>---------------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>AS 1670 Part 3</td>
<td>2018</td>
<td>Fire detection, warning, control and intercom systems — System design, installation and commissioning — Fire alarm monitoring (See Note 4)</td>
<td>Spec 20, Spec 23</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1670 Part 4</td>
<td>2018</td>
<td>Fire detection, warning, control and intercom systems — System design, installation and commissioning — Emergency warning and intercom systems (See Note 4)</td>
<td>E3V2, E4D9, Spec 31</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1680 Part 0</td>
<td>2009</td>
<td>Interior lighting — Safe movement</td>
<td>F46D4</td>
<td>N/A</td>
<td>10.5.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1684 Part 2</td>
<td>2010</td>
<td>Residential timber framed construction — Non-cyclonic areas (incorporating amendments 1 and 2)</td>
<td>B1D4, B1D5, F1D10</td>
<td>H1D6</td>
<td>2.2.5, 4.2.13, 4.5.7, 6.2.1, 6.3.6, 7.5.2, 7.5.3, 7.5.5</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1684 Part 3</td>
<td>2010</td>
<td>Residential timber framed construction — Cyclonic areas (incorporating amendment 1)</td>
<td>B1D4, B1D5, F1D10</td>
<td>H1D6</td>
<td>2.2.5, 4.2.13, 4.5.7, 6.2.1, 6.3.6, 7.5.2, 7.5.3, 7.5.5</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1684 Part 4</td>
<td>2010</td>
<td>Residential timber framed construction — Simplified — Noncyclonic areas (incorporating amendment 1)</td>
<td>B1D4, B1D5, F1D10</td>
<td>H1D6</td>
<td>2.2.5, 4.2.13, 4.5.7, 6.2.1, 6.3.6, 7.5.2, 7.5.3, 7.5.5</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1720 Part 1</td>
<td>2010</td>
<td>Timber structures — Design methods (incorporating amendments 1, 2 and 3)</td>
<td>B1V1, B1D4</td>
<td>H2V2, H1D6</td>
<td>5.3.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1720 Part 4</td>
<td>20062019</td>
<td>Timber structures — Fire resistance for structural adequacy of timber members</td>
<td>Spec 1</td>
<td>Spec 21</td>
<td>Spec 2</td>
<td>Spec 21</td>
</tr>
<tr>
<td>AS 1720 Part 5</td>
<td>2015</td>
<td>Timber structures — Nailplated timber roof trusses (incorporating amendment 1)</td>
<td>B1D4</td>
<td>H1D6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1735 Part 11</td>
<td>1986</td>
<td>Lifts, escalators and moving walks — Fire rated landing doors</td>
<td>C4D11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1735 Part 12</td>
<td>1999</td>
<td>Lifts, escalators and moving walks — Facilities for persons with disabilities (incorporating amendment 1)</td>
<td>E3D7, I2D6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 1859 Part 4</td>
<td>2018</td>
<td>Reconstituted wood based panels — Specifications — Wet process fibreboard See Note 5</td>
<td>N/A</td>
<td>N/A</td>
<td>7.5.3, 7.5.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1860 Part 2</td>
<td>2006</td>
<td>Particleboard flooring — Installation (incorporating amendment 1)</td>
<td>B1D4</td>
<td>H1D6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1905 Part 1</td>
<td>2015</td>
<td>Components for the protection of openings in fire-resistant walls — Fire-resistant</td>
<td>C4D7, Spec 12</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>AS 1905 Part 2</td>
<td>2005</td>
<td>Components for the protection of openings in fire-resistant walls — Fire-resistant roller shutters</td>
<td>Spec 12</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1926 Part 1</td>
<td>2012</td>
<td>Swimming pool safety — Safety barriers for swimming pools</td>
<td>G1D2, G1D4</td>
<td>H7D2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1926 Part 2</td>
<td>2007</td>
<td>Swimming pool safety — Location of safety barriers for swimming pools (incorporating amendments 1 and 2)</td>
<td>G1D2</td>
<td>H7D2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 1926 Part 3</td>
<td>2010</td>
<td>Swimming pool safety — Water recirculation systems (incorporating amendment 1)</td>
<td>G1D2</td>
<td>H7D2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2047</td>
<td>2014</td>
<td>Windows and external glazed doors in buildings (incorporating amendments 1 and 2) See Note 6</td>
<td>B1D4, F43D1, F43D4, J4D5</td>
<td>H2V2, H1D8, H2D7</td>
<td>8.2.1, 13.4.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2049</td>
<td>2002</td>
<td>Roof tiles (incorporating amendment 1)</td>
<td>F43D24</td>
<td>H1D7</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2050</td>
<td>2018</td>
<td>Installation of roof tiles</td>
<td>B1D4, F43D24</td>
<td>H2D6</td>
<td>7.3.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2118 Part 1</td>
<td>2017</td>
<td>Automatic fire sprinkler systems — General systems (incorporating amendments 1 and 2)</td>
<td>C1V3, E1D2, Spec 17, Spec 18</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2118 Part 4</td>
<td>2012</td>
<td>Automatic fire sprinkler systems — Sprinkler protection for accommodation buildings not exceeding four storeys in height</td>
<td>E1D2, Spec 17, Spec 18</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2118 Part 6</td>
<td>2012</td>
<td>Automatic fire sprinkler systems — Combined sprinkler and hydrant systems in multistorey buildings</td>
<td>E1D2, Spec 17</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2159</td>
<td>2009</td>
<td>Piling — Design and installation (incorporating amendment 1)</td>
<td>B1D4</td>
<td>H1D4, H2D3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2179 Part 1</td>
<td>2014</td>
<td>Specifications for rainwater goods, accessories and fasteners — Metal shape or sheet rainwater goods, and metal accessories and fasteners</td>
<td>N/A</td>
<td>N/A</td>
<td>7.4.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2269 Part 0</td>
<td>2012</td>
<td>Plywood — Structural — Specifications (incorporating amendment 1)</td>
<td>N/A</td>
<td>N/A</td>
<td>7.5.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2293 Part 1</td>
<td>2018</td>
<td>Emergency lighting and exit signs for buildings — System design, installation and operation</td>
<td>E4D4, E4D8, Spec 25, I3D15</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2327</td>
<td>2017</td>
<td>Composite structures — Composite steel-concrete construction in buildings</td>
<td>B1D4, Spec 1</td>
<td>Spec 2</td>
<td>2.2.4, Spec 2</td>
<td>Spec 2</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>AS 2419 Part 1</td>
<td>2005</td>
<td>Fire hydrant installations — System design, installation and commissioning (incorporating amendment 1)</td>
<td>C3D13, E1D2, Spec 18, I3D9</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2441</td>
<td>2005</td>
<td>Installation of fire hose reels (incorporating amendment 1)</td>
<td>E1D3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2444</td>
<td>2001</td>
<td>Portable fire extinguishers and fire blankets — Selection and location</td>
<td>E1D14, I3D11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2665</td>
<td>2001</td>
<td>Smoke/heat venting systems — Design, installation and commissioning</td>
<td>Spec 22, Spec 31</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS-2699 Part 1</td>
<td>2000, 2020</td>
<td>Built-in components for masonry construction — Wall ties. See Note (I)(i)</td>
<td>C2D10</td>
<td>N/A</td>
<td>5.2.10, 5.6.5</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS-2699 Part 3</td>
<td>2002, 2020</td>
<td>Built-in components for masonry construction — Lintels and shelf angles (durability requirements). See Note (I)(ii)</td>
<td>C2D10</td>
<td>N/A</td>
<td>5.2.12, 5.6.7</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 2870</td>
<td>2011</td>
<td>Residential slabs and footings</td>
<td>F1D98</td>
<td>H1D3, H1D4, H2D3, 3.3.4, 3.4.3, 4.2.2, 4.2.6, 4.2.8, 4.2.11, 4.2.14, 4.3.3, 4.4.1, 4.5, 4.5.3, 4.5.7, 10.2.10</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>AS/NZS 2890 Part 6</td>
<td>2009</td>
<td>Parking facilities — Offstreet parking for people with disabilities</td>
<td>D4D6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2904</td>
<td>1995</td>
<td>Damp-proof courses and flashings (incorporating amendments 1 and 2)</td>
<td>F1D8Z</td>
<td>N/A</td>
<td>5.2.7, 5.7.3, 7.5.6, 12.3.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2908 Part 1</td>
<td>2000</td>
<td>Cellulose-cement products — Corrugated sheets</td>
<td>B1D4, F43D24</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 2908 Part 2</td>
<td>2000</td>
<td>Cellulose-cement products — Flat sheets</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>7.5.3, 7.5.4, 7.5.5, 10.2.10, 10.2.11, Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS/NZS 2918</td>
<td>2018</td>
<td>Domestic solid fuel burning appliances — Installation See Note 11</td>
<td>G2D2</td>
<td>H7D5, 12.4.4, 12.4.5</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>AS/NZS 3013</td>
<td>2005</td>
<td>Electrical installations — Classification of the fire and mechanical performance of wiring system elements</td>
<td>C3D14</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 3500 Part 0</td>
<td>2003</td>
<td>Plumbing and drainage — Glossary of terms</td>
<td>A1G1</td>
<td>A1G1</td>
<td>A1G1</td>
<td>A1G1</td>
</tr>
<tr>
<td>AS/NZS 3500 Part 1</td>
<td>2018</td>
<td>Plumbing and drainage — Water services</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>B1D4, B3D3, B4D2, B5D2,</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>--</td>
<td>------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>AS/NZS 3500 Part 2</td>
<td>2018</td>
<td>Plumbing and drainage — Sanitary plumbing and drainage</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>C1D3, C2V2, C2D3, C2D4</td>
</tr>
<tr>
<td>AS/NZS 3500 Part 3</td>
<td>2018</td>
<td>Plumbing and drainage — Stormwater drainage</td>
<td>F1D2</td>
<td>H1D3, H1D7</td>
<td>3.3.4, 7.4.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 3500 Part 4</td>
<td>2018</td>
<td>Plumbing and drainage — Heated water services (incorporating amendment 1)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>B2D2, B2D6, B2D7, B2D8, B2D9</td>
</tr>
<tr>
<td>AS/NZS 3600</td>
<td>2018</td>
<td>Concrete structures (incorporating amendment 1)</td>
<td>B1V1, B1D4, Spec 2</td>
<td>H1V1, H1D4, Spec 2</td>
<td>2.2.4, 3.4.3, 4.2.6, 4.2.10, 4.2.13, 4.3.2, 4.5.7, 5.3.3, 10.2.10, 12.4.3, Spec 2</td>
<td>Spec 2</td>
</tr>
<tr>
<td>AS 3660 Part 1</td>
<td>2014</td>
<td>Termite management — New building work (incorporating amendment 1)</td>
<td>B1D4, F1D8</td>
<td>N/A</td>
<td>3.4.1, 3.4.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 3660 Part 3</td>
<td>2014</td>
<td>Termite management — Assessment criteria for termite management systems</td>
<td>N/A</td>
<td>N/A</td>
<td>3.4.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 3666 Part 1</td>
<td>2011</td>
<td>Air-handling and water systems of buildings — Microbial control — Design, installation and commissioning</td>
<td>F2D10, F4gD6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 3700</td>
<td>2018</td>
<td>Masonry structures</td>
<td>B1D4, Spec 2</td>
<td>H1D5, H2D4,</td>
<td>5.2.4, 5.4.2, 5.6.3, 6.3.6, 10.2.10, 12.4.3, Spec 2</td>
<td>Spec 2</td>
</tr>
<tr>
<td>AS 3740</td>
<td>2010</td>
<td>Waterproofing of domestic wet areas (incorporating amendment 1)</td>
<td>F1D26</td>
<td>H4D3</td>
<td>10.2.9</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 3786</td>
<td>2014</td>
<td>Smoke alarms using scattered light, transmitted light or ionization (incorporating amendment 1 and 2) See Note 7</td>
<td>Spec 20</td>
<td>N/A</td>
<td>9.5.1, 9.5.5</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 3823 Part 1.2</td>
<td>2012</td>
<td>Performance of electrical appliances — Airconditioners and heat pumps — Ducted airconditioners and air-to-air heat pumps — Testing and rating for performance</td>
<td>Spec 33, J5D12</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 3959</td>
<td>2018</td>
<td>Construction of buildings in bushfire-prone areas</td>
<td>G5D2, G5D3, Spec 44</td>
<td>H7D4</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4020</td>
<td>2018</td>
<td>Testing of products for use in contact with drinking water See Note 8</td>
<td>A5G4</td>
<td>A5G4</td>
<td>A5G4</td>
<td>A5G4, A5G7</td>
</tr>
<tr>
<td>AS 4055</td>
<td>2012</td>
<td>Wind loads for housing (incorporating amendment 1)</td>
<td>Schedule 2</td>
<td>H1D8, Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS 4072 Part 1</td>
<td>2005</td>
<td>Components for the protection of openings</td>
<td>C4D15, C4D16</td>
<td>N/A</td>
<td>9.3.2</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>--</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>AS 4100</td>
<td>19982020</td>
<td>Steel structures (incorporating amendment 1)</td>
<td>B1D4, Spec 21</td>
<td>H1D6, Spec 21</td>
<td>4.2.13, 4.5.7, 5.2.12, 5.6.7, 12.3.2, Spec 2</td>
<td>Spec 2</td>
</tr>
<tr>
<td>AS/NZS 4200 Part 1</td>
<td>2017</td>
<td>Pliable building membranes and underlays — Materials</td>
<td>F13D35, F68D3, Spec 2</td>
<td>Spec 2</td>
<td>7.3.4, 7.5.2, 7.5.8, 10.8.1, Spec 2</td>
<td>Spec 2</td>
</tr>
<tr>
<td>AS 4200 Part 2</td>
<td>2017</td>
<td>Pliable building membranes and underlays — Installation requirements (incorporating amendment 1)</td>
<td>F1D5, F68D3</td>
<td>N/A</td>
<td>10.8.1</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4234</td>
<td>2008</td>
<td>Heated water systems — Calculation of energy consumption (incorporating amendments 1, 2 and 3)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>B2V1, B2D2</td>
</tr>
<tr>
<td>AS 4254 Part 1</td>
<td>2012</td>
<td>Ductwork for airhandling systems in buildings — Flexible duct</td>
<td>Spec 7, J5D7</td>
<td>H3D2</td>
<td>13.6.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 4254 Part 2</td>
<td>2012</td>
<td>Ductwork for airhandling systems in buildings — Rigid duct</td>
<td>Spec 7, J5D5, J5D7</td>
<td>N/A</td>
<td>13.6.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4256 Part 4</td>
<td>1994</td>
<td>Plastic roof and wall cladding materials — General requirements</td>
<td>F1D4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4256 Part 2</td>
<td>1994</td>
<td>Plastic roof and wall cladding materials — Unplasticized polyvinyl chloride (upPVC) building sheets</td>
<td>F1D4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4256 Part 3</td>
<td>1994</td>
<td>Plastic roof and wall cladding materials — Glass fibre reinforced polyester (GFRP)</td>
<td>F1D4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4256 Part 5</td>
<td>1996</td>
<td>Plastic roof and wall cladding materials — Polycarbonate</td>
<td>F1D4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4284</td>
<td>2008</td>
<td>Testing of building facades</td>
<td>F13V1</td>
<td>H1V1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4505</td>
<td>2012</td>
<td>Garage doors and other large access doors (incorporating amendment 1)</td>
<td>B1D4</td>
<td>N/A</td>
<td>2.2.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 4552</td>
<td>2005</td>
<td>Gas fired water heaters for hot water supply and/or central heating</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>B2D2</td>
</tr>
<tr>
<td>AS 4586</td>
<td>2013</td>
<td>Slip resistance classification of new pedestrian surface materials (incorporating amendment 1) See Note 10</td>
<td>D3D11, D3D14, D3D15, Spec 27</td>
<td>N/A</td>
<td>11.2.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 4597</td>
<td>1999</td>
<td>Installation of roof slates and shingles (Noninterlocking type)</td>
<td>B1D4, F34D24</td>
<td>H2D6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4600</td>
<td>2018</td>
<td>Cold-formed steel structures</td>
<td>B1D4, Spec 2</td>
<td>H1D6, Spec 2</td>
<td>5.3.3, 6.3.6, Spec 2</td>
<td>Spec 2</td>
</tr>
<tr>
<td>AS 4654 Part 1</td>
<td>2012</td>
<td>Waterproofing membranes for external above-ground use — Materials</td>
<td>F1D8</td>
<td>H2D8</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>AS 4654 Part 2</td>
<td>2012</td>
<td>Waterproofing membranes for external above-ground use — Design and installation</td>
<td>E4D3</td>
<td>H2D8</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 4678</td>
<td>2002</td>
<td>Earth-retaining structures</td>
<td>N/A</td>
<td>H1D3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 4773 Part 1</td>
<td>2015</td>
<td>Masonry in small buildings — Design (incorporating amendment 1)</td>
<td>N/A</td>
<td>H1D5, H2D4</td>
<td>5.2.4, 5.6.3, 12.4.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 4773 Part 2</td>
<td>2015</td>
<td>Masonry in small buildings — Construction</td>
<td>N/A</td>
<td>H1D5, H2D4</td>
<td>5.2.4, 5.6.3, 12.4.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4859 Part 1</td>
<td>2018</td>
<td>Thermal insulation materials for buildings — General criteria and technical provisions</td>
<td>J3D3, J5D6, J5D9</td>
<td>N/A</td>
<td>13.2.2, 13.2.6, 13.6.2, 13.6.3, 13.6.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS/NZS 4859 Part 2</td>
<td>2018</td>
<td>Thermal insulation materials for buildings — Design</td>
<td>J3D3, Spec 37</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 5113</td>
<td>2016</td>
<td>Classification of external walls of buildings based on reaction-to-fire performance (incorporating amendment 1)</td>
<td>C1V3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 5146 Part 1</td>
<td>2015</td>
<td>Reinforced autoclaved aerated concrete — Structures (incorporating amendment 1)</td>
<td>B1D4</td>
<td>H2D6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 5216</td>
<td>2018</td>
<td>Design of post-installed and cast-in fastenings in concrete</td>
<td>B1D4</td>
<td>N/A</td>
<td>2.2.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS 5637 Part 1</td>
<td>2015</td>
<td>Determination of fire hazard properties — Wall and ceiling linings</td>
<td>Spec 7, Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS ISO 9239 Part 1</td>
<td>2003</td>
<td>Reaction to fire tests for floorings — Determination of the burning behaviour using a radiant heat source</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>AS/NZS ISO 9972</td>
<td>2015</td>
<td>Thermal performance of buildings — Determination of air permeability of buildings — Fan pressurization method</td>
<td>J1V4</td>
<td>H6V3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AIRAH-DA09</td>
<td>1998</td>
<td>Air conditioning load estimation</td>
<td>Spec 35</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AIRAH-DA28</td>
<td>2011</td>
<td>Building management and control systems</td>
<td>Spec 34</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ANSI/ASHRAE Standard 55</td>
<td>2013</td>
<td>Thermal environmental conditions for human occupancy</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>ANSI/ASHRAE Standard 140</td>
<td>2007</td>
<td>Standard method of test for the evaluation of building energy analysis computer programs</td>
<td>J1V1, J1V2, J1V3</td>
<td>H6V2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ASTM E2073-10</td>
<td>2010</td>
<td>Standard Test Method for Photopic Luminance of Photoluminescent (Phosphorescent) Markings</td>
<td>Spec 25</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ASTM E72-15</td>
<td>2015</td>
<td>Standard Test Methods of Conducting Strength Tests of Panels for Building</td>
<td>Spec 6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>------------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ASTM E695-03</td>
<td>2003</td>
<td>Standard Test Method of Measuring Relative Resistance of Wall, Floor and Roof Construction to Impact Loading</td>
<td>Spec 6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ASTM E903</td>
<td>2012</td>
<td>Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres</td>
<td>N/A</td>
<td>N/A</td>
<td>13.2.3</td>
<td>N/A</td>
</tr>
<tr>
<td>AHRI 460</td>
<td>2005</td>
<td>Performance rating of remote mechanical-draft air-cooled refrigerant condensers</td>
<td>J5D13</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AHRI 551/591</td>
<td>2015</td>
<td>Performance rating of water-chilling and heat pump water-heating packages using the vapor compression cycle.</td>
<td>Spec 33, J5D11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ABCB</td>
<td>2011</td>
<td>Protocol for Structural Software, Version 2011.2</td>
<td>B1D5</td>
<td>H1D6</td>
<td>2.2.5</td>
<td>N/A</td>
</tr>
<tr>
<td>ABCB</td>
<td>2012</td>
<td>Standard for Construction of Buildings in Flood Hazard Areas, Version 2012.3</td>
<td>B1D6</td>
<td>H1D10</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ABCB</td>
<td>2022</td>
<td>Fire Safety Verification Method</td>
<td>C1V4, D1V4, E1V1, E2V1, E3V1, E4V2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ABCB</td>
<td>2019</td>
<td>Standard for NatHERS Heating and Cooling Load Limits, Version 2019.1</td>
<td>J2D3</td>
<td>H6D3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CIBSE Guide A</td>
<td>2015</td>
<td>Environmental design</td>
<td>Spec 34, Spec 35, J3D3, J3D7</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Disability Standards for Accessible Public Transport</td>
<td>2002</td>
<td></td>
<td>F2D12, I2D1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Education and Care Services National Law Act (Vic)</td>
<td>2010</td>
<td></td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>European Union Commission Regulation 547/2012</td>
<td>2012</td>
<td>Ecodesign requirements for water pumps</td>
<td>J5D8</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>European Union Commission Regulation 622/Annex II, point</td>
<td>2012</td>
<td>Eco-design requirements for glandless standalone circulators and glandless circulators integrated in products</td>
<td>J5D8</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Volume One</td>
<td>Volume Two</td>
<td>Housing Provisions</td>
<td>Volume Three</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>---</td>
<td>---</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>FPAA101D</td>
<td>2018</td>
<td>Automatic Fire Sprinkler System Design and Installation — Drinking Water Supply</td>
<td>C1V3, C2D6, C3D14, C3D2, C3D7, C4D6, C4D7, C4D8, C4D9, C4D12, Spec 5, Spec 7, D2D4, D2D17, D3D26, D3D30, E1D2, Spec 17, Spec 18, E2D3, Spec 20, G3D1, G3D6, Spec 31, I1D2</td>
<td>N/A</td>
<td>N/A</td>
<td>B4D2</td>
</tr>
<tr>
<td>FPAA101H</td>
<td>2018</td>
<td>Automatic Fire Sprinkler System Design and Installation — Hydrant Water Supply</td>
<td>C1V3, C2D6, C3D14, C3D2, C3D7, C4D6, Spec 5, Spec 7, E1D2, Spec 17, Spec 18, E2D3, Spec 20, G3D1, G3D6, Spec 31, I1D2</td>
<td>N/A</td>
<td>N/A</td>
<td>B4D2</td>
</tr>
<tr>
<td>ISO 140 Part 6</td>
<td>1998E</td>
<td>Acoustics — Measurement of sound insulation in buildings and of building elements — Laboratory measurements of impact sound insulation of floors</td>
<td>Spec 29</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ISO 540</td>
<td>2008</td>
<td>Hard coal and coke — Determination of ash fusibility</td>
<td>Spec 13</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ISO 8336</td>
<td>1993E</td>
<td>Fibre-cement flat sheets</td>
<td>Schedule 2</td>
<td>Schedule 2</td>
<td>7.5.3, 7.5.4, 7.5.5, Schedule 2</td>
<td>Schedule 2</td>
</tr>
<tr>
<td>ISO 25745 Part 2</td>
<td>2015</td>
<td>Energy performance of lifts, escalators and moving walks: Energy calculation and classification for lifts (elevators)</td>
<td>J6D8</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>NASH Standard</td>
<td>2014</td>
<td>Steel Framed Construction in Bushfire Areas (incorporating amendment A)</td>
<td>N/A</td>
<td>H1D6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>NASH Standard Part 1</td>
<td>2005</td>
<td>Residential and LowRise Steel Framing — Design Criteria (incorporating amendments A, B and C)</td>
<td>B1D4</td>
<td>H1D6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>NASH Standard</td>
<td>2014</td>
<td>Residential and LowRise Steel Framing —</td>
<td>B1D4, B1D5,</td>
<td>H1D6</td>
<td>2.2.5, 6.2.1, 6.3.6,</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table Notes:

1. **For AS/NZS ISO 717.1:**
 - (i) Test reports based on AS 1276—1979 and issued prior to AS/NZS 1276.1—1999 being referenced in the NCC remain valid.
 - (ii) The STC values in reports based on AS 1276—1979 shall be considered to be equivalent to R_w values.
 - (iii) Test reports based on AS/NZS 1276.1 prepared after the NCC reference date for AS/NZS 1276.1—1999 must be based on that version.
 - (iv) Test reports based on ISO 717-1—1996 and issued prior to AS/NZS ISO 717.1—2004 being referenced in the NCC remain valid.
 - (v) Reports based on AS/NZS ISO 717.1 relating to tests carried out after the NCC reference date for AS/NZS ISO 717.1—2004 must relate to the amended Standard.

2. **For AS 1530 Parts 1 to 4:**
 - (i) Until 1 May 2022, subject to the note to AS 4072.1, reports relating to tests carried out under earlier editions of AS 1530 Parts 1 to 4 remain valid.
 - (ii) Reports relating to tests carried out after the date of an amendment to a Standard must relate to the amended Standard.

3. **For AS 1562.1,** tests carried out based on AS 1562.1—1992 and issued prior to AS 1562.1—2018 being referenced in the NCC remain valid. Reports relating to tests carried out after the NCC reference date for AS 1562.1 must relate to the revised Standard.

4. **For AS 1670.1,** AS 1670.3 and AS1670.4:
 - (i) Notwithstanding A4G1(5), until 1 May 2022 either the current edition or the previous editions of the documents listed in Table 1.8 of AS 1670.1, AS 1670.3 and AS 1670.4 may be used to meet the requirements of AS 1670.1, AS 1670.3 and AS 1670.4 as applicable.
 - (ii) From 1 May 2022 A4G1(5) applies and only the edition of the documents listed in Table 1.8 of AS 1670.1, AS 1670.3 and AS 1670.4 that existed at the time of publication of the primary document may be used.
 - (iii) For AS/NZS 1859.4, the 2004 edition has been retained for a transitional period ending on 30 April 2020.

5. **For AS 2047:**
 - (i) Tests carried out under earlier editions of AS 2047 remain valid.
 - (ii) Reports based on AS 2047 relating to tests carried out after the NCC reference date for AS 2047—2014 Amendment 2 must relate to the amended Standard.

6. **For AS 3786:**
 - (i) Tests carried out under AS 3786—2014 Amendment 1 remain valid.
 - (ii) Reports based on AS 3786 relating to tests carried out after the NCC reference date for AS 3786—2014 Amendment 2 must relate to the amended Standard.

7. **Test reports based on the 2005 edition of AS/NZS 4020 will continue to be accepted until 1 May 2024. Test reports prepared after the NCC reference date for the**

8. For AS 4072.1, until 1 May 2022, systems tested to AS 1530.4 prior to 1 January 1995 need not be retested to comply with the provisions in AS 4072.1.

9. For AS 4586:
 (i) Test reports based on the 2004 edition of AS/NZS 4586 and issued prior to the 2013 edition of AS 4586 being referenced in the NCC remain valid.
 (ii) Test reports prepared after the NCC reference date of the 2013 edition of AS 4586 must be based on that version.
 (iii) For the purposes of assessing compliance, the slip-resistance classifications of V, W and X in reports based on the 2004 edition of AS/NZS 4586 may be considered to be equivalent to slip-resistance classifications of P5, P4 and P3 respectively in the 2013 edition of AS4586.
 (iv) Test reports based on Appendix D of AS 4586—2013 and issued prior to the NCC reference date for AS 4586—2013 (incorporating Amendment 1) remain valid.
 (v) Test reports based on Appendix D of AS 4586—2013 and prepared after the NCC reference date for AS 4586—2013 (incorporating Amendment 1) must be based on that version.

10. Tests carried out based on AS/NZS 2918—2001 and issued prior to AS/NZS 2918—2018 being referenced in the BCA remain valid. Reports relating to tests carried out after the NCC reference date for AS/NZS 2918 must relate to the revised Standard.

11. For AS 2699 Parts 1 and 3:
 (i) For AS 2699.1, the 2000 edition has been retained for a transitional period ending on 30 April 2025.
 (ii) For AS 2699.3, the 2002 edition has been retained for a transitional period ending on 30 April 2025.
Schedule 3
Commonwealth of Australia

Footnote: Other legislation and policies affecting buildings
In addition to any applicable provisions of this Code, there are a number of other legislative technical requirements and policies affecting the design, construction and/or performance of buildings that practitioners may need to be aware of, including, but not necessarily limited to, the following list. Additional legislative instruments such as regulations, codes and standards may exist under the legislation listed.

1. Aged Care Buildings

Administering Agency
Department of Health

Relevant Legislation
Aged Care Act 1997

2. Australian Capital Territory

Administering Agency
Department of Finance, section 27 insofar as it relates to the declaration of land in the Australian Capital Territory to be National Land where the land is required for Commonwealth purposes other than for the special purposes of Canberra as the National Capital

Department of Infrastructure, Regional Development and Cities, except to the extent administered by the Minister for Finance.

Relevant Legislation
Australian Capital Territory (Planning and Land Management) Act 1988
National Capital Plan (established under the Australian Capital Territory (Planning and land Management) Act 1988)

Administering Agency
Department of Infrastructure, Regional Development and Cities

Relevant Legislation
Parliament Act 1974
National Land Ordinance 1989

3. Indian Ocean Territories

Administering Agency
Department of Infrastructure, Regional Development and Cities

Relevant Legislation
Christmas Island Act 1958
Cocos (Keeling) Islands Act 1955

4. Communications and Information Technology

Administering Agency
Department of Communications and the Arts

Relevant Legislation
Australian Postal Corporation Act 1989
5. Defence Buildings

Administering Agency
Department of Defence

Relevant Legislation
Defence Act 1903

Relevant Regulations
Defence Regulation 2016, Part 11A

Relevant Codes, Standards and Publications
Manual of Fire Protection Engineering
Requirements for the Provision of Disabled Access and other Facilities for People with a Disability in Defence
Heating, Ventilation and Air Conditioning Policy
Microbial Control in Air Handling and Water Systems of Defence Buildings
Building Energy Performance Manual
Manual of Infrastructure Engineering - Electrical
Manual of Infrastructure Engineering - Bulk Fuel Installation Design
Defence Communications Cabling Standard
Defence Training Area Management Manual
Defence Safety Manual
Defence Security Manual
Defence Explosive Ordnance Publications

The Defence Estate Quality Management System (http://www.defence.gov.au/estatemanagement/governance/policy/principlesdevelopment/default.asp) contains further requirements including the principles of development, zone planning, site selection, engineering requirements and environmental impact assessment and approval requirements.

6. Disability Discrimination

Administering Agency
Attorney-General’s Department

Relevant Legislation
Disability (Access to Premises - Buildings) Standards 2010
Disability Discrimination Act 1992
Disability Standards for Accessible Public Transport 2002
7. Environment

Administering Agency
Department of the Environment and Energy

Relevant Legislation
Environment Protection and Biodiversity Conservation Act 1999
Environment Protection and Biodiversity Conservation Regulations 2000

Relevant Policy

8. Federal Airports

Administering Agency
Department of Infrastructure, Regional Development and Cities

Relevant Legislation
Airports Act 1996
Airports Regulations 1997
Airports (Building Control) Regulations 1996
Airports (Control of On-Airport Activities) Regulations 1997
Airports (Environmental Protection) Regulations 1997
Airports (Protection of Airspace) Regulations 1996

9. Jervis Bay Territory

Administering Agency
Department of Infrastructure, Regional Development and Cities

Relevant Legislation
Jervis Bay Territory Acceptance Act 1915

10. Occupational Health and Safety

Administering Agency
Department of Jobs and Small Business

Relevant Legislation
Work Health and Safety Act 2011
Work Health and Safety Regulations 2011

11. Australian Antarctic Territory

Administering Agency
Department of the Environment and Energy (Australian Antarctic Division)

Relevant Legislation
Antarctic Treaty (Environment Protection) Act 1980
Antarctic Treaty (Environment Protection) (Environmental Impact Assessment) Regulations 1993
12. Territory of Heard Island and McDonald Islands

Administering Agency
Department of the Environment and Energy (Australian Antarctic Division)

Relevant Legislation
Environment Protection and Management Ordinance 1987 (HIMI)
Environment Protection and Biodiversity Conservation Act 1999
Heard Island and McDonald Islands Marine Reserve management plan in operation under the Environment Protection and Biodiversity Conservation Act 1999
Environment Protection and Biodiversity Conservation Regulations 2000

13. National or World Heritage Places

Administering Agency
Department of the Environment

Relevant Legislation
Environment Protection and Management Ordinance 1987 (HIMI)
Antarctic Treaty (Environment Protection) (Environmental Impact Assessment) Regulations 1993
Environment Protection and Biodiversity Conservation Act 1999
Heard Island and McDonald Islands Marine Reserve management plan in operation under the Environment Protection and Biodiversity Conservation Act 1999
Environment Protection and Biodiversity Conservation Regulations 2000

14. National Parks

Administering Agency
Director of National Parks, Environment and Energy Portfolio

Relevant Legislation
Commonwealth Reserve management plans in operation under the Environment Protection and Biodiversity Conservation Act 1999
Environment Protection and Biodiversity Conservation Act 1999
Environment Protection and Biodiversity Conservation Regulations 2000

15. Commonwealth funding for building work

Administering Agency
Department of Jobs and Small Business

Relevant Legislation
Building and Construction Industry (Improving Productivity) Regulations 2017
16. Commonwealth buildings

Administering Agency
Department of Jobs and Small Business

Relevant Legislation
Building and Construction Industry (Improving Productivity) Regulations 2017
Fair Work (Building Industry - Accreditation Scheme) Amendment Regulation 2014
Building Code 2013 (issued under Section 27 of the Fair Work (Building Industry) Act 2012)
Schedule 4 Australian Capital Territory

Introduction

Footnote: Other legislation affecting buildings
The Australian Capital Territory Appendix to the Building Code of Australia (BCA) Volume One forms part of the ACT Building Code published in accordance with the Building Act 2004. This Appendix contains variations and additions to the BCA that apply to building work undertaken in the ACT and information about the application of the BCA in the ACT. The ACT Appendix is notified on the ACT Legislation Register and can be found at https://www.legislation.act.gov.au/a/2004-11/ under the Regulations and Instruments tab. While the BCA text includes indicators of potential ACT-specific clauses, including variations and additions, not all current ACT-specific clauses may be indicated. Users of the BCA must check that they are using the version of the ACT Appendix currently in force and are applying all relevant variations and additions. Historical version of the ACT Appendix are also available on the register.
In addition to any applicable provisions of the Building Act 2004 and this Code, there are other legislative technical requirements affecting the design, construction and/or performance of buildings that practitioners may need to be aware of. A list of relevant legislation and links to where it can be found on the ACT Legislation Register can be found in the ACT Appendix at https://www.legislation.act.gov.au/a/2004-11/.
New South Wales

Schedule 5

Introduction

Section A Governing requirements

Part A6 Building classification
NSW A6G7 Class 6 buildings

Section C Fire resistance

Part C2 Fire resistance and stability
C2D11 Fire hazard properties
Part C3 Compartmentation and separation
C3D6 Class 9a and 9c buildings
Part C4 Protection of openings
C4D12 Bounding construction: Class 2 and 3 buildings and Class 4 parts
Specification 7 Fire hazard properties
NSW S7C7 Other materials

Section D Access and egress

Part D2 Provision for escape
D2D3 Number of exits required
NSW D2D9 Width of doorways in exits or paths of travel to exits
D2D15 Discharge from exits
D2D18 Number of persons accommodated
Part D3 Construction of exits
NSW D3D2 Application of Part
D3D14 Goings and risers
NSW D3D16 Thresholds
D3D18 Height of barriers
D3D24 Doorways and doors
D3D26 Operation of latch
NSW D3D31 Doors in paths of travel to an entertainment venue

Section E Services and equipment

Part E1 Fire fighting equipment
NSW E1P4 Automatic fire suppression systems
NSW E1D4 Sprinklers
Part E2 Smoke hazard management
E2D10 Buildings not more than 25 m in effective height: large isolated buildings subject to C3D4
NSW E2D16 Class 9b – assembly buildings: all
NSW E2D17 Class 9b – assembly buildings: night clubs, discotheques and the like
NSW E2D18 Class 9b – assembly buildings: exhibition halls, museums and art galleries
NSW E2D19 Class 9b – assembly buildings: other assembly buildings
Part E4 Visibility in an emergency, exit signs and warning systems
NSW E4D6 Direction signs
Specification 20 Smoke detection and alarm systems
NSW S20C8 System monitoring

Section F Health and amenity
Part E2F4 Sanitary and other facilities
NSW E2P6F4P6 Microbial control for water systems
NSW E2D10F4D10 Microbial (legionella) control
Part F4F6 Light and ventilation
NSW F4D6F6D6 Ventilation of rooms

Section G Ancillary provisions
Part G1 Minor structures and components
NSW G1P2 Swimming pool access and water recirculation systems
NSW G1D2 Swimming pools
NSW G1D5 Provision for cleaning windows
Part G5 Construction in bushfire prone areas
NSW G5P1 Bushfire resistance
NSW G5D2 Application of Part
NSW G5D3 Protection

Schedule 1 Definitions
Footnote: Other legislation affecting buildings
The NSW Building Code technical package consists of—

(a) the Building Code of Australia (BCA) Volume One and Volume Two; and

(b) the New South Wales BCA Appendix which contains variations to the requirements of the BCA and additional provisions applicable in New South Wales.

The technical package is accompanied by administrative provisions contained within the Environmental Planning and Assessment (EP&A) Act 1979 and the Environmental Planning and Assessment (EP&A) Regulation 2000.
Part A6 Building classification

Insert clause NSW A6G7 as follows:

NSW A6G7 Class 6 buildings

[2019: NSW A6.6]

A Class 6 building is a shop or other building for sale of goods by retail or the supply of services direct to the public, including—

(a) an eating room, cafe, restaurant, milk or soft drink bar; or
(b) a dining room, bar, shop or kiosk part of a hotel or motel; or
(c) a hairdresser’s or barber’s shop, public laundry, or undertaker’s establishment; or
(d) market or sale room, showroom, or service station.
Part C2 Fire resistance and stability

C2D11 Fire hazard properties

[2019: C1.10]

Delete C2D11(1) and replace with NSW C2D11(1) as follows:

(1) The fire hazard properties of the following internal linings, materials and assemblies within a Class 2 to 9 building must comply with Specification 7:

(a) Floor linings and floor coverings.
(b) Wall linings and ceiling linings.
(c) Air-handling ductwork.
(d) Lift cars.
(e) In Class 9b buildings used as—
 (i) an entertainment venue, a material used to cover closed back upholstered seats; and
 (ii) a public hall or the like, a proscenium curtain required by Specification 32.
(f) Escalators, moving walkways and non-required non fire-isolated stairways or pedestrian ramps subject to Specification 14.
(g) Sarking-type materials.
(h) Attachments to floors, ceilings, internal walls, common walls, fire walls and to internal linings of external walls.
(i) Other materials including insulation materials other than sarking-type materials.

Delete C2D11(2) and replace with NSW C2D11(2) as follows:

(2) Paint or fire-retardant coatings must not be used in order to make a material comply with a required fire hazard property, except in respect of a material referred to in NSW Specification 7, Table S7C4 and to which Notes 4 and 5 are applicable.

Delete C2D11(3) and replace with NSW C2D11(3) as follows:

(3) The requirements of (1) do not apply to a material or assembly if it is—

(a) plaster, cement render, concrete, terrazzo, ceramic tile or the like; or
(b) a fire-protective covering; or
(c) a timber-framed window; or
(d) a solid timber handrail or skirting; or
(e) a timber-faced door; or
(f) an electrical switch, socket-outlet, cover plate or the like; or
(g) a material used for—
 (i) a roof insulating material applied in continuous contact with a substrate; or
 (ii) an adhesive; or
 (iii) a damp-proof course, flashing, caulking, sealing, ground moisture barrier, or the like; or
(h) a paint, varnish, lacquer or similar finish, other than nitro-cellulose lacquer; or
(i) a clear or translucent roof light of glass fibre-reinforced polyester if—
 (i) the roof in which it is installed forms part of a single storey building required to be Type C construction; and
 (ii) the material is used as part of the roof covering; and
 (iii) it is not closer than 1.5 m from another roof light of the same type; and
 (iv) each roof light is not more than 14 m² in area; and
(v) the area of the roof lights per 70 m2 of roof surface is not more than 14 m2; or
(j) a face plate or neck adaptor of supply and return air outlets of an air handling system; or
(k) a face plate or diffuser plate of light fitting and emergency exit signs and associated electrical wiring and electrical components; or
(l) a joinery unit, cupboard, shelving, or the like; or
(m) an attached non-building fixture and fitting such as—
 (i) a curtain, blind, or similar decor, other than—
 (A) a proscenium curtain required by Specification 32; or
 (B) in a Class 9b building used as an entertainment venue, a material regulated under NSW Table S7C4; and
 (ii) a whiteboard, window treatment or the like; or
(n) timber treads, risers, landings and associated supporting framework installed in accordance with D3D30 where the Spread-of-Flame Index and the Smoke-Developed Index of the timber does not exceed 9 and 8 respectively; or
(o) any other material that does not significantly increase the hazards of fire.

Part C3 Compartmentation and separation

C3D6 Class 9a and 9c buildings

[2019: C2.5]

Delete C3D6(25) and replace with NSW C3D6(25) as follows:

(25) A Class 9c building must comply with the following:

(a) A building must be divided into areas not more than 500 m2 by smoke proof walls complying with Specification 11.

(b) A fire compartment must be separated from the remainder of the building by fire walls and notwithstanding C3D8. and Specification 5, floors with an FRL of not less than 60/60/60.

(c) Except for walls provided in accordance with (3)(a) and (b), non-loadbearing internal walls, and if a building is of Type C construction — all internal walls, between and bounding sole-occupancy units and bounding a public corridor in a resident use area must:
 (i) be lined on each side with standard grade plasterboard not less than 13 mm thick or a material with at least an equivalent level of fire protection; and
 (ii) if provided with cavity insulation, contain only non-combustible insulation; and
 (iii) extend to the underside of—
 (A) the floor next above; or
 (B) a ceiling lined with standard grade plasterboard not less than 13 mm thick or an equivalent non-combustible material; or
 (C) a non-combustible roof covering; and
 (iv) not incorporate any penetrations above door head height unless the penetrations are adequately stopped to prevent the free passage of smoke; and
 (v) be smoke sealed with intumescent putty or other suitable material at any construction joint, space or the like between the top of the wall and the floor, ceiling or roof.

(d) Loadbearing internal walls must comply with the requirements of Specification 5 and (c)(ii), (iii), (iv) and (v) above.

(e) Ancillary use areas containing equipment or materials that are a high potential fire hazard, must be separated from the sole-occupancy units by smoke proof walls complying with Specification 11.

(f) The ancillary use areas referred to in (e) include, but are not limited to, the following:
 (i) A kitchen and related food preparation areas having a combined floor area of more than 30 m2.

NCC 2022 Volume One - Building Code of Australia Page 568
A laundry, where items of equipment are of the type that are potential fire sources (e.g. gas fire dryers).

Storage rooms greater than 10 m² used predominantly for the storage of administrative records.

Openings in fire walls must be protected as follows:

(i) Doorways — self-closing or automatic closing –/60/30 fire doors.

(ii) Windows — automatic or permanently fixed closed –/60/– fire windows or –/60/– automatic fire shutters.

(iii) Other openings — construction having an FRL not less than –/60/–.

Part C4 Protection of openings

C4D12 Bounding construction: Class 2 and 3 buildings and Class 4 parts

[2019: C3.11]

Delete C4D12(4) and replace with NSW C4D12(4) as follows:

4. Except as provided for in NSW C4D12(5), protection for a doorway required under (1), (2) or (3) must be at least—

(a) in a building of Type A construction — a self-closing –/60/30 fire door; and

(b) in a building of Type B or C construction — a self-closing, tight fitting, solid core door not less than 35 mm thick.

Delete C4D12(5) and replace with NSW C4D12(5) as follows:

5. In a Class 3 building used as a residential care building protected with a sprinkler system complying with Specification 17, protection for a doorway must be at least a tight fitting solid core door not less than 35 mm thick that is—

(a) self-closing; or

(b) fitted with a free-arm closing device which closes the door or causes the door to remain closed (without preventing manual re-opening), upon the detection of smoke caused by a smoke detector located within the room.

Insert subclause NSW C4D12(10) in clause C4D12 as follows:

10. In a Class 9b building used as an entertainment venue, openings in construction required to separate one space from another must be protected in accordance with C4D5.

Specification 7 Fire hazard properties

Insert clause NSW S7C7 as follows:

NSW S7C7 Other materials

[2019: NSW Spec C1.10: 7]

Materials and assemblies in a Class 2 to 9 building not included in Clauses 3, 4, 5 or 6 must not exceed the indices set out in NSW Table S7C7.

Insert Table S7C7 as follows:

<table>
<thead>
<tr>
<th>Material or assembly location</th>
<th>Flammability Index</th>
<th>Spread-of-Flame Index</th>
<th>Smoke-Developed Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire control rooms subject to Specification 19 and fire-isolated exits, other than a sarking-type material used in a ceiling or used as an attachment or part of an attachment to a building element. Note ¹</td>
<td>N/A</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Class 9b buildings used as</td>
<td>N/A</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>
Table Notes:

1. In a fire control room or fire-isolated stairway, a material used as an attachment or part of an attachment to a building element must, if combustible, be attached directly to a non-combustible substrate and not exceed 1 mm finished thickness.

2. A material, other than one located within a fire-isolated exit or fire control room, may be covered on all faces by concrete or masonry not less than 50 mm thick, as an alternative to meeting the specified indices.

3. In the case of a composite member or assembly, the member or assembly must be constructed so that when assembled as proposed in a building—
 a. any material which does not comply with this Table is protected on all sides and edges from exposure to the air; and
 b. the member or assembly, when tested in accordance with Specification 3, has Spread-of-Flame Index and Smoke-Developed Index not exceeding those prescribed in this Table; and
 c. the member or assembly retains the protection in position so that it prevents ignition of the material and continues to screen it from access to free air for a period of not less than 10 minutes.

4. Any fire-retardant coating used in an entertainment venue to make a material subject to (a), (b) or (c) comply with

<table>
<thead>
<tr>
<th>Material or assembly location</th>
<th>Flammability Index</th>
<th>Spread-of-Flame Index</th>
<th>Smoke-Developed Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 9b buildings used as an entertainment venue, a material used as a curtain, blind or similar decor in any part available to the public. Notes 4 and 5</td>
<td>6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Class 9b buildings used as an entertainment venue, a material used to form a cinematograph screen. Notes 4, 5 and 6</td>
<td>12</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Class 9b buildings used as a public hall or the like: A proscenium curtain page required by Specification 32.</td>
<td>N/A</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Escalators, moving walkways or non-required non fire-isolated stairway or pedestrian ramps subject to Specification 14.</td>
<td>N/A</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Sarking-type material: In a fire control room subject to Specification 19 or a fire-isolated exit or fire control room used in the form of an exposed wall or ceiling.</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Sarking-type materials other than in a fire control room subject to Specification 19 or a fire-isolated exit or fire control room used in the form of an exposed wall or ceiling. Note 2</td>
<td>5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Other materials or locations and insulation materials other than Sarking-type material. Notes 2 and 3</td>
<td>N/A</td>
<td>9</td>
<td>8 if the Spread-of-Flame Index is more than 5</td>
</tr>
</tbody>
</table>
a **required Flammability Index, Spread-of-Flame Index or Smoke-Developed Index** must be certified by—

a. its manufacturer or distributor—
 i. as approved for use with the fabric to achieve the *required* indices; and
 ii. to retain its retardancy effect after a minimum of 5 commercial dry cleaning or laundering operations carried out in accordance with AS 2001.5.4, Procedure 7A, using non-phosphate ECE reference detergent A (without optical brightener); and

b. the applicator as having been carried out in accordance with the manufacturer’s specification.

5. Materials subject to (b) or (c) must have a label affixed to a representative sample of each different material indicating, in legible characters—

a. name of manufacturer; and

b. trade name and description of material’s composition; and

c. retardant treatment (if any), name of applicator and date of application; and

d. AS 1530 Part 2 and/or AS/NZS 1530 Part 3 test number and its *Flammability Index, Spread-of-Flame Index* and *Smoke-Developed Index*; and

 e. approved methods of cleaning.

6. A cinematograph screen must have a supporting frame of metal construction.
Part D2 Provision for escape

D2D3 Number of exits required

[2019: D1.2]

Delete D2D3(4) and replace with NSW D2D3(4) as follows:

(4) Class 9 buildings — In addition to any horizontal exit, not less than 2 exits must be provided from the following:

(a) Each storey if the building has a rise in storeys of more than 6 or an effective height of more than 25 m.

(b) Any storey which includes a patient care area in a Class 9a health-care building.

(c) Any storey that contains sleeping areas in a Class 9c building.

(d) Each storey in a Class 9b building used as an early childhood centre.

(e) Each storey in a primary or secondary school with a rise in storeys of 2 or more.

(f) Any storey or mezzanine that accommodates more than 50 persons, calculated under D2D18.

(g) Any storey or mezzanine within an auditorium in an entertainment venue.

Insert clause NSW D2D9 as follows:

NSW D2D9 Width of doorways in exits or paths of travel to exits

[2019: NSW D1.6(f)(vi) and (j)]

In a required exit or path of travel to an exit, the unobstructed width of a doorway must be not less than—

(a) in patient care areas through which patients would normally be transported in beds—

(i) if the doorway provides access to, or from, a corridor of width—

(A) less than 2.2 m — 1200 mm; or

(B) 2.2 m or greater — 1070 mm; and

(ii) where the doorway referred to in (i) is fitted with two leaves and one leaf is secured in the closed position in accordance with D3D26(3)(e), the other leaf must permit an unobstructed opening not less than 800 mm wide; or

(b) in patient care areas in a horizontal exit — 1250 mm; or

(c) the unobstructed width of each exit provided to comply with D2D8(1), (2), (3) or (4), minus 250 mm; or

(d) in a Class 9c building, 800 mm, except—

(i) in resident use areas the minimum unobstructed width must be 870 mm; and

(ii) for doorways leading from a public corridor to a sole-occupancy unit the minimum unobstructed width must be 1070 mm; and

(iii) where the doorway is fitted with two leaves and one leaf is secured in the closed position in accordance with D3D26(3)(e), the other leaf must permit an unobstructed opening not less than 870 mm wide in resident use areas and 800 mm wide in non-resident use areas; or

(e) in a Class 9b building used as an entertainment venue—

(i) in parts of the building used by the public, the width of the required exit or path of travel, and the unobstructed width of each doorway must not be less than 1 m and not more than 3 m; and

(ii) in other parts of the building, doorways must comply with (a); or

(f) in a Class 9b building used as an entertainment venue—

(i) the aggregate width must be not less than 2 m plus 500 mm for every 50 persons or part in excess of 200; and

(ii) D2D8(1), (2) and (3) do not apply; and
(iii) where or more paths of travel merge, the width of the combined path of travel must be not less than the sum of the required widths of those paths of travel; and

(iv) the required widths of those paths of travel connecting the exits from the building to a public road or open space must comply with (iii); or

(g) in any other case except where it opens to a sanitary compartment or bathroom — 750 mm wide.

D2D15 Discharge from exits

Delete D2D15(6) and replace with NSW D2D15(6) as follows:

(6) In a Class 9b building used as an entertainment venue, at least half of the required number of exits from each storey or mezzanine, and at least half of the aggregate width of such exits must discharge otherwise than through the main entrance, or the area immediately adjacent to the main entrance to the building.

D2D18 Number of persons accommodated

Delete Table D2D18 and replace with NSW Table D2D18 as follows:

<table>
<thead>
<tr>
<th>Type of use</th>
<th>Area per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art gallery, exhibition area, museum</td>
<td>4 m²</td>
</tr>
<tr>
<td>Auditorium — bench seating</td>
<td>400 mm/person</td>
</tr>
<tr>
<td>Auditorium — fixed seating</td>
<td>count seats</td>
</tr>
<tr>
<td>Auditorium — removable seating</td>
<td>1 m²</td>
</tr>
<tr>
<td>Auditorium — standing area</td>
<td>0.5 m²</td>
</tr>
<tr>
<td>Bar — standing</td>
<td>0.5 m²</td>
</tr>
<tr>
<td>Bar — other</td>
<td>1 m²</td>
</tr>
<tr>
<td>Board room</td>
<td>2 m²</td>
</tr>
<tr>
<td>Boarding house</td>
<td>15 m²</td>
</tr>
<tr>
<td>Cafe, church, dining room</td>
<td>1 m²</td>
</tr>
<tr>
<td>Carpark</td>
<td>30 m²</td>
</tr>
<tr>
<td>Computer room</td>
<td>25 m²</td>
</tr>
<tr>
<td>Court room — judicial area</td>
<td>10 m²</td>
</tr>
<tr>
<td>Court room — public seating</td>
<td>1 m²</td>
</tr>
<tr>
<td>Dance floor</td>
<td>0.5 m²</td>
</tr>
<tr>
<td>Dormitory</td>
<td>5 m²</td>
</tr>
<tr>
<td>Early childhood centre</td>
<td>4 m²</td>
</tr>
<tr>
<td>Entertainment venue — other than auditorium</td>
<td>1.2 m²</td>
</tr>
<tr>
<td>Factory — machine shop, fitting shop or like place for cutting, grading, finishing or fitting of metals or glass, except in the fabrication of structural steelwork or manufacture of vehicles or bulky products</td>
<td>5 m²</td>
</tr>
<tr>
<td>Factory — areas used for fabrication and processing other than a machine shop, fitting shop or the like</td>
<td>50 m²</td>
</tr>
<tr>
<td>Factory — a space in which the layout and natural use of fixed plant or equipment determines the number of persons who will occupy the space during working hours</td>
<td>Area per person determined by the use of the plant or equipment</td>
</tr>
<tr>
<td>Gymnasium</td>
<td>3 m²</td>
</tr>
<tr>
<td>Type of use</td>
<td>Area per person</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>Hostel, hotel, motel, guest house</td>
<td>15 m²</td>
</tr>
<tr>
<td>Indoor sports stadium—arena</td>
<td>10 m²</td>
</tr>
<tr>
<td>Kiosk</td>
<td>1 m²</td>
</tr>
<tr>
<td>Kitchen, laboratory, laundry</td>
<td>10 m²</td>
</tr>
<tr>
<td>Library — reading space</td>
<td>2 m²</td>
</tr>
<tr>
<td>Library — storage space</td>
<td>30 m²</td>
</tr>
<tr>
<td>Office, including one for typewriting or document copying</td>
<td>10 m²</td>
</tr>
<tr>
<td>Patient care areas</td>
<td></td>
</tr>
<tr>
<td>Plant room — ventilation, electrical or other service units</td>
<td>30 m²</td>
</tr>
<tr>
<td>Plant room — boilers or power plant</td>
<td>50 m²</td>
</tr>
<tr>
<td>Reading room</td>
<td>2 m²</td>
</tr>
<tr>
<td>Restaurant</td>
<td>1 m²</td>
</tr>
<tr>
<td>School — general classroom</td>
<td>2 m²</td>
</tr>
<tr>
<td>School — multi-purpose hall</td>
<td>1 m²</td>
</tr>
<tr>
<td>School — staff room</td>
<td>10 m²</td>
</tr>
<tr>
<td>School — trade and practical area — primary</td>
<td>4 m²</td>
</tr>
<tr>
<td>School — trade and practical area — secondary</td>
<td>As for workshop</td>
</tr>
<tr>
<td>Shop — space for sale of goods — at a level entered direct from the open air or any lower level</td>
<td>3 m²</td>
</tr>
<tr>
<td>Shop — space for sale of goods — all other levels</td>
<td>5 m²</td>
</tr>
<tr>
<td>Showroom — display area, covered mall or arcade</td>
<td>5 m²</td>
</tr>
<tr>
<td>Skating rink, based on rink area</td>
<td>1.5 m²</td>
</tr>
<tr>
<td>Spectator stand, audience viewing area — standing viewing area</td>
<td>0.3 m²</td>
</tr>
<tr>
<td>Spectator stand, audience viewing area — removable seating</td>
<td>1 m²</td>
</tr>
<tr>
<td>Spectator stand, audience viewing area — fixed seating</td>
<td>Per number of seats</td>
</tr>
<tr>
<td>Spectator stand, audience viewing area — bench seating</td>
<td>450 mm/person</td>
</tr>
<tr>
<td>Storage space</td>
<td>30 m²</td>
</tr>
<tr>
<td>Swimming pool, based on pool area</td>
<td>1.5 m²</td>
</tr>
<tr>
<td>Switch room, transformer room</td>
<td>30 m²</td>
</tr>
<tr>
<td>Telephone exchange — private</td>
<td>30 m²</td>
</tr>
<tr>
<td>Theatre dressing room</td>
<td>4 m²</td>
</tr>
<tr>
<td>Transport terminal</td>
<td>2 m²</td>
</tr>
<tr>
<td>Workshop — for maintenance staff</td>
<td>30 m²</td>
</tr>
<tr>
<td>Workshop — for manufacturing processes</td>
<td>As for factory</td>
</tr>
</tbody>
</table>

Table Notes:
Bar standing is an area used by the standing patrons and extends not less than 1.5 m wide from the outside edge of the bar top for the length of the serving area of the bar.
Part D3

Construction of exits

Insert clause NSW D3D2 as follows:

NSW D3D2

Application of Part

[2019: NSW D2.1(c)]

(1) Except for—

(a) D3D14, D3D15(a), D3D17, D3D18, D3D19, D3D20, D3D22(5), D3D22(6), D3D26 and D3D29, the Deemed-to-Satisfy Provisions of this Part do not apply to the internal parts of a sole-occupancy unit in a Class 3 building; and

(b) D3D14, D3D15(a), D3D17, D3D18, D3D19, D3D20, D3D22(5), D3D22(6), D3D23 and D3D29, the Deemed-to-Satisfy Provisions of this Part do not apply to the internal parts of a sole-occupancy unit in a Class 2 building or Class 4 part of a building.

(2) In a Class 9b building used as an entertainment venue—

(a) Clauses NSW D2.13(a)(ix), (a)(x), and (a)(xi), NSW D2.15(d), NSW Table D2.16a 1(d), and NSW D2.19(b)(v) apply to only those parts of the building used by the public; and

(b) the general requirements of Part D3 apply to all other parts of the building.

D3D14

Goings and risers

[2019: D2.13]

Delete D3D14(1) and replace with NSW D3D14(1) as follows:

(1) A stairway must have—

(a) not more than 18 and not less than 2 risers in each flight; and

(b) going (G), riser (R) and quantity (2R + G) in accordance with Table D3D14, except as permitted by (2) and (3); and

(c) constant goings and risers throughout each flight, except as permitted by (2) and (3), and the dimensions of goings (G) and risers (R) in accordance with (1)(b) are considered constant if the variation between—

(i) adjacent risers, or between adjacent goings, is no greater than 5 mm; and

(ii) the largest and smallest riser within a flight, or the largest and smallest going within a flight, does not exceed 10 mm; and

(d) risers which do not have any openings that would allow a 125 mm sphere to pass through between the treads; and

(e) treads which have—

(i) a surface with a slip-resistance classification not less than that listed in Table D3D15 when tested in accordance with AS 4586; or

(ii) a nosing strip with a slip-resistance classification not less than that listed in Table D3D15 when tested in accordance with AS 4586; and

(f) treads of solid construction (not mesh or other perforated material) if the stairway is more than 10 m high or connects more than 3 storeys; and

(g) in a Class 9b building, not more than 36 risers in consecutive flights without a change in direction of at least 30°; and

(h) in the case of a required stairway, no winders in lieu of a landing; and

(i) conspicuous edges to the treads of steps in a Class 9b building used as an entertainment venue; and

(j) in a Class 9b building used as an entertainment venue, not more than one helical stairway serving as a required exit and that stairway must—

(i) have a width of not less than 1500 mm; and

(ii) be of constant radius; and

(iii) be constructed so that each tread, when measured 500 mm in from its narrow end, has a width of at least 280 mm; and
(k) in a Class 9b building used as an *entertainment venue*, in a curved stairway serving as a *required exit* — an internal radius of not less than twice the width of the stair.

Insert clause NSW D3D16 as follows:

NSW D3D16 Thresholds

The threshold of a doorway must not incorporate a step or ramp at any point closer to the doorway than the width of the door leaf unless—

(a) in *patient care areas* in a Class 9a *health-care building*, the door sill is not more than 25 mm above the finished floor level to which the doorway opens; or

(b) in a Class 9c building, a ramp is provided with a maximum gradient of 1:8 for a maximum height of 25 mm over the threshold; or

(c) in a building *required to be accessible* by Part D4, the doorway—
 (i) opens to a road or *open space*; and
 (ii) is provided with a threshold ramp or step ramp in accordance with AS 1428.1; or

(d) in a Class 9b building used as an *entertainment venue*, the door sill of a doorway opening to a road, *open space*, external stair landing or external balcony is not more than 50 mm above the finished floor level to which the doorway opens; or

(e) in other cases—
 (i) the doorway opens to a road or *open space*, external stair landing or external balcony; and
 (ii) the door sill is not more than 190 mm above the finished surface of the ground, balcony, or the like, to which the doorway opens.

D3D18 Height of barriers

Delete D3D18(1) and replace with NSW D3D18(1) as follows:

(1) The height of a barrier *required* by D3D17 must be not less than the following:

(a) For stairways or ramps with a gradient of 1:20 or steeper — 865 mm.

(b) For landings to a stair or ramp where the barrier is provided along the inside edge of the landing and does not exceed 500 mm in length — 865 mm.

(c) In front of fixed seating on a *mezzanine* or balcony within an auditorium in a Class 9b building, where the horizontal projection extends not less than 1 m outwards from the top of the barrier — 700 mm.

(d) In a Class 9b building used as an *entertainment venue* — the height prescribed for guardrails in NSW H101.14.2 or NSW H102.9.

(e) In a Class 9b building used as an *entertainment venue*, for stairways and ramps and the floor of any access path, balcony, landing or the like—
 (i) 1 m when provided inside the building; and
 (ii) 1200 mm when provided externally to the building.

(f) For all other locations — 1 m.

D3D24 Doorways and doors

Delete D3D24(2) and replace with NSW D3D24(2) as follows:

(2) A doorway serving as a *required exit* or forming part of a *required exit*, or a doorway in a *patient care area* of a Class 9a *health-care building*—

(a) must not be fitted with a revolving door; and
must not be fitted with a roller shutter or tilt-up door unless—

(i) it serves a Class 6, 7 or 8 building or part with a floor area not more than 200 m2; and

(ii) the doorway is the only required exit from the building or part; and

(iii) it is held in the open position while the building or part is lawfully occupied; and

c) must not be fitted with a sliding door unless—

(i) it leads directly to a road or open space; and

(ii) the door is able to be opened manually under a force of not more than 110 N; and

d) if fitted with a door which is power-operated—

(i) it must be able to be opened manually under a force of not more than 110 N if there is a malfunction or failure of the power source; and

(ii) if it leads directly to a road or open space it must open automatically if there is a power failure to the door or on the activation of a fire or smoke alarm anywhere in the fire compartment served by the door; and

e) in a Class 9b building used as an entertainment venue—

(i) must not be fitted with a collapsible gate, accordion door, turnstile or rigid barrier; and

(ii) if fitted with a door, must be—

(A) a swing door which opens in the direction of egress; and

(B) doors hung in two folds where the unobstructed width of the doorway is more than 1 m; and

(iii) a doorway or opening within sight of the audience but not intended for egress must have a notice displayed clearly indicating its purpose and such a notice must not be internally illuminated; and

(iv) notwithstanding (2)(c), a sliding door may be fitted where—

(A) it leads directly to a road or open space and forms a main entrance; and

(B) it is capable of swinging in the direction of egress when pressure is applied to the inside face of the door; and

(C) the door is provided with signage that clearly indicates to persons seeking egress, the potential for swinging the door open in an emergency.

D3D26 Operation of latch

[2019: D2.21]

Delete D3D26(5) and replace with NSW D3D26(5) as follows:

(5) The requirements of (1) and (2) do not apply in a Class 9b building (other than a school, an early childhood centre or a building used for religious purposes) to a door in a required exit, forming part of a required exit or in the path of travel to a required exit serving a storey or room accommodating more than 100 persons, determined in accordance with D2D18, in which case it must be readily openable—

(a) without a key from the side that faces a person seeking egress; and

(b) by a single hand pushing action on a single device such as a panic bar located between 900 mm and 1.2 m from the floor; and

(c) where a two-leaf door is fitted, the provisions of (a) and (b) need only apply to one door leaf if the appropriate requirements of D2D7 to D2D11 are satisfied by the opening of that one leaf; and

(d) where the door is a door in a path of travel providing re-entry to the building from a balcony, terrace or the like, it may be fitted with key-operated fastenings only, the tongues of which must be locked in the retracted position whenever the building is occupied by the public, so the door can yield to pressure.

Insert subclause NSW D3D26(6) in clause D3D26 as follows:

(6) The requirements of (1) and (3) do not apply to a door serving a Class 9b building used as an entertainment venue where the following provisions apply to a door or gate used by the public—

(a) on a door, the single device operating the latch or bolts must be a panic bar if those doors are to be secured; or

(b) an exit door or gate used by the public as the main entrance may be fitted with key-operated fastenings only, the tongues of which must be locked in the retracted position whenever the building is occupied by the public so the door or gate can yield to pressure from within; or
(c) a door from a balcony, terrace or the like, being a door in a path of travel providing re-entry to the building, may comply with the locking provision of (b) above.

Insert clause NSW D3D31 as follows:

NSW D3D31 Doors in paths of travel to an entertainment venue

[2019: NSW D2.101]

In a Class 9b building used as an entertainment venue, a doorway in a path of travel must comply with NSW D3D24(2)(e).
Part E1 Fire fighting equipment

Insert clause NSW E1P4 as follows:

NSW E1P4 Automatic fire suppression systems

An automatic fire suppression system must be installed to the degree necessary to control the development and spread of fire appropriate to—

(a) the size of the fire compartment; and

(b) the function or use of the building; and

(c) the fire hazard; and

(d) the height of the building.

Notes:

NSW has requirements for fire sprinkler systems in certain residential aged care facilities. See the Department of Planning and Environment website www.planning.nsw.gov.au.

Insert clause NSW E1D4 as follows:

NSW E1D4 Sprinklers

[2019: E1.5]

A sprinkler system must—

(a) be installed in a building or part of a building when required by E1D5 to E1D12 as applicable; and

(b) comply with Specification 17 and Specification 18 as applicable.

Notes:

NSW has requirements for fire sprinkler systems in certain residential aged care facilities. See the Department of Planning and Environment website www.planning.nsw.gov.au.

Part E2 Smoke hazard management

E2D10 Buildings not more than 25 m in effective height: large isolated buildings subject to C3D4

[2019: Table E2.2a]

Insert clause NSW E2D16 as follows:

NSW E2D16 Class 9b – assembly buildings: all

[2019: NSW Table E2.2b]

The following provisions apply to all Class 9b assembly buildings:

(a) Automatic shutdown: A building or part of a building used as an assembly building must be provided with
automatic shutdown of any air-handling system (other than non-ducted individual room units with a capacity not more than 1000 L/s and miscellaneous exhaust air systems installed in accordance with Sections 5 and 6 of AS 1668.1) which does not form part of the smoke hazard management system, on the activation of—

(i) smoke detectors installed complying with S20C6; and
(ii) any other installed fire detection and alarm system, including a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17.

(b) Basements: A basement not counted in the rise in storeys in accordance with C2D3, less than 2000 m2 used as an assembly building or part of an assembly building containing an auditorium or other public area, must be equipped with—

(i) an automatic smoke detection system in accordance with Specification 20; or

(ii) an automatic zone pressurisation system in accordance with AS 1668.1 if the basement has more than one fire compartment; or if the basement forms part of a multi fire compartmented building served by the zone pressurisation system; or

(iii) a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17.

(c) Stages and backstages:

(i) For the purposes of this clause, where a stage is separated from the auditorium by a proscenium wall incorporating a proscenium opening, a backstage room or area that is not separated from the stage by construction having an FRL of not less than 60/60/60, is taken to form part of the stage.

(ii) A building or part of a building used as an assembly building which has a stage with a floor area of more than 50 m2 and not more than 150 m2 must, over the stage, be provided with—

(A) an automatic smoke exhaust system complying with Specification 21 (including Figure S21C2); or

(B) roof mounted automatic smoke-and-heat vents complying with NSW H101.22, in a single storey building or the top storey of a multi storey building.

(iii) A building or part of a building used as an assembly building which has a stage with a floor area of more than 150 m2 must, over the stage, be provided with an automatic smoke exhaust system complying with Specification 21 (including Figure S21C2).

(iv) A building or part of a building used as an assembly building which has a stage equipped with means of flying scenery must, over the stage, be provided with an automatic smoke exhaust system complying with Specification 21 (including Figure S21C2).

Insert clause NSW E2D17 as follows:

NSW E2D17 Class 9b – assembly buildings: night clubs, discotheques and the like

[2019: NSW Table E2.2b]

A building or part of a building being a night club, discotheque or the like, must be provided with—

(a) in an auditorium—

(i) an automatic smoke exhaust system complying with Specification 21; or

(ii) roof mounted automatic smoke-and-heat vents complying with Specification 22, in a single storey building or the top storey of a multi storey building; or

(iii) a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17 with fast response sprinkler heads; and

(b) in all other areas—

(i) where a building or part of a building has a floor area not more than 2000 m2—

(A) one of the smoke hazard management measures listed under (a) above; or

(B) an automatic smoke detection and alarm system complying with Specification 20; or

(ii) where a building or part of a building has a floor area of more than 2000 m2, smoke hazard management measures as provided for under NSW E2D19.
Notes:
Paragraph (a) applies only to an auditorium designed principally to accommodate an audience to an entertainment.

Insert clause NSW E2D18 as follows:

NSW E2D18
Class 9b – assembly buildings: exhibition halls, museums and art galleries

A building or part of a building used as an exhibition hall, museum, art gallery or the like, must be provided with—

(a) where the floor area is more than 2000 m2 and not more than 3500 m2—

 (i) an automatic smoke exhaust system complying with Specification 21; or

 (ii) roof mounted automatic smoke-and-heat vents complying with Specification 22 in a single storey building or the top storey of a multi storey building; or

 (iii) a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17; and

(b) where the floor area is more than 3500 m2, a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17 and—

 (i) an automatic smoke exhaust system complying with Specification 21; or

 (ii) roof mounted automatic smoke-and-heat vents complying with Specification 22, in a single storey building or the top storey of a multi storey building.

Insert clause NSW E2D19 as follows:

NSW E2D19
Class 9b – assembly buildings: other assembly buildings

(1) Unless otherwise described in (2), in a building or part of a building used as an assembly building (not being a night club, discotheque or the like; or an exhibition hall, museum or art gallery) where the floor area of a fire compartment is more than 2000 m2, the fire compartment must be provided with—

 (a) an automatic smoke exhaust system complying with Specification 21; or

 (b) roof mounted automatic smoke-and-heat vents complying with Specification 22, in a single storey building or the top storey of a multi storey building; or

 (c) if the floor area of the fire compartment is not more than 5000 m2 and the building has a rise in storeys of not more than 2—

 (i) an automatic smoke detection and alarm system complying with Specification 20; or

 (ii) a sprinkler system (other than a FPAA101D or FPAA101H system) complying with Specification 17.

(2) The following buildings are exempt from the provisions of (1):

 (a) Sporting complexes, (including sports halls, gymnasiaums, swimming pools, ice and roller rinks, and the like) other than indoor sports stadiums with total spectator seating for more than 1000 persons.

 (b) Churches and other places used solely for religious worship.

 (c) School classrooms.

Notes:
Smoke hazard management provisions for an assembly building used for multiple purposes must comply with the relevant provisions of NSW E2D16, NSW E2D17, NSW E2D18 or NSW E2D19 according to usage.
Part E4 Visibility in an emergency, exit signs and warning systems

Insert clause NSW E4D6 as follows:

NSW E4D6 Direction signs

[2019: NSW E4.6]

If an exit is not readily apparent to persons occupying or visiting the building, then exit signs must be installed—

(a) in appropriate positions in corridors, hallways, lobbies, foyers, auditoria, and the like, indicating the direction to a required exit; and

(b) in a Class 9b building used as an entertainment venue — in any external egress path to a road where the exit does not open directly onto a road.

Specification 20 Smoke detection and alarm systems

Insert clause NSW S20C8 as follows:

NSW S20C8 System monitoring

[2019: NSW Spec E2.2a: 8]

The following installations must be connected to a fire alarm monitoring system connected to a fire station or fire station dispatch centre in accordance with AS 1670.3:

(a) A smoke detection system in a Class 3 building provided in accordance with S20C2(b)(i) or S20C2(b)(ii).

(b) A smoke detection system in a Class 9a health-care building, if the building accommodates more than 20 patients.

(c) A smoke detection system in a Class 9c building.

(d) Smoke detection in accordance with S20C6 provided to activate—

(i) a smoke exhaust system in accordance with Specification 21; or

(ii) smoke-and-heat vents in accordance with Specification 22.
Part F2F4 Sanitary and other facilities

Delete F2P6F4P6 and insert NSW F2P6F4P6 as follows:

NSW F2P6F4P6 Microbial control for water systems

This clause has deliberately been left blank.

This Performance Requirement is deleted from the BCA in NSW, as the installation of hot water, warm water and cooling water systems (and their operation and maintenance) is regulated in the Public Health Regulation, 2012, under the Public Health Act, 2010.

Delete F2D10F4D10 and insert NSW F2D10F4D10 as follows:

NSW F2D10F4D10 Microbial (legionella) control

This clause has deliberately been left blank.

This clause is deleted from the BCA in NSW, as the installation of hot water, warm water and cooling water systems (and their operation and maintenance) is regulated in the Public Health Regulation, 2012, under the Public Health Act, 2010.

Part F4F6 Light and ventilation

Insert clause NSW F4D6F6D6 as follows:

NSW F4D6F6D6 Ventilation of rooms

A habitable room, office, shop, factory, workroom, sanitary compartment, bathroom, shower room, laundry and any other room occupied by a person for any purpose must have—

(a) natural ventilation complying with F4D7; or

(b) a mechanical ventilation or air-conditioning system complying with AS 1668.2.

Notes:

The reference to AS/NZS 3666.1 is deleted from the BCA in NSW, as the need to comply with this standard is regulated in the Public Health Regulation, 2012, under the Public Health Act, 2010.
Part G1 Minor structures and components

Insert clause NSW G1P2 as follows:

NSW G1P2 Swimming pool access and water recirculation systems

[2019: NSW GP1.2]

(1) A barrier must be provided to a swimming pool and must—
 (a) be continuous for the full extent of the hazard; and
 (b) be of a strength and rigidity to withstand the foreseeable impact of people; and
 (c) restrict the access of young children to the pool and the immediate pool surrounds; and
 (d) have any gates and doors fitted with latching devices not readily operated by young children, and constructed to automatically close and latch.

(2) A swimming pool water recirculation system must incorporate safety measures to avoid entrapment of, or injury to, a person.

Applications:

(1) NSW G1P2(1) only applies to a swimming pool with a depth of water more than 300 mm, in conjunction with the Swimming Pools Act 1992 and the Swimming Pools Regulation 2018.

(2) NSW G1P2(2) only applies to a swimming pool with a depth of water more than 300 mm.

Insert clause NSW G1D2 as follows:

NSW G1D2 Swimming pools

[2019: NSW G1.1]

(1) NSW G1D2(2) applies to the technical construction requirements for barriers to restrict access to swimming pools, subject to out-of-ground pool walls and the walls of above ground pools, including inflatable pools, not being considered to be effective barriers.

(2) A swimming pool with a depth of water more than 300 mm and which is associated with a Class 2 or 3 building or Class 4 part of a building, must have suitable barriers to restrict access by young children to the immediate pool surrounds in accordance with—
 (a) AS 1926 Parts 1 and 2; or
 (b) if the swimming pool is a spa pool—
 (i) the requirements of (a); or
 (ii) clause 9 of the Swimming Pools Regulation 2018.

Notes:
The Swimming Pools Act 1992 and the Swimming Pools Regulation 2018, applicable to swimming pool with a depth of water of more than 300 mm, regulate the circumstances in which a barrier is required and prevail in the case of any inconsistency.
Insert clause NSW G1D5 as follows:

NSW G1D5 Provision for cleaning windows

[2019: NSW G1.101]

(1) A building must provide for a safe manner of cleaning any *windows* located 3 or more *storeys* above ground level.

(2) A building satisfies (1) where—

 (a) the *windows* can be cleaned wholly from within the building; or

 (b) provision is made for the cleaning of the *windows* by a method complying with the Work Health and Safety Act 2011 and regulations made under that Act.

Part G5 Construction in bushfire prone areas

Insert clause NSW G5P1 as follows:

NSW G5P1 Bushfire resistance

[2019: NSW GP5.1]

A building that is constructed in a *designated bushfire prone area* must, to the degree necessary, be designed and constructed to reduce the risk of ignition from a bushfire, appropriate to the—

 (a) potential for ignition caused by burning embers, radiant heat or flame generated by a bushfire; and

 (b) intensity of the bushfire attack on the building.

Applications:

NSW G5P1 only applies in a *designated bushfire prone area* to—

(a) a Class 2 or 3 building; or

(b) a Class 4 part of a building; or

(c) a Class 9a building that is a *special fire protection purpose*; or

(d) a Class 10a building or deck associated with a building or part referred to in (a), (b) or (c).

Insert clause NSW G5D2 as follows:

NSW G5D2 Application of Part

[2019: NSW G5.1]

The *Deemed-to-Satisfy Provisions* of this Part apply in a *designated bushfire prone area* to—

 (a) a Class 2 or 3 building; or

 (b) a Class 4 part of a building; or

 (c) a Class 9 building that is a *special fire protection purpose*; or

 (d) a Class 10a building or deck associated with a building or part referred to in (a), (b) or (c).

Insert clause NSW G5D3 as follows:

NSW G5D3 Protection

[2019: NSW G5.2]

In a *designated bushfire prone area*, a Class 2 building, a Class 3 building, a Class 4 part of a building or a Class 9 building that is a *special fire protection purpose* or a Class 10a building or deck associated with such a building or part, must comply with the following—

 (a) AS 3959 except—
(i) as amended by *Planning for Bush Fire Protection*; and

(ii) for Section 9 Construction for Bushfire Attack Level FZ (BAL-FZ), buildings subject to BAL-FZ must comply with specific conditions of development consent for construction at this level; or

(b) the requirements of (a) above as modified by the development consent following consultation with the NSW Rural Fire Service under section 4.14 of the Environmental Planning and Assessment Act 1979 if required; or

(c) the requirements of (a) above as modified by development consent with a bushfire safety authority issued under section 100B of the Rural Fires Act 1997 for the purposes of integrated development.
Schedule 1 Definitions

Aisle: A walkway at the end of rows of seating, not being continental seating, leading to a cross-over or to an egress doorway.

Appropriate authority: The relevant authority with the responsibility to determine the particular matter.

Assembly building: A building where people may assemble for—
 (a) civic, theatrical, social, political or religious purposes including a library, theatre, public hall or place of worship; or
 (b) educational purposes in a school, early childhood centre, preschool, or the like; or
 (c) entertainment, recreational or sporting purposes including—
 (i) a cinema; or
 (ii) a sports stadium, sporting or other club; or
 (d) transit purposes including a bus station, railway station, airport or ferry terminal.

Designated bushfire prone area: Land that:
 (a) has been designated under legislation; or
 (b) has been identified under an environmental planning instrument, development control plan or in the course of processing and determining a development application,

as land that can support a bushfire or is likely to be subject to bushfire attack.
In addition to any applicable provisions of the Environmental Planning and Assessment Act 1979, the Environmental Planning and Assessment Regulation 2000 and this Code, there is a variety of other regulatory provisions, including legislation, regulation and departmental policies that impose requirements affecting the design, construction and/or performance of buildings in NSW.

The following is a non-definitive list of such provisions. It does not include Commonwealth provisions that may apply in NSW, nor planning and environmental standards that may impose building requirements in individual circumstances. It is meant as an indicative guide only and is not to be relied upon in any way as a substitute for further research, investigation and legal advice needed to determine building standards in individual circumstances.

1. Abattoirs, Knackeries and Meat Premises

Administering Agency
NSW Food Authority

Relevant Legislation
Food Regulation 2015

2. Boarding Houses

Administering Agency
Department of Family and Community Services – Ageing, Disability and Home Care

Relevant Legislation
Boarding Houses Regulation 2013

3. Children’s Services

Administering Agency
NSW Department of Education

Relevant Legislation
Children (Education and Care Services National Law Application) Act 2010
Children (Education and Care Services) Supplementary Provisions Regulation 2012

4. Crematoria, Vaults, Mortuary Churches etc.

Administering Agency
NSW Ministry of Health

Relevant Legislation
Public Health Regulation 2012

5. Crown Land — Construction Approval

Administering Agency
Department of Industry

Relevant Legislation
Crown Land Management Act 2016
Crown Land Management Regulation 2018

Administering Agency
NSW Rural Fire Service

Relevant Legislation
Rural Fires Act 1997

6. Dairies

Administering Agency
NSW Food Authority

Relevant Legislation
Food Regulation 2015

7. Dangerous Goods (including Gas Installations)

Administering Agency
Department of Planning and Environment, Energy, Water and Portfolio Strategy

Relevant Legislation
Explosives Regulation 2013
Gas Supply Act 1996
Gas Supply (Safety and Network Management) Regulation 2013

Administering Agency
SafeWork NSW

Relevant Legislation
Explosives Regulation 2013
Work Health and Safety Regulation 2017

Administering Agency
NSW Fair Trading

Relevant Legislation
Gas and Electricity (Consumer Safety) Act 2017
Gas and Electricity (Consumer Safety) Regulation 2018

8. Dining Rooms and Bars

Administering Agency
NSW Food Authority

Relevant Legislation
Food Regulation 2015

9. Electrical Installations

Administering Agency
NSW Fair Trading
Relevant Legislation
Gas and Electricity (Consumer Safety) Regulation 2018
Gas and Electricity (Consumer Safety) Act 2017

Administering Agency
SafeWork NSW

Relevant Legislation
Work Health and Safety Regulation 2017

10. Fire Prevention in Existing Buildings

Administering Agency
Department of Planning and Environment

Relevant Legislation
Environmental Planning and Assessment Act 1979
Environmental Planning and Assessment Regulation 2000

11. Food Premises

Administering Agency
NSW Food Authority

Relevant Legislation
Food Regulation 2015

12. Foundries

Administering Agency
Department of Planning and Environment, Energy, Water and Portfolio Strategy

Relevant Legislation
Gas Supply Act 1996

Administering Agency
SafeWork NSW

Relevant Legislation
Work Health and Safety Regulation 2017

13. Historic Buildings

Administering Agency
Office of Environment and Heritage

Relevant Legislation
Heritage Regulation 2012
14. Hospitals, Nursing Homes and Health Care Buildings

Administering Agency
NSW Ministry of Health

Relevant Legislation
Private Health Facilities Regulation 2017
Poisons and Therapeutic Goods Regulation 2008

15. Hot or Warm Water Systems and Air Handling Systems

Administering Agency
NSW Ministry of Health

Relevant Legislation
Public Health Regulation 2012

16. Lift Installations

Administering Agency
SafeWork NSW

Relevant Legislation
Work Health and Safety Regulation 2017

17. Moveable Dwellings (in Caravan Parks)

Administering Agency
Office of Local Government

Relevant Legislation
Local Government Act 1993

Administering Agency
Department of Planning and Environment

Relevant Legislation
Local Government (Manufactured Home Estates, Caravan Parks, Camping Grounds and Moveable Dwellings) Regulation 2005

18. Work Health and Safety

Administering Agency
SafeWork NSW

Relevant Legislation
Work Health and Safety Regulation 2017

19. Pharmacies

Administering Agency
Pharmacy Council of New South Wales
Relevant Legislation
Health Practitioner Regulation National Law (NSW)
Health Practitioner Regulation (New South Wales) Regulation 2016

20. Planning Controls

Administering Agency
Department of Planning and Environment

Relevant Legislation
Environmental Planning and Assessment Act 1979
Environmental Planning and Assessment Regulation 2000

21. Premises for Activities Involving Skin Penetration

Administering Agency
NSW Ministry of Health

Relevant Legislation
Public Health Regulation 2012

22. Sanitary Plumbing, Water Supply and Sewerage

Administering Agency
Office of Local Government

Relevant Legislation
Local Government Act 1993
Local Government (General) Regulation 2005

Administering Agency
NSW Fair Trading

Relevant Legislation
Plumbing and Drainage Act 2011
Plumbing and Drainage Regulation 2017

Approval to Connect to Network Utility Operator’s System
Refer to the Network Utility Operator for the current Act & Regulation
Hunter Water Act 1991
Sydney Water Act 1994
Water Industry Competition Act (WICA) 2006

23. Septic Tank Installations

Administering Agency
Office of Local Government

Relevant Legislation
Local Government Act 1993
Local Government (General) Regulation 2005
24. Sleeping Accommodation

Administering Agency
NSW Ministry of Health

Relevant Legislation
Public Health Regulation 2012

25. Smoking Restrictions

Administering Agency
NSW Ministry of Health

Relevant Legislation
Smoke-free Environment Regulation 2016
Smoke-free Environment Act 2000
Public Health (Tobacco) Act 2008

26. Subdivision of Buildings

Administering Agency
Department of Finance, Services and Innovation

Relevant Legislation
Conveyancing Act 1919
Conveyancing (General) Regulation 2013
Strata Scheme Development Act 2015
Strata Scheme Development Regulation 2016
Community Land Development Act 1989
Community Land Development Regulation 2007

27. Swimming Pool Fences

Administering Agency
Office of Local Government

Relevant Legislation
Swimming Pools Act 1992
Swimming Pools Regulation 2018

28. Temporary Structures

Administering Agency
Department of Planning and Environment

Relevant Legislation
Environmental Planning and Assessment Act 1979
Environmental Planning and Assessment Regulation 2000
Schedule 6 Northern Territory

Introduction

Section B **Structure**

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Structural provisions</td>
</tr>
<tr>
<td>NT B1D4</td>
<td>Determination of structural resistance of materials and forms of construction</td>
</tr>
</tbody>
</table>

Section E **Services and equipment**

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Fire fighting equipment</td>
</tr>
<tr>
<td>NT E1D10</td>
<td>Where sprinklers are required: Class 9a and 9c buildings</td>
</tr>
</tbody>
</table>

Section G **Ancillary provisions**

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Minor structures and components</td>
</tr>
<tr>
<td>NT G1P1</td>
<td>Swimming pool drainage</td>
</tr>
<tr>
<td>NT G1P2</td>
<td>Swimming pool access and water recirculation systems</td>
</tr>
<tr>
<td>NT G1D2</td>
<td>Swimming pools</td>
</tr>
</tbody>
</table>

Footnote: Other legislation affecting buildings
This Appendix contains variations and additions to the Building Code of Australia (BCA) provisions which are considered necessary for the effective application of the Code in the Northern Territory.
Part B1 Structural provisions

Insert clause NT B1D4 as follows:

NT B1D4 Determination of structural resistance of materials and forms of construction

[2019: NT B1.4(i)]

The structural resistance of materials and forms of construction must be determined in accordance with the following, as appropriate:

(a) Masonry (including masonry-veneer, unreinforced masonry and reinforced masonry): AS 3700, except—
 (i) ‘(for piers—isolated or engaged)’ is removed from Clause 8.5.1(d); and
 (ii) where Clause 8.5.1 requires design as for unreinforced masonry in accordance with Section 7, the member must also be designed as unreinforced masonry in accordance with Tables 10.3 and 4.1(a)(i)(C) of AS 3700.

(a) Concrete:
 (i) Concrete construction (including reinforced and prestressed concrete): AS 3600.
 (iii) Post-installed and cast-in fastenings: AS 5216.

(a) Steel construction:
 (i) Steel structures: AS 4100.
 (ii) Cold-formed steel structures: AS/NZS 4600.

(a) Composite steel and concrete: AS/NZS 2327.

(b) Aluminium construction: AS/NZS 1664.1 or AS/NZS 1664.2.

(c) Timber construction:
 (i) Design of timber structures: AS 1720.1.
 (ii) Timber structures: AS 1684.2, AS 1684.3 or AS 1684.4.
 (iii) Nailplated timber roof trusses: AS 1720.5.

(a) Piling: AS 2159.

(b) Glazed assemblies:
 (i) The following glazed assemblies in an external wall must comply with AS 2047:
 (A) Windows excluding those listed in (ii).
 (B) Sliding and swinging glazed doors with a frame, including french and bi-fold doors with a frame.
 (C) Adjustable louvres.
 (D) Shopfronts.
 (E) Window walls with one piece framing.
 (ii) All glazed assemblies not covered by (i) and the following glazed assemblies must comply with AS 1288:
 (A) All glazed assemblies not in an external wall.
 (B) Revolving doors.
 (C) Fixed louvres.
 (D) Skylights, roof lights and windows in other than the vertical plane.
(E) Sliding and swinging doors without a frame.
(F) Windows constructed on site and architectural one-off windows, which are not design tested in accordance with AS 2047.
(G) Second-hand windows, re-used windows and recycled windows.
(H) Heritage windows.
(I) Glazing used in balustrades and sloping overhead glazing.

(c) Termite Risk Management: Where a is subject to attack by subterranean termites—

(i) AS 3660.1 with additional protection measures to be used in areas where Mastrotermes Darwiniensis are prevalent; and

(ii) for the purposes of this provision, a consisting entirely of, or a combination of, any of the following materials is considered not to be subject to termite attack:

(A) Steel, aluminium or other metals.
(B) Concrete.
(C) Masonry.
(D) Fibre-reinforced cement.
(E) Timber in areas where Mastrotermes Darwiniensis are not prevalent — naturally termite resistant in accordance with Appendix C of AS 3660.1.
(F) Timber — preservative treated in accordance with Appendix D of AS 3660.1; and

(iii) Where a termite risk management system in accordance with AS 3660.1 is used, a durable notice must be permanently fixed to the building in a prominent location, such as a meter box or the like, indicating—

(A) the method of termite risk management; and
(B) the date of installation of the system; and
(C) where a chemical is used, its life expectancy as listed on the appropriate authority’s pesticides register label; and
(D) the installer’s or manufacturer’s recommendations for the scope and frequency of future inspections for termite activity.

(d) Roof construction (except in cyclonic areas):

(i) Roof tiling: AS 2050.

(ii) Cellulose cement corrugated sheets: AS/NZS 2908.1 with safety mesh installed in accordance with AS/NZS 1562.3 clause 2.4.3.2 except for sub-clause (g) for plastic sheeting.

(iii) Metal roofing: AS 1562.1.

(f) Garage doors and other large access doors in openings not more than 3 m in height in external walls of buildings determined as being located in wind region C or D in accordance with AS/NZS 1170.2: AS/NZS 4505.

(g) Lift shafts which are not required to have an FRL, must—

(i) except as required by (ii), be completely enclosed with non-perforated material between the bottom of the pit and the ceiling of the lift shaft, other than—

(A) at landing doors, emergency doors and pit access doors; and
(B) low-rise, low-speed constant pressure lifts; and
(C) small-sized, low-speed automatic lifts; and

(ii) in atrium and observation areas, be protected with non-perforated material not less than 2.5 m in height—

(A) above any places on which a person can stand, which are within 800 mm horizontal reach of any vertical moving lift component including ropes and counterweights; and
(B) at the lowest level of the atrium area that the lift serves, on all sides except the door opening, for not less than 2.5 m in height, by enclosure with non-perforated material; and

(iii) be of non-brittle material; and

(iv) where glazing is used—
(A) comply with Table B1D4; or
(B) not fail the deflection criteria required by S6C6(c).

Insert Table B1D4 as follows:

<table>
<thead>
<tr>
<th>Application</th>
<th>Lift shaft vision panels more than 65 000 mm², door panels, and lift shafts</th>
<th>Lift shaft vision panels less than or equal to 65 000 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminated glass</td>
<td>10mm (0.76 mm interlayer)</td>
<td>6mm (0.76 mm interlayer)</td>
</tr>
<tr>
<td>Toughened/ laminated glass</td>
<td>10mm (0.76 mm interlayer)</td>
<td>6mm (0.76 mm interlayer)</td>
</tr>
<tr>
<td>Annealed glass with security polyester film coating</td>
<td>10mm</td>
<td>6mm</td>
</tr>
<tr>
<td>Safety wire glass</td>
<td>Not applicable</td>
<td>Subject to fire test</td>
</tr>
<tr>
<td>Polycarbonate sheet</td>
<td>13 mm</td>
<td>6 mm</td>
</tr>
</tbody>
</table>
Part E1 Fire fighting equipment

Insert clause NT E1D10 as follows:

NT E1D10 Where sprinklers are required: Class 9a and 9c buildings

[2019: NT Table E1.5]

(1) In a Class 9a health-care building used as a residential care building, sprinklers are required throughout the building and in any fire compartment containing a Class 9a part used for residential care.

(2) In a Class 9a building, other than as described in (1), sprinklers are required if the building has more than one storey.

(3) In a Class 9c building, sprinklers are required throughout the building and in any fire compartment containing a Class 9c part.
Section G Ancillary provisions

Part G1 Minor structures and components

Delete G1P1 and insert NT G1P1 as follows:

NT G1P1 Swimming pool drainage

This clause has deliberately been left blank.

Insert clause NT G1P2 as follows:

NT G1P2 Swimming pool access and water recirculation systems

A swimming pool water recirculation system must incorporate safety measures to avoid entrapment of, or injury to, a person.

Applications:

NT G1P2 only applies to a swimming pool with a depth of water more than 300 mm.

Delete G1D2 and insert NT G1D2 as follows:

NT G1D2 Swimming pools

This clause has deliberately been left blank.

Barriers and fences for swimming pools are regulated by the Northern Territory of Australia Swimming Pool Safety Act 2004.
In addition to any applicable provisions of the Building Act, Building Regulations and this Code, there are a number of other legislative technical requirements affecting the design, construction and/or performance of buildings that practitioners may need to be aware of, including, but not necessarily limited to, the following list. Additional legislative instruments such as regulations, codes and standards may exist under the legislation listed.

1. Accommodation/Food Premises/Skin Penetration Activities/Mortuaries

Administering Agency
Department of Health

Relevant Legislation
Public and Environmental Health Act
Public and Environmental Health Regulations
Food Act

2. Child Care

Administering Agency
Department of Education

Relevant Legislation
Education and Care Services National Law
Education and Care Services National Regulations

3. Crown Land

Administering Agency
Department of Infrastructure, Planning and Logistics

Relevant Legislation
Crown Lands Act

4. Dangerous Goods and Gas Installations

Administering Agency
Department of Attorney-General and Justice (NT Worksafe)

Relevant Legislation
Dangerous Goods Act

5. Electrical Installations

Administering Agency
Department of Attorney-General and Justice (NT Worksafe)

Relevant Legislation
Electrical Workers and Contractors Act
Electricity Reform Act

Footnote: Other legislation affecting buildings

Public Comment Draft
Electricity Reform (Safety and Technical) Regulations

6. Fences — dividing

Administering Agency
Department of Attorney-General and Justice (NT Worksafe)

Relevant Legislation
Fences Act

7. Fire Prevention

Administering Agency
Northern Territory Fire and Rescue Service

Relevant Legislation
Fire and Emergency Act

8. Historic Buildings

Administering Agency
Department of Tourism and Culture

Relevant Legislation
Heritage Act

9. Liquor — licensing

Administering Agency
Department of Attorney-General and Justice

Relevant Legislation
Liquor Act

10. Occupational Health and Safety

Administering Agency
Department of Attorney-General and Justice (NT Worksafe)

Relevant Legislation
Work health and Safety (National Uniform Legislation) Act

11. Planning Controls

Administering Agency
Department of Infrastructure, Planning and Logistics

Relevant Legislation
Planning Act
12. Plumbing Installations

Administering Agency
Department of Infrastructure, Planning and Logistics
Department of Attorney-General and Justice

Relevant Legislation
Building Act
Building Regulations
Plumbers and Drainers Licensing Act

13. Stormwater Drainage (Municipal Roads)

Administering Agency
Council or Municipality in which building is located

Relevant Legislation
Local Government Act

14. Stormwater Drainage (Territory Roads)

Administering Agency
Department of Infrastructure, Planning and Logistics

Relevant Legislation
Control of Roads Act

15. Swimming Pools

Administering Agency
Department of Infrastructure, Planning and Logistics

Relevant Legislation
Swimming Pool Safety Act

16. Water Supply and Sewage Services

Administering Agency
Power and Water Corporation

Relevant Legislation
Water Supply and Sewerage Services Act
Water Supply and Sewerage Services Regulations
Schedule 7 Queensland

Introduction

<table>
<thead>
<tr>
<th>Section B</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part B1</td>
<td>Structural provisions</td>
</tr>
<tr>
<td>QLD B1P4</td>
<td>Buildings in flood areas</td>
</tr>
<tr>
<td>QLD B1D4</td>
<td>Determination of structural resistance of materials and forms of construction</td>
</tr>
<tr>
<td>QLD B1D6</td>
<td>Construction of buildings in flood hazard areas</td>
</tr>
</tbody>
</table>

Section G

<table>
<thead>
<tr>
<th>Ancillary provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part G1</td>
</tr>
<tr>
<td>QLD G1P2</td>
</tr>
<tr>
<td>QLD G1D2</td>
</tr>
<tr>
<td>Part G5</td>
</tr>
<tr>
<td>QLD G5P1</td>
</tr>
<tr>
<td>QLD G5D2</td>
</tr>
</tbody>
</table>

Schedule 1

<table>
<thead>
<tr>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footnote: Other legislation affecting buildings</td>
</tr>
</tbody>
</table>
This Appendix contains variations and additions to the Building Code of Australia (BCA) provisions which are considered necessary for the effective application of the Code in Queensland and shall be treated as amendments to the Code.

<table>
<thead>
<tr>
<th>QLD</th>
<th>Introduction</th>
</tr>
</thead>
</table>

This Appendix contains variations and additions to the Building Code of Australia (BCA) provisions which are considered necessary for the effective application of the Code in Queensland and shall be treated as amendments to the Code.
Part B1 Structural provisions

Delete B1P4 and insert QLD B1P4 as follows:

QLD B1P4 Buildings in flood areas

This clause has deliberately been left blank.

Building work in designated flood areas is regulated by the Building Act 1975 and the Queensland Development Code 3.5 - Construction of buildings in flood hazard areas.

Insert clause QLD B1D4 as follows:

QLD B1D4 Determination of structural resistance of materials and forms of construction

[2019: QLD B1.4(f)(v)]

The structural resistance of materials and forms of construction must be determined in accordance with the following, as appropriate:

(a) Masonry (including masonry-veneer, unreinforced masonry and reinforced masonry): AS 3700, except—
 (i) 'for piers—isolated or engaged' is removed from Clause 8.5.1(d); and
 (ii) where Clause 8.5.1 requires design as for unreinforced masonry in accordance with Section 7, the member must also be designed as unreinforced masonry in accordance with Tables 10.3 and 4.1(a)(i)(C) of AS 3700.

(b) Concrete:
 (i) Concrete construction (including reinforced and prestressed concrete): AS 3600.
 (iii) Post-installed and cast-in fastenings: AS 5216.

(c) Steel construction:
 (i) Steel structures: AS 4100.
 (ii) Cold-formed steel structures: AS/NZS 4600.

(d) Composite steel and concrete: AS/NZS 2327.

(e) Aluminium construction: AS/NZS 1664.1 or AS/NZS 1664.2.

(f) Piling: AS 2159.

(g) Glazed assemblies:
 (i) The following glazed assemblies in an external wall must comply with AS 2047:
(A) Windows excluding those listed in (ii).
(B) Sliding and swinging glazed doors with a frame, including French and bi-fold doors with a frame.
(C) Adjustable louvres.
(D) Shopfronts.
(E) Window walls with one piece framing.

(ii) All glazed assemblies not covered by (i) and the following glazed assemblies must comply with AS 1288:

(A) All glazed assemblies not in an external wall.
(B) Revolving doors.
(C) Fixed louvres.
(D) Skylights, roof lights and windows in other than the vertical plane.
(E) Sliding and swinging doors without a frame.
(F) Windows constructed on site and architectural one-off windows, which are not design tested in accordance with AS 2047.
(G) Second-hand windows, re-used windows and recycled windows.
(H) Heritage windows.
(I) Glazing used in balustrades and sloping overhead glazing.

(h) Termite Risk Management: Where a is subject to attack by subterranean termites: AS 3660.1, and—

(i) for the purposes of this provision, a consisting entirely of, or a combination of, any of the following materials is considered not subject to termite attack:

(A) Steel, aluminium or other metals.
(B) Concrete.
(C) Masonry.
(D) Fibre-reinforced cement.
(E) Timber — naturally termite resistant in accordance with Appendix C of AS 3660.1.
(F) Timber — preservative treated in accordance with Appendix D of AS 3660.1; and

(ii) a durable notice must be permanently fixed to the building in a prominent location, such as a meter box or the like, indicating—

(A) the termite management system used; and
(B) the date of installation of the system; and
(C) where a chemical is used, its life expectancy as listed on the appropriate authority’s pesticides register label; and
(D) the installer’s or manufacturer’s recommendations for the scope and frequency of future inspections for termite activity.

(i) Roof construction (except in cyclonic areas):

(i) Roof tiling: AS 2050.
(ii) Cellulose cement corrugated sheets: AS/NZS 2908.1 with safety mesh installed in accordance with AS/NZS 1562.3 clause 2.4.3.2 except for sub-clause (g) for plastic sheeting.
(iii) Metal roofing: AS 1562.1.

(k) Garage doors and other large access doors in openings not more than 3 m in height in external walls of buildings determined as being located in wind region C or D in accordance with AS/NZS 1170.2: AS/NZS 4505.

(l) Lift shafts which are not required to have an FRL, must—

(i) except as required by (ii), be completely enclosed with non-perforated material between the bottom of the pit and the ceiling of the lift shaft, other than—

(A) at landing doors, emergency doors and pit access doors; and
(B) low-rise, low-speed constant pressure lifts; and
(C) **small-sized, low-speed automatic lifts;** and

(ii) in atrium and observation areas, be protected with non-perforated material not less than 2.5 m in height—

(A) above any places on which a person can stand, which are within 800 mm horizontal reach of any vertical moving lift component including ropes and counterweights; and

(B) at the lowest level of the atrium area that the lift serves, on all sides except the door opening, for not less than 2.5 m in height, by enclosure with non-perforated material; and

(iii) be of non-brittle material; and

(iv) where glazing is used—

(A) comply with Table B1D4; or

(B) not fail the deflection criteria *required* by S6C6(c).

Insert Table B1D4 as follows:

Table B1D4: Material and minimum thickness of glazing and polycarbonate sheet

<table>
<thead>
<tr>
<th>Application</th>
<th>Lift shaft vision panels more than 65 000 mm², door panels, and lift shafts</th>
<th>Lift shaft vision panels less than or equal to 65 000 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminated glass</td>
<td>10mm (0.76 mm interlayer)</td>
<td>6mm (0.76 mm interlayer)</td>
</tr>
<tr>
<td>Toughened/laminated glass</td>
<td>10mm (0.76 mm interlayer)</td>
<td>6mm (0.76 mm interlayer)</td>
</tr>
<tr>
<td>Annealed glass with security polyester film coating</td>
<td>10mm</td>
<td>6mm</td>
</tr>
<tr>
<td>Safety wire glass</td>
<td>Not applicable</td>
<td>Subject to fire test</td>
</tr>
<tr>
<td>Polycarbonate sheet</td>
<td>13 mm</td>
<td>6 mm</td>
</tr>
</tbody>
</table>

Delete B1D6 and insert QLD B1D6 as follows:

QLD B1D6 Construction of buildings in flood hazard areas

This clause has deliberately been left blank.

Building work in designated flood hazard areas is regulated by the Building Act 1975, and the Queensland Development Code 3.5 - Construction of buildings in flood hazard areas.
Part G1 Minor structures and components

Insert clause QLD G1P2 as follows:

QLD G1P2 Swimming pool access and water recirculation systems

[2019: QLD GP1.2]

A swimming pool water recirculation system must incorporate safety measures to avoid entrapment of, or injury to, a person.

Applications:
QLD G1P2 only applies to a swimming pool with a depth of water more than 300 mm.

Delete G1D2 and insert QLD G1D2 as follows:

QLD G1D2 Swimming pools

This clause has deliberately been left blank.

Barriers and fences for swimming pools are regulated by the Building Act 1975 and the Building Regulation 2006.

Part G5 Construction in bushfire prone areas

Insert clause QLD G5P1 as follows:

QLD G5P1 Bushfire resistance

[2019: QLD GP5.1]

A building that is constructed in a designated bushfire prone area must be designed and constructed to reduce the risk of ignition from a bushfire while the fire front passes.

Applications:
QLD G5P1 only applies to—
(a) a Class 2 or 3 building; or
(b) a Class 10a building or deck associated with a Class 2 or 3 building, located in a designated bushfire prone area, but does not apply when the classified vegetation is Group F rainforest (excluding wet sclerophyll forest types), mangrove communities and grasslands under 300 mm high.

Insert clause QLD G5D2 as follows:

QLD G5D2 Application of Part

[2019: QLD G5.1]

(1) The Deemed-to-Satisfy Provisions of this Part apply in a designated bushfire prone area to—
(a) a Class 2 or 3 building; or
(b) a Class 10a building or deck associated with a Class 2 or 3 building.

(2) The Deemed-to-Satisfy Provisions of this Part do not apply when the classified vegetation is Group F rainforest (excluding wet sclerophyll forest types), mangrove communities and grasslands under 300 mm high.
Schedule 1 Definitions

(a) A member of a building specifically designed to take part of the building loads and includes roof, ceiling, floor, stairway or ramp and wall framing members including bracing members designed for the specific purpose of acting as a brace to those members.

(b) Door jambs, window frames and reveals, architraves and skirtings.
Footnote: Other legislation affecting buildings

All legislative technical requirements affecting the design, construction and/or performance of buildings are consolidated into the Building Act 1975 and other legislative instruments under that Act, such as regulations, codes (including this Code) and standards. Building work for the energy efficiency of Class 2 buildings is also regulated by the Queensland Development Code MP 4.1-Sustainable buildings.
Schedule 8 South Australia

Introduction

Section A Governing requirements
Part A6 Building classification
SA A6G7 Class 6 buildings

Section B Structure
Part B1 Structural provisions
SA B1P4 Buildings in flood areas
SA B1D6 Construction of buildings in flood hazard areas

Section C Fire resistance
Part C2 Fire resistance and stability
C2D2 Type of construction required
SA C2D15\textsubscript{16} Class 7b bulk grain storage facilities
Part C3 Compartmentation and separation
SA C3D16 Class 2 external walls exposed to brush fences
SA C3D17 Bulk grain storage facilities
Part C4 Protection of openings
SA C4D18 Protection of openings – bulk grain storage facilities

Section D Access and egress
Part D2 Provision for escape
D2D3 Number of exits required
D2D4 When fire-isolated stairways and ramps are required
D2D5 Exit travel distances
SA D2D6 Distance between alternative exits
D2D14 Travel by non-fire-isolated stairways or ramps
D2D21 Plant rooms, lift machine rooms and electricity network substations: Concession
Part D3 Construction of exits
SA D3D16 Thresholds
SA D3D23 Fixed platforms, walkways, stairways and ladders
D3D25 Swinging doors
Part D4 Access for people with a disability
D4D2 General building access requirements
SA D4D5 Exemptions

Section E Services and equipment
Part E1 Fire fighting equipment
E1D2 Fire hydrants
E1D3 Fire hose reels
Section F Health and amenity

Part F1 Damp and weatherproofing

SA F1P54 Rising damp

Part F2 Wet areas and overflow protection

SA F1P6F2P1 Wet area overflows

F4D2F2D2 Waterproofing of wet areas in buildings

SA F1D9F2D4 Provision of floor wastes

Part F2F4 Sanitary and other facilities

F2D6F4D6 Accessible unisex sanitary compartments

SA F1D8G9 Damp-proofing of floors on the ground

Part F2 Wet areas and overflow protection

SA F1P6F2P1 Wet area overflows

F4D2F2D2 Waterproofing of wet areas in buildings

Section G Ancillary provisions

Part G1 Minor structures and components

SA G1P2 Swimming pool access and water recirculation systems

SA G1D2 Swimming pools

Section I Special use buildings

SA Part I3 Farm buildings and farm sheds

Section J Energy efficiency

Part J3 Building fabric

J3D4 Roof and ceiling construction

Schedule 1 Definitions

Footnote: Other legislation affecting buildings
This Appendix contains variations and additions to the BCA provisions which are considered necessary for the effective application of the Code in South Australia.

These variations and additions are to be treated as amendments to the BCA and apply to the construction or alteration of all buildings requiring approval under the Development Act 1993 and Regulations 2008.
Part A6 Building classification

Insert clause SA A6G7 as follows:

SA A6G7 Class 6 buildings

[2019: SA A6.6]

A Class 6 building is a shop or other building for the sale of goods by retail or the supply of services direct to the public, including—

(a) an eating room, cafe, restaurant, milk or soft drink bar; or
(b) a dining room, bar, shop or kiosk part of a hotel or motel; or
(c) a hairdresser’s or barber’s shop, public laundry, or undertaker’s establishment; or
(d) market or sale room, showroom, or service station; or
(e) a small arts venue.
Section B Structure

Part B1 Structural provisions

Delete B1P4 and insert SA B1P4 as follows:

<table>
<thead>
<tr>
<th>SA B1P4</th>
<th>Buildings in flood areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This clause has deliberately been left blank.</td>
</tr>
</tbody>
</table>

Delete B1D6 and insert SA B1D6 as follows:

<table>
<thead>
<tr>
<th>SA B1D6</th>
<th>Construction of buildings in flood hazard areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This clause has deliberately been left blank.</td>
</tr>
</tbody>
</table>
Delete C2D2(1) and replace with SA C2D2(1) as follows:

(1) The minimum Type of fire-resisting construction of a building must be determined in accordance with Table C2D2, except as allowed for—
 (a) certain Class 2, 3 or 9c buildings in C2D6; and
 (b) a Class 4 part of a building located on the top storey in C2D4(2); and
 (c) open spectator stands and indoor sports stadiums in C2D8; and
 (d) Class 2 buildings located within 3 m of a brush fence and Class 10b brush fences located within 3 m of a Class 2 building in SA C2D2(3) and (4); and
 (e) a Class 7b bulk grain storage facility in SA C2D15.

Insert subclause SA C2D2(3) in clause C2D2 as follows:

(3) In addition to the minimum fire-resisting construction requirements of Table C2D2 and Specification 5 a Class 2 building must not be constructed within 3 m of a Class 10b brush fence unless any part of the building within 3 m of the brush fence complies with the fire-resisting requirements of SA C2D15.

Insert subclause SA C2D2(4) in clause C2D2 as follows:

(4) A Class 10b brush fence must not be constructed within 3 m of a Class 2 building unless any part of the building within 3 m of the brush fence complies with the fire-resisting construction requirements of SA C2D15.

Insert clause SA C2D1516 as follows:

SA C2D1516 Class 7b bulk grain storage facilities

The external walls of a bulk grain storage facility need not be of fire-resisting construction if—
 (a) The external walls are 3 m or more from an allotment boundary and more than 6 m from any other building on the same allotment, other than a Class 10 building; and
 (b) a fire separation space of not less than 2 m is provided between cell type silo; and
 (c) the external walls are—
 (i) of non-combustible construction; or
 (ii) of Type C construction.

Part C3 Compartmentation and separation

Insert clause SA C3D16 as follows:

SA C3D16 Class 2 external walls exposed to brush fences

Where the distance between the external wall of a Class 2 building and a brush fence is less than 3 m, the Class 2 building must comply with the following:

 (a) An external wall or part of an external wall exposed to the brush fence must be fire-resisting and extend to the underside of a non-combustible roof covering or a non-combustible eaves lining or to a point at which exposure to the brush fence no longer exists and must—
(i) have a FRL of at least 60/60/60 when tested from the outside; or
(ii) be of masonry veneer construction in which the external masonry veneer is not less than 90 mm thick; or
(iii) be of masonry construction not less than 90 mm thick; and
(iv) have any exposed openings protected in accordance with C4D4.

(b) Where an external wall is required by (a) to be fire-resisting, only that part of the wall, including openings within the specified distance, need to be constructed in that manner.

c) The requirements of (a) do not apply to subfloor vents, roof vents, weepholes, control joints, construction joints and penetrations for pipes, conduits and the like.

d) The following are permitted to encroach within 3 m of a brush fence—
 (i) non-combustible fascias, gutters, downpipes; and
 (ii) eaves with non-combustible roof cladding and non-combustible lining; and
 (iii) flues, chimneys, pipes, domestic fuel tanks, cooling or heating appliances or other services; and
 (iv) light fittings, electricity or gas meters, aerials or antennas; and
 (v) pergolas, sun blinds or water tanks; and
 (vi) unroofed terraces, landings, steps and ramps, not more than 1 m in height.

e) The distance from any point on an external wall of a building to a brush fence is measured in any direction from the external wall.

Insert clause SA C3D17 as follows:

SA C3D17 Bulk grain storage facilities

Underground passageways in a bulk grain storage facility must be separated from other parts of the building by smoke-proof walls and smoke-proof doors complying with Specification 11.

Part C4 Protection of openings

Insert clause SA C4D18 as follows:

SA C4D18 Protection of openings – bulk grain storage facilities

Where external stairs, ramps or ladders are used as an exit in a bulk grain storage facility, any window or door opening within 6 m of the stairway or ladder—

(a) must be protected in accordance with C4D5; or

(b) the stairway, ramp or ladder must be enclosed for its full height above the lowest level of the window or door opening with non-combustible construction having an FRL of not less than 60/60/60.
Part D2 Provision for escape
D2D3 Number of exits required

Delete D2D3(2) and replace with SA D2D3(2) as follows:

(2) Class 2 to 8 buildings — In addition to any horizontal exit, not less than 2 exits must be provided from the following:
 (a) Each storey if the building has an effective height of more than 25 m.
 (b) A Class 2 or 3 building subject to C2D6.
 (c) A storage shed in a bulk grain storage facility if the distance of travel to an exit is more than 150 m.
 (d) The gallery level of a in a cell type silo in a bulk grain storage facility.

D2D4 When fire-isolated stairways and ramps are required

Delete D2D4(2) and replace with SA D2D4(2) as follows:

(2) Class 5, 6, 7, 8 or 9 buildings — Every stairway or ramp serving as a required exit must be fire-isolated unless—
 (a) in a Class 9a health-care building — it connects, or passes through or passes by not more than 2 consecutive storeys in areas other than patient care areas; or
 (b) it is part of an open spectator stand; or
 (c) in any other case except in a Class 9c building, it connects, passes through or passes by not more than 2 consecutive storeys and one extra storey of any classification may be included if—
 (i) the building has a sprinkler system (other than a FPAA101D system) complying with Specification 17 installed throughout; or
 (ii) the required exit does not provide access to or egress for, and is separated from, the extra storey by construction having—
 (A) an FRL of \(\frac{90}{60}/\frac{60}{60}\), if non-loadbearing; and
 (B) an FRL of \(\frac{90}{90}/\frac{90}{90}\) for Type A construction or \(\frac{60}{60}/\frac{60}{60}\) for Type B or C construction, if loadbearing; and
 (C) no opening that could permit the passage of fire or smoke; or
 (d) it is a required exit from a bulk grain storage facility and there are no window or door openings within 3 m of the stairway, ramp or ladder.

D2D5 Exit travel distances

Insert subclause SA D2D5(7) in clause D2D5 as follows:

(7) — Notwithstanding (3), in a —
 (a) no point on the floor must be more than 20 m from an exit, or a point from which travel in different directions to 2 exits is available, in which case the maximum distance to one of those exits must not exceed 60 m; and
 (b) in a machinery room, plant-room or the like, the distance to a single exit serving a storey at the level of access to a road or open space may be increased to 30 m.

Insert subclause SA D2D5(8) in clause D2D5 as follows:

(8) Bulk grain storage facilities — Notwithstanding (3), in a bulk grain storage facility — where required exits are spaced not more than 100 m apart, the travel distance to an exit in a cell type silo or a storage shed is not limited.
Insert clause SA D2D6 as follows:

SA D2D6 Distance between alternative exits

[2019: SA D1.5(e)]

Exits that are required as alternative means of egress must be—

(a) distributed as uniformly as practicable within or around the storey served and in positions where unobstructed access to at least 2 exits is readily available from all points on the floor including lift lobby areas; and

(b) not less than 9 m apart; and

(c) not more than—

(i) in a Class 2 or 3 building — 45 m apart; or

(ii) in a Class 9a health-care building, if such required exit serves a patient care area — 45 m apart; or

(iii) in all other cases — 60 m apart; and

(d) located so that alternative paths of travel do not converge such that they become less than 6 m apart; and

(e) notwithstanding (c), exits that are required as alternative means of egress in a farm building must not be more than 80 m apart.

D2D14 Travel by non-fire-isolated stairways or ramps

[2019: D1.9]

Insert subclause SA D2D14(7) in clause D2D14 as follows:

(7) In a bulk grain storage facility, the distance from any point on the floor to a point of egress to a road or open space by way of a non-fire-isolated stairway, non-fire-isolated ramp or ladder is not limited.

D2D21 Plant rooms, lift machine rooms and electricity network substations: Concession

[2019: D1.16]

Insert subclause SA D2D21(3) in clause D2D21 as follows:

(3) In a bulk grain storage facility, a stair or ladder complying with AS 1657 may be used as an alternative means of egress from a cell type silo.

Part D3 Construction of exits

Insert clause SA D3D16 as follows:

SA D3D16 Thresholds

[2019: SA D2.15(e)]

(1) The threshold of a doorway must not incorporate a step or ramp at any point closer to the doorway than the width of the door leaf unless—

(a) in patient care areas in a Class 9a health-care building, the door sill is not more than 25 mm above the finished floor level to which the doorway opens; or

(b) in a Class 9c building, a ramp is provided with a maximum gradient of 1:8 for a maximum height of 25 mm over the threshold; or

(c) in a building required to be accessible by Part D4, the doorway—

(i) opens to a road or open space; and

(ii) is provided with a threshold ramp or step ramp in accordance with AS 1428.1; or

(d) in other cases—

(i) the doorway opens to a road or open space, external stair landing or external balcony; and
(ii) the door sill is not more than 190 mm above the finished surface of the ground, balcony, or the like, to which the doorway opens.

(2) Notwithstanding the requirements of D3D16, where necessary due to the operational requirements of the building, a doorway serving a farm building may incorporate a step that is no more than 700 mm above the finished floor level.

Insert clause SA D3D23 as follows:

SA D3D23 Fixed platforms, walkways, stairways and ladders

A fixed platform, walkway, stairway, ladder and any going and riser, landing, handrail or barrier attached thereto may comply with AS 1657 in lieu of D3D14, D3D16, D3D17, D3D18, D3D19, D3D20, D3D21 and D3D22 if it only serves—

(a) machinery rooms, boiler houses, lift-machine rooms, plant-rooms, and the like; or

(b) non-habitable rooms, such as attics, storerooms and the like that are not used on a frequent or daily basis in the internal parts of a sole-occupancy unit in a Class 2 building or Class 4 part of a building; or

(c) areas within a farm building.

D3D25 Swinging doors

Delete D3D25(1) and replace with SA D3D25(1) as follows:

(1) A swinging door in a required exit or forming part of a required exit—

(a) must not encroach—

(i) at any part of its swing by more than 500 mm on the required width (including any landings) of a required stairway, ramp or passageway if it is likely to impede the path of travel of the people already using the exit; and

(ii) when fully open, by more than 100 mm on the required width of the required exit; and

(b) must swing in the direction of egress unless—

(i) it serves a building or part with a floor area not more than 200 m², it is the only required exit from the building or part and it is fitted with a device for holding it in the open position; or

(ii) it serves a sanitary compartment or airlock (in which case it may swing in either direction); and

(iii) it serves a farm building; and

(c) must not otherwise impede the path or direction of egress.

Part D4 Access for people with a disability

D4D2 General building access requirements

Delete D4D2(4) and replace with SA D4D2(4) as follows:

(4) For Class 2 buildings, access requirements are as follows:

(a) Common areas:

(i) From a pedestrian entrance required to be accessible to at least 1 floor containing sole-occupancy units and to the entrance doorway of each sole-occupancy unit located on that level.

(ii) To and within not less than 1 of each type of room or space for use in common by the residents, including a cooking facility, sauna, gymnasium, swimming pool, common laundry, games room, individual shop, eating area, or the like.

(iii) Where a ramp complying with AS 1428.1 or a passenger lift is installed—

(A) to the entrance doorway of each sole-occupancy unit; and
(B) to and within rooms or spaces for use in common by the residents.

(iv) The requirements of (iii) only apply where the space referred to in (A) or (B) is located on a level served by the lift or ramp.

(b) In developments consisting of 20 or more residential sole-occupancy units — to and within one residential sole-occupancy unit or 5% of the total number of residential sole-occupancy units provided, whichever is the greater, must be accessible.

Insert clause SA D4D5 as follows:

SA D4D5 Exemptions

[2019: SA D3.4(d)]

The following areas are not required to be accessible:

(a) An area where access would be inappropriate because of the particular purpose for which the area is used.

(b) An area that would pose a health or safety risk for people with a disability.

(c) Any path of travel providing access only to an area exempted by (a) or (b).

(d) In a farm building and a bulk grain storage facility it is not necessary to provide access for people with disabilities to any area if access would be inappropriate because of the particular purpose for which the area is used.
Part E1 Fire fighting equipment

E1D2 Fire hydrants

Insert subclause SA E1D2(5) in clause E1D2 as follows:

(5) In a farm building, in lieu of providing a fire hydrant system in accordance with (2), the building may be provided with—

(a) a fire hydrant system installed in accordance with AS 2419.1 with the following variations—
 (i) in lieu of 4 hour water supply the minimum on-site water supply quantity must be as set out in Table SA E1D2 for the particular building group; and
 (ii) for Group A and B buildings over 1000 m² in floor area each tank used must have a capacity of not less than 72,000 litres; and
 (iii) for single tank systems compliance with clause 4.3.3 is not required; and
 (iv) compliance with clause 4.3.1 of AS 2419.1 is not required; and
 (v) for buildings incorporating non-fire-resistant polystyrene sandwich panel construction, the minimum water supply quantities in Table SA E1D2 must be increased by 50%; and
 (vi) an on-site pumpset is not required if the design performance of section 2.3 of AS 2419.1 is achieved based on use of a fire truck pump with a capacity of 1,900 litres per minute at 1,000 kPa; and
 (vii) in lieu of the coverage specified in AS 2419.1, external fire hydrants are located so that every part of the perimeter of a building is within 100 m from a hydrant outlet measured along the shortest distance of travel between or around buildings; or

(b) a water supply system comprising single or multiple on-site water storage tanks with connections for use by the fire brigade and complying with the requirements of AS 2419.1 for water supplies and water storage, except that—
 (i) in lieu of 4 hour water supply the minimum on-site water supply quantity must be as set out in Table SA E1D2 for the particular building group; and
 (ii) for Group A and B buildings over 1000 m² in floor area each tank used must have a capacity of not less than 72,000 litres; and
 (iii) for single tank systems compliance with clause 4.3.3 of AS 2419.1 is not required; and
 (iv) for buildings incorporating non-fire-resistant polystyrene sandwich panel construction, the minimum water supply quantities in Table SA E1D2 must be increased by 50%; and
 (v) an on-site pumpset need not be provided; and
 (vi) for Group A or B buildings water storage tanks must be distributed so every part of the perimeter of a building is not more than 100 m from a tank suction point, measured along the shortest distance of travel between or around buildings; and
 (vii) for Group C buildings water storage tanks must be distributed so that every part of the perimeter of a building is within a 200 m radius of a tank suction point; and
 (viii) all pipes, valves and fittings for water storage tanks and connections must comply with section 5 and sections 8.2, 8.3, 8.6 and 8.7 of AS 2419.1 as relevant; and
 (ix) a hardstand area and vehicular approach from the site entrance, suitable for use by the fire brigade must be provided adjacent to each water storage tank.

Insert subclause SA E1D2(6) in clause E1D2 as follows:

(6) A dam may be regarded as a water storage tank if it complies with the requirements of section 5 of AS 2419.1 and the water level is maintained above the top of the highest fire brigade suction point at all times.
Insert subclause SA E1D2(7) in clause E1D2 as follows:

(7) The requirements of (1), (2), (3), (4) and SA E1D2(5) and (6) do not apply to a farm shed.

Insert subclause SA E1D2(8) in clause E1D2 as follows:

(8) In a bulk grain storage facility, on-site hydrants are not required where—

(a) street hydrants are available adjacent to the site which can supply water at not less than 5 litres per second; or

(b) a water supply system comprising single or multiple on-site water storage tanks with connections for use by the fire brigade and complying with the requirements of AS 2419.1 for water supplies and water storage, except that—

(i) in lieu of a 4 hour water supply, an on-site water storage tank containing not less than 25,000 litres is provided within 90 m of a dry booster connection Figure SA E1D2; and

(ii) one dry riser is provided for each cell type silo in a bulk grain storage facility, located in the middle of the longest side of the facility and within 4 m of a required exit; and

(iii) all areas to be protected are within 60 m of a riser outlet, measured around obstacles; and

(iv) metal or high pressure plastic pipe can be used for the dry riser; and

(v) all pipes, valves and fittings for water storage tanks and connections must comply with section 5 and sections 8.2, 8.3, 8.6 and 8.7 of AS 2419.1 as relevant; and

(vi) a hardstand area and vehicular approach from the site entrance, suitable for use by the fire brigade must be provided adjacent each water storage tank.

Insert SA Table E1D2 as follows:

<table>
<thead>
<tr>
<th>Building Group</th>
<th>Floor area (m²)</th>
<th>Minimum water supply quantity (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>500 to 1,000</td>
<td>36,000</td>
</tr>
<tr>
<td></td>
<td>1,001 to 2,000</td>
<td>72,000</td>
</tr>
<tr>
<td></td>
<td>2,001 to 5,000</td>
<td>144,000</td>
</tr>
<tr>
<td>Group B</td>
<td>500 to 1,000</td>
<td>72,000</td>
</tr>
<tr>
<td></td>
<td>1,001 to 2,000</td>
<td>144,000</td>
</tr>
<tr>
<td>Group C</td>
<td>5 L/m² or 36,000 L at each location, whichever is greater</td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
A single water supply with the minimum water quantity outlined in Table SA E1D2 can serve more than one building.

SA Figure E1D2: Location of hydrants, tanks, booster connections and dry risers

E1D3 Fire hose reels

[2019: E1.4]

Delete E1D3(1) and replace with SA E1D3(1) as follows:

(1) E1D3 does not apply to—

(a) a Class 2, 3 or 5 building or Class 4 part of a building; or

(b) a Class 8 electricity network substation; or

(c) a Class 9c building; or

(d) classrooms and associated corridors in a primary or secondary school; or

(e) a farm building not used for hay storage exceeding 500 m² or 1,000 m³; or

(f) a bulk grain storage facility.
E1D14 Portable fire extinguishers

[2019: E1.6 and Table E1.6]

Insert subclause SA E1D14(6) in clause E1D14 as follows:

(6) For Class A fire risks in a farm building the requirements of (1) need not be provided if—
 (a) portable fire extinguishers for Class A fire risks are provided in accordance with SA E1D13(7); or
 (b) notwithstanding the exemption provided by SA E1D3(1)(e), a fire hose reel system is provided in accordance with E1D3, or wash-down hoses or similar hoses that are—
 (i) not more than 36 m long; and
 (ii) equipped with a spray nozzle suitable for fighting a fire at the incipient stage; and
 (iii) permanently connected to a water supply which is sufficient to supply two hoses discharging at the rate of 20 litres per minute for 60 minutes; and
 (iv) arranged to provide coverage to all points on the floor within.

Insert subclause SA E1D14(7) in clause E1D14 as follows:

(7) Portable fire extinguishers provided to comply with SA E1D13(6)(a) must be—
 (a) located at or adjacent to every required exit; or
 (b) in open walled farm buildings, one extinguisher is provided for every 500 m² of floor area.

Part E4 Visibility in an emergency, exit signs and warning systems

Insert clause SA E4D2 as follows:

SA E4D2 Emergency lighting requirements

[2019: SA E4.2(b)(iii), (j)]

An emergency lighting system must be installed—

 (a) in every fire-isolated stairway, fire-isolated passageway or fire-isolated ramp; and
 (b) in every storey of a Class 5, 6, 7, 8 or 9 building where the storey has an area more than 300 m²—
 (i) in every passageway, corridor, hallway, or the like, that is part of the path of travel to an exit; and
 (ii) in any room having a floor area more than 100 m² that does not open to a corridor or space that has emergency lighting or to a road or open space; and
 (iii) in any room having a floor area more than 300 m², except that—
 (A) in a farm building any area primarily used for the storage of hay can be excluded when calculating the floor area of the storey or room of the building for the purpose of determining emergency lighting requirements; and
 (B) emergency lighting is not required in a farm building where automatic back-up power is provided by a fuel driven back-up generator or where no artificial lighting is provided in the building; and
 (C) an emergency lighting system is not required in a farm shed, Group C farm building or at ground floor level in cell type silos or storage sheds; and
 (D) in a bulk grain storage facility the spacing of emergency lights can be increased to twice the distance required for Class 7 Buildings; and
 (c) in every passageway, corridor, hallway, or the like, having a length of more than 6 m from the entrance doorway of any sole-occupancy unit in a Class 2 or 3 building or Class 4 part of a building to the nearest doorway opening directly to—
 (i) a fire-isolated stairway, fire-isolated passageway or fire-isolated ramp; or
 (ii) an external stairway serving instead of a fire-isolated stairway under D2D13; or
 (iii) an external balcony leading to a fire-isolated stairway, fire-isolated passageway or fire-isolated ramp; or
 (iv) a road or open space; and
(d) in every required non-fire-isolated stairway; and

(e) in a sole-occupancy unit in a Class 5, 6 or 9 building if—
 (i) the floor area of the unit is more than 300 m²; and
 (ii) an exit from the unit does not open to a road or open space or to an external stairway, passageway, balcony or ramp, leading directly to a road or open space; and

(f) in every room or space to which there is public access in every storey in a Class 6 or 9b building if—
 (i) the floor area in that storey is more than 300 m²; or
 (ii) any point on the floor of that storey is more than 20 m from the nearest doorway leading directly to a stairway, ramp, passageway, road or open space; or
 (iii) egress from that storey involves a vertical rise within the building of more than 1.5 m, or any vertical rise if the storey concerned does not admit sufficient light; or
 (iv) the storey provides a path of travel from any other storey required by (i), (ii) or (iii) to have emergency lighting; and

(g) in a Class 9a health-care building—
 (i) in every passageway, corridor, hallway, or the like, serving a treatment area or a ward area; and
 (ii) in every room having a floor area of more than 120 m² in a patient care area; and

(h) in every Class 9c building excluding within sole-occupancy units; and

(i) in every required fire control centre; and

(j) in an underground passage in a bulk grain storage facility.

Insert clause SA E4D5 as follows:

SA E4D5 Exit signs

An exit sign must be clearly visible to persons approaching the exit, and must be installed on, above or adjacent to each—

(a) door providing direct egress from a storey to—
 (i) an enclosed stairway, passageway or ramp serving as a required exit; and
 (ii) an external stairway, passageway or ramp serving as a required exit; and
 (iii) an external access balcony leading to a required exit; and

(b) door from an enclosed stairway, passageway or ramp at every level of discharge to a road or open space; and

(c) horizontal exit; and

(d) door serving as, or forming part of, a required exit in a storey required to be provided with emergency lighting in accordance with E4D2; and

(e) required exit in a .

Insert clause SA E4D8 as follows:

SA E4D8 Design and operation of exit signs

(1) Every required exit sign must—

 (a) comply with—
 (i) AS/NZS 2293.1; or
 (ii) for a photoluminescent exit sign, Specification 25; and

 (b) be clearly visible at all times when the building is occupied by any person having the right of legal entry to the building.

(2) The requirements of (1)(a) do not apply to—
(a) a where—

(i) the use of illuminated exit signs could adversely affect the behaviour or welfare of animals being kept in the building; and

(ii) non-illuminated exit signs are provided that comply with clauses 5.5, 5.6 and 5.8 of AS/NZS 2293.1; or

(b) a farm shed.
Part F1 Damp and weatherproofing

Insert clause SA F1P54 as follows:

SA F1P54 Rising damp

(1) Moisture from the ground must be prevented from causing—

(a) undue dampness or deterioration of building elements; and
(b) unhealthy or dangerous conditions, or loss of amenity for occupants.

(2) Barriers installed to prevent transfer of moisture from the ground must have—

(a) high resistance to moisture penetration; and
(b) high resistance to damage during construction; and
(c) high resistance to degradation by dissolved salts.

F1D1 Deemed-to-Satisfy Provisions

Delete F1D1(21) and replace with SA F1D1(21) as follows:

(21) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements F1P1 to F1P3, SA F1P5, SA F1P6, F1P7 and SA F1P8 are satisfied by complying with F1D2 to F1D7, SA F1D8 and SA F1D9, F1D10 and F1D11.

F1D78 Damp-proofing

Delete F1D78(2) and replace with SA F1D78(2) as follows:

(2) Damp-proof courses must exhibit long term resistance to degradation by dissolved salts in groundwater and consist of—

(a) embossed black polyethylene film meeting the requirements of clause 7.6 of AS/NZS 2904; or
(b) polyethylene coated aluminium meeting the requirements of clause 7.4 of AS/NZS 2904; or
(c) bitumen impregnated materials of not less than 2.5 mm thickness, meeting the requirements of clause 7.5 of AS/NZS 2904, when used in walls not higher than 7.8 m above the level of the damp-proof course.

Insert clause SA F1D89 as follows:

SA F1D89 Damp-proofing of floors on the ground

(1) If a floor of a room is laid on the ground or on fill, a damp-proofing membrane complying with Section 5.3.3 of AS 2870 must be installed.

(2) A damp-proofing membrane need not be provided if—

(a) weatherproofing is not required; or
(b) the floor is the base of a stair, lift or similar shaft which is adequately drained by gravitation or mechanical means.
Part F2

Wet areas and overflow protection

Insert clause SA F1P6F2P1 as follows:

SA F1P6F2P1

Wet area overflows

Overflow from a bathroom, laundry facility or the like must be prevented from penetrating to adjoining rooms or spaces.

F1D6F2D2

Waterproofing of wet areas in buildings

Waterproofing of wet areas in buildings

Delete F1D6F2D2(1) and replace with SA F1D6F2D2(1) as follows:

(1) In a Class 2 and 3 building and a Class 4 part of a building, building elements in wet areas must—
 (a) be *water resistant* or *waterproof* in accordance with Specification 26, except that—
 (i) in any room containing a washing machine, the wall area from finished floor to a minimum of 75 mm above and 75 mm each side of the washing machine tap outlets must be *water resistant*; and
 (ii) where a *vessel* is inset into a bench top in a kitchen, bar area, kitchenette or domestic food and beverage preparation area, the perimeter edges of the *vessel* must be *water resistant* for the extent of the *vessel*; and
 (iii) penetrations in horizontal surfaces for tap and spout outlets in kitchens, bar areas, kitchenettes or domestic food and beverage preparation areas must be *waterproof*; and
 (b) comply with AS 3740.

Insert clause SA F1D9F2D4 as follows:

SA F1D9F2D4

Provision of floor wastes

Provision of floor wastes

(1) A wet area provided with a vessel in accordance with F24D2, F24D4 and F24D5 must have the floor graded to a floor waste to permit drainage of water.

(2) With the exception of a bathroom or laundry located at any level above a sole-occupancy unit or public space in a Class 2 or 3 building or Class 4 part of a building, a floor need not be graded to a floor waste in accordance with (1) if—
 (a) all vessels in the wet area are provided with in-built overflow protection or have permanent open trapped connection to the plumbing and drainage system (such as a WC pan); or
 (b) the vessel is a clinical hand washing basin in a Class 9c building; or
 (c) the floor waste is provided solely for the connection of plumbing fixtures.

(3) The fall of the floor surface to a floor waste required by (1) or (2) must be—
 (a) between 1:60 and 1:80 in the shower area; and
 (b) between 1:80 and 1:100 in other areas.

Part F2F4

Sanitary and other facilities

F2D6F4D6

Accessible unisex sanitary compartments

Delete F2D6F4D6(1) and replace with SA F2D6F4D6(1) as follows:

(1) Where required by F24D5(a), the minimum number of accessible unisex sanitary compartments for each Class of building is as follows:
 (a) For a Class 1b building—
(i) not less than 1; and
(ii) where private accessible unisex sanitary compartments are provided for every accessible bedroom, common accessible unisex sanitary compartments need not be provided.

(b) For a Class 2 building—
(i) where sanitary compartments are provided in common areas, not less than 1; and
(ii) in every sole-occupancy unit required by SA D4D2(4) to be accessible, not less than 1.

(c) For Class 3 and Class 9c buildings—
(i) in every accessible sole-occupancy unit provided with sanitary compartments within the accessible sole-occupancy unit, not less than 1; and
(ii) at each bank of sanitary compartments containing male and female sanitary compartments provided in common areas, not less than 1.

(d) For Class 5, 6, 7, 8 or 9 buildings, where F2D4 requires closet pans—
(i) 1 on every storey containing sanitary compartments; and
(ii) where a storey has more than 1 bank of sanitary compartments containing male and female sanitary compartments, at not less than 50% of those banks.

(e) For a Class 10a building, at each bank of sanitary compartments containing male and female sanitary compartments, not less than 1.

F2D7F4D7 Accessible unisex showers

[2019: Table F2.4b]

Delete F2D7F4D7(1) and replace with SA F2D7F4D7(1) as follows:

(1) Where required by F2D4(b), the minimum number of accessible unisex showers for each Class of building is as follows:

(a) For a Class 1b building—
(i) not less than 1; and
(ii) where private accessible unisex showers are provided for every accessible bedroom, common accessible unisex showers need not be provided.

(b) For Class 2 buildings—
(i) where showers are provided in common areas, not less than 1; and
(ii) in every sole-occupancy unit required by SA D4D2(4) to be accessible, not less than 1.

(c) For Class 3 and 9c buildings—
(i) in every accessible sole-occupancy unit provided with showers within the accessible sole-occupancy unit, not less than 1; and
(ii) 1 for every 10 showers or part thereof provided in common areas.

(d) For Class 5, 6, 7, 8 or 9 buildings, where F2D4 requires 1 or more showers, not less than 1 for every 10 showers or part thereof.

(e) For a Class 10a building, where showers are provided, 1 for every 10 showers or part thereof.

Part F4F6 Light and ventilation

Insert clause SA F4D6F6D6 as follows:

SA F4D6F6D6 Ventilation of rooms

[2019: SA F4.5(b) and (c)]

A habitable room, office, shop, factory, workroom, sanitary compartment, bathroom, shower room, laundry and any other room occupied by a person for any purpose must have—

(a) natural ventilation complying with F4D7; or
(b) a mechanical ventilation or air-conditioning system complying with AS 1668.2 and AS/NZS 3666.1; or

(c) in a storage shed or bulk grain storage facility, a ventilation system that provides one air change every six hours using openings that have a total area of the lesser of—

(i) 35 m²; or

(ii) one percent of the total floor area.
Part G1 Minor structures and components

Insert clause SA G1P2 as follows:

SA G1P2 Swimming pool access and water recirculation systems

(1) A barrier must be provided to a swimming pool and must—
 (a) be continuous for the full extent of the hazard; and
 (b) be of a strength and rigidity to withstand the foreseeable impact of people; and
 (c) restrict the access of young children to the pool and the immediate pool surrounds; and
 (d) have any gates and doors fitted with latching devices not readily operated by young children, and constructed to automatically close and latch.

(2) A swimming pool water recirculation system must incorporate safety measures to avoid entrapment of, or injury to, a person.

(3) A swimming pool must have prominent and visible signage that assists persons to provide first aid and to perform cardiopulmonary resuscitation on young children.

Applications:
SA G1P2 only applies to a swimming pool associated with a Class 2 or 3 building or Class 4 part of a building, with a depth of water more than 300 mm.

Insert clause SA G1D2 as follows:

SA G1D2 Swimming pools

(1) A swimming pool with a depth of water more than 300 mm and which is associated with a Class 2 or 3 building or Class 4 part of a building, must have suitable barriers to restrict access by young children to the immediate pool surrounds in accordance with AS 1926.1 and AS 1926.2.

(2) A water recirculation system in a swimming pool with a depth of water more than 300 mm must comply with AS 1926.3.

(3) For the purpose of clause 6.1.1 of AS 1926.3, a skimmer box is an outlet, and must have a means of releasing the vacuum pressure should the suction become blocked.

(4) A first aid and cardiopulmonary resuscitation sign must—
 (a) be attached to the safety barrier of the swimming pool, or displayed near the swimming pool; and
 (b) be at least 300 mm by 300 mm in size; and
 (c) be made of durable and weatherproof material; and
 (d) show information about the procedures for providing first aid, including performing cardiopulmonary resuscitation.
Section I Special use buildings

SA Part I3 Farm buildings and farm sheds

This Part does not apply in South Australia, refer to individual clauses for SA variations that are applicable to farm buildings.
Part J3 Building fabric

J3D4 Roof and ceiling construction

[2019: J1.3]

Insert subclause SA J3D4(3) in clause J3D4 as follows:

(3) The roofing material must have an upper surface solar absorptance value of not more than 0.4 if a Class 5, 6, 7, 8 or 9 building, or part of a building—
 (a) is constructed in climate zone 4 or 5; and
 (b) has a roof pitch of not more than 5°; and
 (c) has a conditioned space.
Assembly building: A building where people may assemble for—

(a) civic, theatrical, social, political or religious purposes including a library, theatre, public hall or place of worship; or

(b) educational purposes in a school, early childhood centre, preschool, or the like; or

(c) entertainment, recreational or sporting purposes including—
 (i) a discotheque or nightclub; or
 (ii) a cinema; or
 (iii) a sports stadium, sporting or other club; or

(d) transit purposes including a bus station, railway station, airport or ferry terminal.

Farm building: A single storey Class 7 or 8 building that is—

(a) primarily associated with agriculture and located on land used primarily for agriculture; and

(b) the total number of people accommodated in the building does not exceed one person per 200 m\(^2\) of total floor area, or six people, whichever is greater; and

(c) the floor area of each building does not exceed the maximum floor area and volume specified in Table SA 1 for the type of farm building; and

(d) the building does not contain occupancies of excessive fire hazard as listed in E1D5 to E1D12; and

(e) if the building is used for the storage of hay, an open space complying with C3D5(1) is provided around the perimeter of each building.

Insert SA Table SA 1 as follows:

SA Table SA 1: Farm building categories and maximum floor area

<table>
<thead>
<tr>
<th>Building group</th>
<th>Type of farm building</th>
<th>Maximum floor area</th>
<th>Maximum volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>Buildings used for keeping, growing and/or harvesting of animals and/or plants, and includes greenhouses with rigid covering material and large implement/vehicle storage sheds.</td>
<td>5,000 m(^2)</td>
<td>30,000 m(^3)</td>
</tr>
<tr>
<td>Group B</td>
<td>Buildings used for packing, sorting and/or storage of produce and may include workshops.</td>
<td>2,000 m(^2)</td>
<td>12,000 m(^3)</td>
</tr>
<tr>
<td>Group C</td>
<td>Greenhouses with non-rigid, plastic or fabric covering material.</td>
<td>5,000 m(^2)</td>
<td>30,000 m(^3)</td>
</tr>
</tbody>
</table>
In addition to any applicable provisions of the Development Act 1993, the Development Regulations 2008, the Planning, Development and Infrastructure Act 2016 and its associated regulations and this Code, there are a number of other legislative technical requirements affecting the design, construction and/or performance of buildings that practitioners may need to be aware of, including, but not necessarily limited to, the following list. Additional legislative instruments such as regulations, codes and standards may exist under the legislation listed.

1. **Abattoirs**

 Administering agency
 Department for Health and Wellbeing

 Relevant legislation
 Food Act 2001
 Food Regulations 2002

2. **Accommodation**

 Administering agency
 Department for Human Services

 Relevant legislation
 Supported Residential Facilities Act 1992
 Supported Residential Facilities Regulations 2009

3. **Asbestos Removal**

 Administering agency
 SafeWork SA, Department of the Premier and Cabinet

 Relevant legislation
 Work, Health and Safety Act 2012
 Work, Health and Safety Regulations 2012

4. **Children’s Services**

 Administering agency
 Department for Education

 Relevant legislation
 Children’s Services Act 1985

5. **Crown Land**

 Administering agency
 Department for Environment and Water

 Relevant legislation
 Crown Land Management Act 2009
6. Dangerous Goods

Administering agency
Department for Health and Wellbeing

Relevant legislation
Controlled Substances Act 1984
Controlled Substances (Pesticides) Regulations 2003
Controlled Substances (Poisons) Regulations 2011

Administering agency
Safework SA, Department of the Premier and Cabinet

Relevant legislation
Dangerous Substances Act 1979
Dangerous Substances (General) Regulations 2017
Explosives Act 1936
Explosives Regulations 2011
Explosives (Fireworks) Regulations 2016
Explosives (Security Sensitive Substances) Regulations 2006

7. Electrical Installations

Administering agency
Office of the Technical Regulator, Department for Industry and Skills

Relevant legislation
Electricity Act 1996
Electricity (General) Regulations 2012
Energy Products (Safety and Efficiency) Act 2000
Energy Products (Safety and Efficiency) Regulations 2012

8. Encroachments

Administering agency
Attorney-General’s Department

Relevant legislation
Encroachments Act 1944

9. Fences

Administering agency
Attorney-General’s Department

Relevant legislation
Fences Act 1975
Fences Regulations 2018
10. Fire Prevention in Existing Buildings

Administering agency
Department of Planning, Transport and Infrastructure

Relevant legislation
Development Act 1993
Development Regulations 2008

Administering agency
SA Fire and Emergency Services Commission

Relevant legislation
Fire and Emergency Services Act 2005
Fire and Emergency Services Regulations 2005

11. Food Premises

Administering agency
Department for Health and Wellbeing

Relevant legislation
Food Act 2001
Food Regulations 2017

12. Gas Installations

Administering agency
Office of the Technical Regulator, Department for Industry and Skills

Relevant legislation
Gas Act 1997
Gas Regulations 2012
Energy Products (Safety and Efficiency) Act 2000
Energy Products (Safety and Efficiency) Regulations 2012

13. Historic Buildings

Administering agency
Department of Environment and Water

Relevant legislation
Heritage Places Act 1993
Heritage Places Regulations 2005

14. Hospitals, Nursing Homes and Health Care Buildings

Administering agency
Department for Health and Wellbeing
Relevant legislation
Health Care Act 2008
Health Care Regulations 2008

15. Housing

Administering agency
Department of Human Services

Relevant legislation
Housing Improvement Act 2016
Housing Improvement Regulations 2017

16. Licensed Premises

Administering agency
Office of Liquor and Gambling Commissioner, Attorney-General’s Department

Relevant legislation
Liquor Licensing Act 1997
Liquor Licensing (General) Regulations 2012

17. Lift Installations

Administering agency
Safework SA, Department of the Premier and Cabinet

Relevant legislation
Work, Health and Safety Act 2012
Work, Health and Safety Regulations 2012

18. Occupational Health and Safety

Administering agency
SafeWork SA, Department of the Premier and Cabinet

Relevant legislation
Work, Health and Safety Act 2012
Work, Health and Safety Regulations 2012

19. Pharmacies

Administering agency
Department for Health and Wellbeing

Relevant legislation
Health Practitioner Regulation National Law (South Australia) Act 2010
Health Practitioner Regulation National Law (South Australia) Regulations 2010
20. Radiation Safety

Administering agency
Environment Protection Authority

Relevant legislation
Radiation Protection and Control Act 1982
Radiation Protection and Control (Ionising Radiation) Regulations 2015

21. Sanitary Plumbing, Water Supply and Sewerage

Administering agency
Office of the Technical Regulator, Department for Industry and Skills

Relevant legislation
Water Industry Act 2012
Water Industry Regulations 2012

22. School (non-government)

Administering agency
Department for Education

Relevant legislation
Education Act 1972
Education Regulations 2012

23. Septic Tank and Grey Water Installations

Administering agency
Department for Health and Wellbeing

Relevant legislation
South Australian Public Health Act 2011
South Australian Public Health (Wastewater) Regulations 2013
South Australian Public Health (Legionella) Regulations 2013

24. Smoking Restrictions

Administering agency
Department for Health and Wellbeing

Relevant legislation
Tobacco Products Regulation Act 1997
Tobacco Products Regulations 2004

25. Subdivision of Property

Administering agency
Land Services Group, Department of Planning, Transport and Infrastructure
Relevant legislation
Community Titles Act 1996
Community Titles Regulations 2011
Real Property Act 1886
Real Property Regulations 2009
Strata Titles Act 1988
Strata Titles Regulations 2018

26. Waste Management and Environment Protection

Administering agency
Environment Protection Authority

Relevant legislation
Environment Protection Act 1993
Environment Protection Regulations 2009
Schedule 9 Tasmanian

Introduction

Section A Governing requirements

<table>
<thead>
<tr>
<th>Part</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1G4</td>
<td>Interpretation</td>
</tr>
<tr>
<td>A4G1</td>
<td>Referenced documents</td>
</tr>
<tr>
<td>A5G4</td>
<td>Documentation of design and construction</td>
</tr>
</tbody>
</table>

Section D Access and egress

<table>
<thead>
<tr>
<th>Part</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1P10</td>
<td>Standards made under the Disability Discrimination Act</td>
</tr>
<tr>
<td>D4D5</td>
<td>Exemptions</td>
</tr>
<tr>
<td>D4D14</td>
<td>Compliance with Premises Standards</td>
</tr>
</tbody>
</table>

Section E Services and equipment

<table>
<thead>
<tr>
<th>Part</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1D1</td>
<td>Deemed-to-Satisfy Provisions</td>
</tr>
<tr>
<td>E1D17</td>
<td>Fire detection and alarm system</td>
</tr>
</tbody>
</table>

Section F Health and amenity

<table>
<thead>
<tr>
<th>Part</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2D4</td>
<td>Sanitary and other facilities</td>
</tr>
<tr>
<td>F2D4F4D4</td>
<td>Facilities in Class 3 to 9 buildings</td>
</tr>
<tr>
<td>F6F8</td>
<td>Condensation management</td>
</tr>
<tr>
<td>F6P1</td>
<td>Condensation and water vapour management</td>
</tr>
</tbody>
</table>

Section G Ancillary provisions

<table>
<thead>
<tr>
<th>Part</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1P2</td>
<td>Swimming pool access and water recirculation systems</td>
</tr>
<tr>
<td>G1P6</td>
<td>Swimming pools</td>
</tr>
<tr>
<td>G1D1</td>
<td>Deemed-to-Satisfy Provisions</td>
</tr>
<tr>
<td>G1D2</td>
<td>Swimming pools</td>
</tr>
</tbody>
</table>

Schedule 1 Definitions

Footnote: Other legislation affecting buildings
This Appendix contains variations and additions to the Building Code of Australia (BCA) provisions which are considered necessary for the effective application of the BCA in Tasmania and shall be treated as amendments to the Code.
Section A Governing requirements

Part A1 Interpreting the NCC

A1G14 Interpretation

Insert subclause TAS A1G14(7) in clause A1G14 as follows:

(7) The Director of Building Control may issue written advice to deal with arising issues such as interpretation of codes, standards and regulations.

Part A4 Referenced documents

A4G1 Referenced documents

Delete A4G1(3) and replace with TAS A4G1(3) as follows:

(3) The following applies:

(a) Where a new edition, issue or amendment of a primary referenced document is not listed under Schedule 32, for the purposes of the PCA the new addition, issue or amendment shall be referenced upon the publication of that addition, issue or amendment.

(b) All Tasmanian legislative documents referenced within the PCA are taken to be the latest published versions thereof unless noted otherwise.

Part A5 Documentation of design and construction

A5G4 Evidence of suitability – Volume Three (PCA)

Delete A5G4(1) and replace with TAS A5G4(1) as follows:

(1) The following applies:

(a) Any product that is intended for use in contact with drinking water must comply with the relevant requirements of AS/NZS 4020 in the form of either—

(i) a test report provided by a certification body or NATA accredited testing laboratory, in accordance with AS/NZS 4020; or

(ii) a WaterMark Licence issued in accordance with (2) if it includes compliance with AS/NZS 4020.

(b) Product certification and authorisation must comply with the procedures set out in the WaterMark Certification Scheme (see ABCB website for details), Tas Part I101 or Tas Part I102 (as appropriate).

Delete A5G4(34) and replace with TAS A5G4(34) as follows:

(34) A product of a type listed on the WaterMark Schedule of Excluded products requires evidence of suitability in the form of—

(a) a current certificate issued by a certification body stating that the properties and performance of a product can meet the requirements of the PCA; or

(b) a report issued by a NATA accredited testing laboratory which—

(i) demonstrates that the product complies with the relevant requirements of the PCA; and

(ii) sets out the tests the *product* has been submitted to and the results of those tests and any other relevant information that has been relied upon to demonstrate suitability for the use in a *plumbing* or *drainage* installation.
Delete A5G4(56) and replace with TAS A5G4(56) as follows:

(56) Evidence to support that a design or system meets the relevant PCA Performance Requirements must be in the form of any one or any combination of the following:

(a) The design or system complies with a Deemed-to-Satisfy Provision.

(b) The design or system is a Performance Solution from a professional engineer or a recognised expert that—

(i) certifies that the design or system complies with the relevant requirements of the PCA; and

(ii) sets out the basis on which it is given and the extent to which relevant standards, specifications, rules, codes of practice or other publications have been relied upon; and

(iii) meets the requirements of TAS Part I101 or TAS Part I102 (as appropriate).

Insert subclause TAS A5G4(67) in clause A5G4 as follows:

(67) Any new or innovative material or product must be assessed, certified and authorised — if required — in accordance with the WaterMark Certification Scheme (see ABCB website for details), Tas Part I101 or Tas Part I102 (as appropriate) prior to their use in a plumbing or drainage installation.

Insert subclause TAS A5G4(78) in clause A5G4 as follows:

(78) A material or product excluded from certification under the Plumbing Code of Australia is authorised for use in a plumbing or drainage installation if—

(a) it is certified as complying with the appropriate Australian Standard(s); or

(b) other evidence of suitability can be provided in accordance with TAS A5G4(5)(b)(iii).

Insert subclause TAS A5G4(89) in clause A5G4 as follows:

(89) A material or product used in a fire-fighting water service is authorised for use if it is certified by a recognised expert as complying with the relevant Australian Standards for the specific application in accordance with TAS A5G4(5)(b)(iii).

Insert subclause TAS A5G4(910) in clause A5G4 as follows:

(910) A material or product used in a stormwater installation is authorised for use if it is certified by a recognised expert as complying with Section 2 of AS/NZS 3500.3 in accordance with TAS A5G4(5)(b)(iii).

Insert subclause TAS A5G4(1011) in clause A5G4 as follows:

(1011) A prefabricated or constructed on-site cold-water storage tank used in a drinking water supply system is authorised for use if evidence of compliance with Tas Part B101 in accordance with TAS A5G4(5)(b)(iii) is given.
Section D Access and egress

Part D1 Access and egress – Performance Requirements

Insert clause TAS D1P10 as follows:

TAS D1P10 Standards made under the Disability Discrimination Act

[2019: Tas DP10]

A building or part of a building must be *accessible* in accordance with the requirements of a Standard made under the Disability Discrimination Act 1992 (Cth).

Part D4 Access for people with a disability

D4D1 Deemed-to-Satisfy Provisions

[2019: D3.0]

Delete D4D1(1) and replace with TAS D4D1(1) as follows:

(1) Where a *Deemed-to-Satisfy Solution* is proposed, *Performance Requirements* D1P1 to D1P6, D1P8, D1P9 and TAS D1P10 are satisfied by complying with—

(a) D2D2 to D2D23, D3D2 to D3D30, D4D2 to D4D13 and TAS D4D14; and

(b) in a building containing an *atrium*, Part G3; and

(c) additional requirements for Class 9b buildings, Part I1; and

(d) for public transport buildings, Part I2.

(3)

Insert clause TAS D4D5 as follows:

TAS D4D5 Exemptions

[2019: TAS D3.4(d)]

The following areas are *not* required to be *accessible*:

(a) An area where access would be inappropriate because of the particular purpose for which the area is used.

(b) An area that would pose a health or safety risk for people with a disability.

(c) Any path of travel providing access only to an area exempted by (a) or (b).

(d) The Class 2 parts of a building where—

 (i) the building is an existing building with a *rise in storeys* of two; and

 (ii) the *storey* at ground level is Class 5 or 6; and

 (iii) the upper *storeys* is comprised of two or more Class 2 *sole-occupancy units* that are not made available for short-term rental.

Insert clause TAS D4D14 as follows:

TAS D4D14 Compliance with Premises Standards

[2019: TAS D3.13]

(1) A building solution must comply with the Disability (Access to Premises - Buildings) Standards.

(2) A building solution complies with TAS D4D1(1)(a) if it complies with the applications, exemptions and concessions in the Disability (Access to Premises - Buildings) Standards.
Part E1 Fire fighting equipment

Insert clause TAS E1D1 as follows:

TAS E1D1 Deemed-to-Satisfy Provisions

[2019: TAS E1.0]

Performance Requirements E1P1 to E1P6 and TAS E1P7 are satisfied by complying with E1D2 to E1D16, TAS E1D17, and for farm buildings and farm sheds, Part I3.

Insert clause TAS E1D17 as follows:

TAS E1D17 Fire detection and alarm system

[2019: TAS E1.101]

An automatic fire detection and alarm system must comply with S20C4 and S20C8.
Section F Health and amenity

Part F2F4 Sanitary and other facilities

F2D4F4D4 Facilities in Class 3 to 9 buildings

[2019: F2.3]

Delete Table F4D4g and replace with TAS Table F4D4g as follows:

TAS Table F4D4g: Sanitary facilities in Class 9b buildings – early childhood centres

<table>
<thead>
<tr>
<th>User group</th>
<th>Closet pans</th>
<th>Washbasins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design</td>
<td>Design</td>
</tr>
<tr>
<td></td>
<td>occupancy</td>
<td>occupancy</td>
</tr>
<tr>
<td>Children</td>
<td>1 - 30</td>
<td>1 - 30</td>
</tr>
<tr>
<td>>30</td>
<td>Add 1 per 15</td>
<td>Add 1 per 15</td>
</tr>
</tbody>
</table>

Table Notes:
If the centre accommodates children under 4 years of age the facilities for use by those children must be—
(a) junior pans; and
(b) wash basins with a rim height not exceeding 600 mm.

Insert clause TAS F2D13F4D13 as follows:

TAS F2D13F4D13 Non-flushed urinals

Non-flushed urinals not connected to a sewerage system must comply with TAS F2D14.

Insert clause TAS F2D14F4D14 as follows:

TAS F2D14F4D14 Installation of closet fixtures

(1) If a sufficient sewerage system is not available, an authorised alternative means of disposal of sewage may be installed.

(2) If sanitary facilities are not water-flushed, the following provisions apply:
 (a) A pit latrine, an incinerating toilet, a chemical toilet, a removable pan or a non-flushing urinal must not be within 2 m of a building containing habitable rooms.
 (b) The floor on which a removable pan is placed must be impervious.
 (c) A room containing a composting toilet must be separated from habitable rooms by way of a permanently ventilated air lock (which may be a circulation space).
 (d) The minimum ventilation required under (c) shall be the greater of—
 (i) 8000 mm²; or
 (ii) 1/500th of the floor area of the circulation space.
 (e) Access for maintenance or removal of waste from a composting toilet must be by way of an access door which opens directly to the outside of the building.
Part F6F8 Condensation management

Insert clause TAS F6P1F8P1 as follows:

TAS F6P1F8P1 Condensation and water vapour management

[2019: TAS FP6.1]

In a sole-occupancy unit of a Class 2 building or a Class 4 part of a building, risks associated with water vapour and condensation must be managed to minimise their impact on the health of occupants.

Notes:
Refer to the guidance in the “Guide for Control of Condensation and Mould in Tasmanian Homes” that should be adhered to where possible.
Part G1 Minor structures and components

Insert clause TAS G1P2 as follows:

TAS G1P2 Swimming pool access and water recirculation systems

(1) A barrier must be provided to a swimming pool and must—
 (a) be continuous for the full extent of the hazard; and
 (b) be of a strength and rigidity to withstand the foreseeable impact of people; and
 (c) restrict the access of young children to the pool and the immediate pool surrounds; and
 (d) have any gates and doors fitted with latching devices not readily operated by young children, and constructed to automatically close and latch.

(2) A swimming pool water recirculation system must incorporate safety measures to avoid entrapment of, or injury to, a person.

Applications:
(1) TAS G1P2(1) only applies to a swimming pool associated with a Class 2 or 3 building or Class 4 part of a building, with a depth of water of more than 300 mm.

(2) TAS G1P2(2) only applies to a swimming pool with a depth of water more than 300 mm.

Insert clause TAS G1P6 as follows:

TAS G1P6 Swimming pools

Swimming pools must be suitable and safe to use and be provided with appropriate facilities.

Limitations:
TAS G1P6 does not apply to a swimming pool associated with a Class 2 building.

G1D1 Deemed-to-Satisfy Provisions

Delete G1D1(2) and replace with TAS G1D1(2) as follows:

(2) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements G1P2 to G1P5 and TAS G1P6 are satisfied by complying with TAS G1D2 and G1D3 to G1D4.

Insert clause TAS G1D2 as follows:

TAS G1D2 Swimming pools

(1) A swimming pool with a depth of water more than 300 mm and which is associated with a Class 2 or 3 building or Class 4 part of a building, must have suitable barriers to restrict access by young children to the immediate pool surrounds in accordance with AS 1926.1 and AS 1926.2.

(2) A water recirculation system in a swimming pool with a depth of water more than 300 mm must comply with AS 1926.3.
(3) **Swimming pools** for the use of the public, a club, or an association, or in connection with Class 3, 5, 6, 7, 8 or 9 buildings must—

(a) be constructed of durable materials with smooth finishes; and
(b) have sides vertical; and
(c) in that part of the pool where the water depth is not more than 1.5 m, have the bottom or floor slope not steeper than 1 vertical to 15 horizontal; and
(d) have the depth of water marked clearly and conspicuously on each side of the pool (at the shallow end and at the deep end); and
(e) not have diving boards installed where the water depth is less than 3.5 m; and
(f) have scum-gutters with opening not less than 150 mm if they are to provide hand-holds; and
(g) have the floor or bottom of the pool, except for the guide lines, of such colours that the light reflectance is not less than 60%.

(4) For a public **swimming pool** or pool in which competitions are held—

(a) all steps into the pool must be recessed; and
(b) fittings must not project into the water area; and
(c) piping must not be bracketed to the sides to provide hand-holds; and
(d) surrounding concourses must be provided not less than 2 m wide, with a suitable non-slip surface, graded away from the pool and drained to waste; and
(e) dressing rooms with sanitary accommodation must be so located that bathers pass through that accommodation enroute to the **swimming pool**.

(5) If the volume of a **swimming pool** exceeds 15 m3—

(a) an adequate water recirculation, disinfection and filtration system must be installed; and
(b) the inlet and outlet openings in a **swimming pool** for the purpose of water recirculation must be so located that water movement is continuous from inlet to outlet; and
(c) recirculation of water in a **swimming pool** must be so designed that the pool contents are recirculated not less than once in the period shown in TAS Table G1D2a; and
(d) water filtration rates must not exceed 12 250 L/m2 of sand filter bed per hour, or an equivalent rate in other filter media.

(6) Where no other suitable sanitary accommodation is provided, sanitary facilities must be provided in accordance with TAS Table G1D2b.

(7) Where no other suitable shower facilities are provided, showers must be provided so that each shower serves up to 40 persons.

Insert Table G1D2a as follows:

<table>
<thead>
<tr>
<th>Pool type</th>
<th>Period (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor swimming pool</td>
<td>6</td>
</tr>
<tr>
<td>Indoor swimming pool</td>
<td>4</td>
</tr>
<tr>
<td>Wading pool</td>
<td>2</td>
</tr>
</tbody>
</table>

Insert Table G1D2b as follows:

<table>
<thead>
<tr>
<th>Gender</th>
<th>Maximum number served by 1 closet fixture</th>
<th>Maximum number served by each extra closet fixture</th>
<th>Maximum number served by 1 urinal</th>
<th>Maximum number served by each extra urinal</th>
<th>Maximum number served by 1 wash basin</th>
<th>Maximum number served by each extra wash basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Females</td>
<td>40</td>
<td>40</td>
<td>N/A</td>
<td>N/A</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>
Early childhood centre: Any premises or part thereof providing or intending to provide a centre-based education and care service within the meaning of the Education and Care Services National Law Act 2010 (Vic), the Education and Care Services National Regulations and centre-based services that are licensed or approved under State and Territory children’s services law, but excludes—

(a) education and care primarily provided to school aged children in outside school hours settings; and

(b) services licensed as *centre-based care class 4* under the Child Care Act.

Expert Judgement: For Volume Three, the judgement of a person who has the qualifications and expertise to determine whether a *Plumbing or Drainage Solution* complies with the *Performance Requirements*.

Explanatory Information:
The level of qualification and/or experience required to determine whether a *Plumbing or Drainage Solution* complies with the *Performance Requirements* may differ depending on the degree of complexity and the requirements of the Tasmanian Building Act. Practitioners should seek advice from the *Permit Authority*.

Network Utility Operator: A person who—

(a) undertakes the piped distribution of *drinking water* or *non-drinking water* for supply; or

(b) is the operator of a sewerage system or a stormwater *drainage* system.

On-site wastewater management system: An on-site wastewater management system as defined by the Tasmanian Building Act.

Professional engineer: A person who is an engineer accredited under the Tasmanian Building Act in the relevant discipline who has appropriate experience and competence in the relevant field.

Recognised expert: A person with qualifications and experience in the area of *plumbing* or *drainage* in question, as determined by the Director of Building Control.
1. Work Places

Administering agency
WorkSafe Tasmania – Department of Justice

Relevant Tasmanian legislation and regulatory instruments

- Work Health and Safety Act
- Code of Practice – Managing Risks of Hazardous Chemicals in the Workplace – WorkSafe Tasmania publication CP120
- Code of Practice – Managing the Work Environment and Facilities – WorkSafe Tasmania publication CP124
- Code of Practice – Safe Design of Structures – WorkSafe Tasmania publication CP128
Schedule 10

Introduction

Section B Structure

- **Part B1** Structural provisions
- **VIC B1D6** Construction of buildings in flood hazard areas

Section C Fire resistance

- **Part C2** Fire resistance and stability
- **C2D11** Fire hazard properties

Section D Access and egress

- **Part D2** Provision for escape
- **D2D5** Exit travel distances
- **VIC D2D9** Width of doorways in exits or paths of travel to exits
- **Part D3** Construction of exits
- **D3D26** Operation of latch

Section E Services and equipment

- **Part E1** Fire fighting equipment
- **VIC E1D7** Where sprinklers are required: Class 3 building
- **E1D13** Where sprinklers are required: occupancies of excessive hazard
- **Specification 17** Fire sprinkler systems
- **VIC S17C2** Application of automatic fire sprinkler standards
- **Specification 18** Class 2 and 3 buildings not more than 25m in effective height
- **S18C3** System requirements
- **Specification 20** Smoke detection and alarm systems
- **S20C4** Smoke detection system
- **VIC S20C8** System monitoring

Section F Health and amenity

- **Part F2** Sanitary and other facilities
- **VIC F2P2** Laundry facilities
- **F2D1F4D1** Deemed-to-Satisfy Provisions
- **F2D4F4D4** Facilities in Class 3 to 9 buildings
- **F2D8F4D8** Construction of sanitary compartments
- **VIC F2D13F4D13** First aid rooms
- **Part F3** Room heights
- **VIC F3P1** Room or space heights
- **F3V4F5V1** Room or space heights
- **VIC F3D1F5D1** Deemed-to-Satisfy Provisions
- **VIC F3D3F5D3** Children's services – size of rooms
- **VIC F2D4F5D4** Class 3 buildings – size of rooms
Section G Ancillary provisions

Part G1 Minor structures and components
VIC G1P2 Swimming pool access and water recirculation systems
VIC G1D2 Swimming pools

Schedule 1 Definitions

Footnote: Other legislation affecting buildings
This Appendix contains variations and additions to the Building Code of Australia (BCA) provisions which are considered necessary for the effective application of the Code in Victoria and shall be treated as amendments to the Code.
Part B1 Structural provisions

Insert clause VIC B1D6 as follows:

VIC B1D6 Construction of buildings in flood hazard areas

[2019: VIC B1.6]

(1) A Class 2 or 3 building, Class 9a health-care building, Class 9c building or Class 4 part of a building, in a must comply with the ABCB Standard for Construction of Buildings in Flood Hazard Areas.

(2) The definitions of and in the ABCB Standard for Construction of Buildings in Flood Hazard Areas are replaced with those in VIC Schedule 2.

(3) The definition of defined flood level in the ABCB Standard for Construction of Buildings in Flood Hazard Areas is replaced with that in VIC Schedule 2.
Delete C2D11(3) and replace with VIC C2D11(3) as follows:

(3) The requirements of (1) do not apply to a material or assembly if it is—
 (a) plaster, cement render, concrete, terrazzo, ceramic tile or the like; or
 (b) a fire-protective covering; or
 (c) a timber-framed window; or
 (d) a solid timber handrail or skirting; or
 (e) a timber-faced door; or
 (f) an electrical switch, socket-outlet, cover plate or the like; or
 (g) a material used for—
 (i) a roof insulating material applied in continuous contact with a substrate; or
 (ii) an adhesive; or
 (iii) a damp-proof course, flashing, caulking, sealing, ground moisture barrier, or the like; or
 (h) a paint, varnish, lacquer or similar finish, other than nitro-cellulose lacquer; or
 (i) a clear or translucent roof light of glass fibre-reinforced polyester if—
 (i) the roof in which it is installed forms part of a single storey building required to be Type C construction; and
 (ii) the material is used as part of the roof covering; and
 (iii) it is not closer than 1.5 m from another roof light of the same type; and
 (iv) each roof light is not more than 14 m² in area; and
 (v) the area of the roof lights per 70 m² of roof surface is not more than 14 m²; or
 (j) a face plate or neck adaptor of supply and return air outlets of an air handling system; or
 (k) a face plate or diffuser plate of light fitting and emergency exit signs and associated electrical wiring and electrical components; or
 (l) a joinery unit, cupboard, shelving, or the like; or
 (m) an attached non-building fixture and fitting such as—
 (i) a curtain, blind, or similar decor, other than a proscenium curtain required by Specification 32; and
 (ii) a whiteboard, window treatment or the like; or
 (n) timber treads, risers, landings and associated supporting framework installed in accordance with D3D30 where the Spread-of-Flame Index and the Smoke-Developed Index of the timber does not exceed 9 and 8 respectively.
Delete D2D5(4) and replace with VIC D2D5(4) as follows:

(4) Class 9 buildings — in a patient care area in a Class 9a building and in a children’s service —
 (a) no point on the floor must be more than 12 m from a point from which travel in different directions to 2 of the required exits is available; and
 (b) the maximum distance to one of those exits must not be more than 30 m from the starting point.

Insert clause VIC D2D9 as follows:

VIC D2D9 Width of doorways in exits or paths of travel to exits

[2019: VIC D1.6(f)(iv)]

In a required exit or path of travel to an exit, the unobstructed width of a doorway must be not less than —

(a) in patient care areas through which patients would normally be transported in beds —
 (i) if the doorway provides access to, or from, a corridor of width —
 (A) less than 2.2 m — 1200 mm; or
 (B) 2.2 m or greater — 1070 mm; and
 (ii) where the doorway referred to in (i) is fitted with two leaves and one leaf is secured in the closed position in accordance with D3D26(2)(e), the other leaf must permit an unobstructed opening not less than 800 mm wide; or
 (b) in patient care areas in a horizontal exit — 1250 mm; or
 (c) the unobstructed width of each exit provided to comply with D2D8(1), (2), (3) or (4), minus 250 mm; or
 (d) in any other case except where it opens to a sanitary compartment or bathroom — 750 mm wide.

Part D3 Construction of exits

D3D26 Operation of latch

[2019: D2.21]

Insert subclause VIC D3D26(6) in clause D3D26 as follows:

(6) For the purposes of (1), an exit door from a children’s service which does not open to an outdoor space enclosed in accordance with , must have the device located between 1.5 m and 1.65 m above the floor and the door must be self-closing.
Part E1 Fire fighting equipment

Insert clause VIC E1D7 as follows:

VIC E1D7 Where sprinklers are required: Class 3 building

Sprinklers are *required* throughout—

(a) a Class 3 building used as a *residential care building*; and

(b) any *fire compartment* containing a Class 3 part used for residential care; and

(c) any shared accommodation building.

E1D13 Where sprinklers are required: occupancies of excessive hazard

Delete E1D13(2) and replace with VIC E1D13(2) as follows:

(2) For the purposes of (1), occupancies of excessive *fire hazard* comprise buildings which contain—

(a) hazardous process risks including the following:

(i) Aircraft hangars.

(ii) Electrical/electronic manufacturing and assembly (predominantly plastic components).

(iii) Fire-lighter manufacturing.

(iv) Fireworks manufacturing.

(v) Flammable liquid spraying.

(vi) Foam plastic goods manufacturing and/or processing.

(vii) Foam rubber goods manufacturing and/or processing.

(viii) Hydrocarbon based sheet product manufacturing and/or processing.

(ix) Nitrocellulose and nitrocellulose goods manufacturing.

(x) Paint and varnish works, solvent based.

(xi) Plastic goods manufacturing and/or processing works.

(xii) Resin and turpentine manufacturing.

(xiii) Vehicle repair shops.

(b) combustible goods with an aggregate volume exceeding 2000 m3 and stored to a height greater than 4 m such as the following:

(i) Aerosol packs with flammable contents.

(ii) Cartons and associated packing material excluding cartons with densely packed non-combustible content.

(iii) Electrical appliances where the components are predominantly plastic.

(iv) Foamed rubber or plastics including wrappings or preformed containers.

(v) Paper products.

(vi) Plastic, rubber, vinyl and other sheets in the form of offcuts, random pieces or rolls.

(vii) Textiles raw and finished.

(viii) Timber products.
Specification 17 Fire sprinkler systems

Insert clause VIC S17C2 as follows:

VIC S17C2 Application of automatic fire sprinkler standards

Subject to this Specification, an automatic fire sprinkler system must comply with—

(a) for a Class 5, 6, 7, 8 or 9b building: AS 2118.1; or
(b) for a Class 2, 3, 4, 9a or 9c building: AS 2118.1, except clause 5.9.10 of AS 2118.1 does not apply and is replaced with ‘Covered balconies shall be sprinkler protected.’; or
(c) for a Class 2 or 3 building with an effective height of not more than 25 m and a rise in storeys of 4 or more: Specification 18 and the relevant provisions of this Specification as applicable; or
(d) for Class 4, 5, 6, 7, 8, 9a (other than a residential care building (Vic)) or 9b (other than a Class 9b early childhood centre which is not wholly within a storey that provides direct egress to a road or open space) parts of a building less than 25 m in effective height, which also contains Class 2 or 3 parts: a sprinkler system in accordance with Specification 18 as for a Class 2 or 3 building and the relevant provisions of this Specification except—

(i) a FPAA101D sprinkler system cannot be used where the Class 5, 6, 7, 8, 9a (other than a residential care building (Vic)) or 9b parts—
(A) contain more than 2 storeys; or
(B) are more than 25% of the total floor area of the building; or
(C) are located above the fourth storey; and
(ii) a FPAA101D or FPAA101H sprinkler system cannot be used where the Class 7a part (other than an open-deck carpark) accommodates more than 40 vehicles; or
(e) for a Class 2 or 3 building with a rise in storeys of not more than 3: AS 2118.4 as applicable; or
(f) for a combined sprinkler and fire hydrant system: AS 2118.6; or
(g) for a Class 9a health-care building used as a residential care building (Vic): AS 2118.4 as applicable; or
(h) for a Class 9c building: AS 2118.4 as applicable.

Specification 18 Class 2 and 3 buildings not more than 25m in effective height

S18C3 System requirements

Delete S18C3(1) and replace with VIC S18C3(1) as follows:

(1) A required automatic fire sprinkler system installed in a Class 2 or 3 building with an effective height of not more than 25 m and a rise in storeys of 4 or more must comply with—

(a) AS 2118.1 except clause 5.9.10 of AS 2118.1 does not apply and is replaced with ‘Covered balconies shall be sprinkler protected’; or
(b) AS 2118.4, as applicable; or
(c) FPAA101D—
 (i) except for residential care building (Vic); and
 (ii) except that clause 2.2.1 of FPAA101D applies as if the first paragraph is replaced with ‘Covered balconies shall be sprinkler protected’; or
(d) FPAA101H—
 (i) except for residential care building (Vic); and
 (ii) except that clause 3.5.2.8 of FPAA101H applies as if the first paragraph is replaced with ‘Covered balconies shall be sprinkler protected’; and
 (iii) except that clause 3.5.3 of FPAA101H applies as if it is replaced with:
 (A) The location and spacing of sprinklers in Class 5, 6, 7, 8 and 9b parts of the building shall be in
according with Section 5 of AS 2118.1:2017.

(B) The location and spacing of sprinklers in Class 9a and 9c parts of the building shall be in accordance with Section 5 of AS 2118.1:2017 except that clause 5.9.10 of AS 2118.1 does not apply and is replaced with 'Covered balconies shall be sprinkler protected'.

Specification 20 Smoke detection and alarm systems

S20C4 Smoke detection system

Delete S20C4(4) and replace with VIC S20C4(4) as follows:

(4) In a Class 9c building—
 (a) if the building accommodates more than 20 residents, manual call points must be installed in paths of travel so that no point on a floor is more than 30 m from a manual call point; and
 (b) indication of the zone where the smoke detection system has actuated must be achieved by one of the following:
 (i) Option 1—
 (A) remote automatic indication of each zone must be given in each smoke compartment; and
 (B) indication of (A) must be indicated on remote annunciator panels with alpha-numeric displays with a minimum of 20 characters of 9 mm minimum height.
 (ii) Option 2—
 (A) indication of the zone where the smoke detection system has actuated must be communicated via a suitable interface with the fire indicator panel to a portable remote communication device; and
 (B) at least one such portable remote communication device per smoke compartment must be provided to staff nominated by the owner or operator and properly instructed as to the duties and responsibilities involved; and
 (C) the portable remote communication device may be a pager with alpha-numeric display or portable telephone handset with capability of receiving alpha-numeric display.

Insert clause VIC S20C8 as follows:

VIC S20C8 System monitoring

The following installations must be connected to a fire alarm monitoring system connected to a fire station or fire station dispatch centre in accordance with AS 1670.3:

 (a) A smoke detection system in a Class 3 building provided in accordance with S20C2(b)(i) or S20C2(b)(ii).
 (b) A smoke detection system in a Class 9a health-care building, if the building accommodates more than 20 patients, unless the building is sprinklered and the sprinkler system is permanently connected to a fire station, or other approved monitoring service with a direct data link to a fire station, in accordance with Practice Note 07-2018.
 (c) Smoke detection in accordance with S20C6 provided to activate—
 (i) a smoke exhaust system in accordance with Specification 21; or
 (ii) smoke-and-heat vents in accordance with Specification 22.
 (d) An automatic fire detection and alarm system required by E2D10 for large isolated buildings subject to C3D4.
Part F2F4 Sanitary and other facilities

Insert clause VIC F2P2F4P2 as follows:

VIC F2P2F4P2 Laundry facilities

[Laundering facilities or space for laundering facilities and the means for the sanitary disposal of waste water must be provided in a convenient location within or associated with a building appropriate to the function or use of the building.]

Applications:

F2P2F4P2 only applies to—
(a) a Class 2 building or Class 4 part of a building; and
(b) a Class 9a health-care building; and
(c) a Class 9c building; and
(d) an early childhood centre other than a restricted children’s service.

F2D1F4D1 Deemed-to-Satisfy Provisions

Delete F2D1F4D1(1) and replace with VIC F2D1F4D1(1) as follows:

(1) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirements F24P1 to F24P6 are satisfied by complying with—
(a) F24D2 to F24D12 and VIC F24D13; and
(b) for public transport buildings, Part I2; and
(c) for farm sheds, Part I3.

F2D4F4D4 Facilities in Class 3 to 9 buildings

Delete F2D4F4D4(9) and replace with VIC F2D4F4D4(9) as follows:

(9) A Class 9b early childhood centre, other than a children’s service, must be provided with—
(a) a kitchen or food preparation area with a kitchen sink, separate hand washing facilities, space for a refrigerator and space for cooking facilities, with—
(i) the facilities protected by a door or gate with child proof latches to prevent unsupervised access to the facilities by children younger than 5 years old; and
(ii) the ability to facilitate supervision of children from the facilities if the early childhood centre accommodates children younger than 2 years old; and
(b) one bath, shower or shower-bath; and
(c) if the centre accommodates children younger than 3 years old—
(i) a laundry facility comprising a washtub and space in the same room for a washing machine; and
(ii) a bench type baby bath, which is within 1 m of the nappy change bench; and
(iii) a nappy changing bench which—
(A) is within 1 m of separate adult hand washing facilities and bench type baby bath; and
(B) must be not less than 0.9 m² in area and at a height of not less than 850 mm, but not more than 900
mm above the finished floor level; and

(C) must have a space not less than 800 mm high, 500 mm wide and 800 mm deep for the storage of steps; and

(D) is positioned to permit a staff member changing a nappy to have visibility of the play area at all times.

Insert subclause VIC F2D4F4D4(12) in clause F2D4F4D4 as follows:

(12) A *children’s service* must be provided with—

(a) a kitchen or facilities for the preparation and cooking of food for children including washing up facilities and a space for refrigerated food storage facilities; and

(b) except in a *restricted children’s service*, if the service accommodates children younger than 3 years of age—
 (i) a laundry facility comprising a washtub and space in the same room for a washing machine; and
 (ii) a bench-type baby bath, with hot and cold water connected, and a nappy change bench in close proximity; and

(c) except in a *restricted children’s service*, one bath or shower-bath.

Delete Table F4D4g and replace with VIC Table F4D4g as follows:

VIC Table F4D4g: Sanitary facilities in Class 9b buildings – early childhood centres

<table>
<thead>
<tr>
<th>User group</th>
<th>Closet pans</th>
<th>Washbasins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design occupancy</td>
<td>Number</td>
</tr>
<tr>
<td>Children</td>
<td>1 - 30</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>>30</td>
<td>Add 1 per 15</td>
</tr>
</tbody>
</table>

Table Notes:

Facilities for use by children must be—

(a) junior closet pans, except that those in a *restricted children’s service* may be adult height toilets if they are fitted with a removable seat suitable for children and a wide and stable step in front; and

(b) washbasins with a rim height not exceeding 600 mm, except that those in a *restricted children’s service* may be adult height washbasins if they are provided with a wide and stable step in front; and

(c) except in a *children’s service*, accessible from both indoor and outdoor play areas; and

(d) in a *children’s service*, other than a *restricted children’s service*, the closet pans must be located in relation to children’s rooms and outdoor play spaces so that children using toilets can be observed by staff from children’s rooms and outdoor play space.

F2D8F4D8 Construction of sanitary compartments

[2019: F2.5]

Delete F2D8F4D8(3) and replace with VIC F2D8F4D8(3) as follows:

(3) In an *early childhood centre*, other than a *restricted children’s service*, closet pans situated in a group for use by children must be separated from one another by means of a partition, which, except for the doorway, is opaque for a height of not less than 900 mm but not more than 1200 mm above the floor.

Insert clause VIC F2D13F4D13 as follows:

VIC F2D13F4D13 First aid rooms

[2019: VIC F2.101]

(1) If an *assembly building*, place of public entertainment (as defined in the Building Act 1993) or an *open spectator stand* accommodates more than 5000 spectators at an arena, sportsground, showground, racecourse, cricket ground, football ground, coursing ground, motor racing arena, or the like, a suitable room or rooms must be provided in accordance with VIC Table F24D13 for use by para-medical attendants for first aid purposes.

(2) First aid rooms *required* by (1) must—
(a) be distributed as uniformly as possible throughout the *assembly building* or *open spectator stand*; and
(b) be convenient to a public road; and
(c) be readily accessible from within and outside the arena or ground; and
(d) have a *floor area* of not less than 24 m^2; and
(e) be provided with a suitable wash basin or sink.

Insert Table F4D13 as follows:

<table>
<thead>
<tr>
<th>Spectator capacity</th>
<th>Number of first aid rooms</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,001 to 10,000</td>
<td>1</td>
</tr>
<tr>
<td>10,001 to 15,000</td>
<td>2</td>
</tr>
<tr>
<td>15,001 to 30,000</td>
<td>3</td>
</tr>
<tr>
<td>Each extra 15,000 or part thereof</td>
<td>1</td>
</tr>
</tbody>
</table>

Part F3F5 Room heights

Insert clause VIC F3P1F5P1 as follows:

VIC F3P1F5P1 Room or space heights

[2019: VIC FP3.1]

A *habitable room* or space must have sufficient size to enable the room or space to fulfil its intended use.

F3V1F5V1 Room or space heights

[2019: FV3.1]

Delete F3V1F5V1(1) and replace with VIC F3V1F5V1(1) as follows:

(1) Compliance with **VIC F35P1** is verified in relation to the height of a *habitable room* or space where the height of *habitable room* or space provides an appropriate *activity support level* that does not unduly interfere with its intended function.

Insert clause VIC F3D1F5D1 as follows:

VIC F3D1F5D1 Deemed-to-Satisfy Provisions

[2019: VIC F3.0]

Where a *Deemed-to-Satisfy Solution* is proposed, *Performance Requirement VIC F35P1* is satisfied by complying with F35D2 and VIC F5D3 to F5D5.

Insert clause VIC F3D3F5D3 as follows:

VIC F3D3F5D3 Children’s services – size of rooms

[2019: VIC F3.101]

(1) A children’s room in a *children’s service* must have a *floor area* allowing a clear space of at least 3.25 m^2 for each child using that room.

(2) When calculating the clear space *required* by (1) any passageway or thoroughfare less than 3 metres wide, kitchen, toilet or shower area, storage area (including cupboards), areas through which doors may swing, cot rooms (including areas where fixed cots will be used or stored) or any other ancillary area must not be included.
Insert clause VIC F3D4F5D4 as follows:

VIC F3D4F5D4 Class 3 buildings – size of rooms

[2019: VIC F3.102]

A *habitable room* in a Class 3 building (other than a *residential aged care building*)—

(a) must have a *floor area* of at least 7.5 m\(^2\); or

(b) may have a *floor area* less than 7.5 m\(^2\) provided the room has light and ventilation not less than that *required* for a room having a *floor area* of 7.5 m\(^2\).

Insert clause VIC F3D5F5D5 as follows:

VIC F3D5F5D5 Class 3, 9a and 9c residential aged care buildings – size of rooms

[2019: VIC F3.103]

In a *residential aged care building*—

(a) each bedroom must have a *floor area* of not less than 12 m\(^2\) per occupant; and

(b) all other common *habitable rooms* (other than kitchens) must have a *floor area* of not less than 7.5 m\(^2\) with—

(i) in a Class 3 hostel or supported residential services building or Class 9c building an aggregate *floor area* of not less than 3.5 m\(^2\) per occupant; or

(ii) in a Class 9a nursing home an aggregate *floor area* of not less than 2.5 m\(^2\) per occupant.

Part F4F6 Light and ventilation

Insert clause VIC F4D2F6D2 as follows:

VIC F4D2F6D2 Provision of natural light

[2019: VIC F4.1(d)]

Natural light must be provided in:

(a) Class 2 buildings and Class 4 parts of buildings — to all *habitable rooms*.

(b) Class 3 buildings — to all bedrooms and dormitories.

(c) Class 9a and 9c buildings — to all rooms used for sleeping purposes.

(d) Class 9b buildings — to all general purpose classrooms in primary or secondary *schools* and all playrooms or the like for the use of children in an *early childhood centre* other than a *restricted children’s service*.

F4D3F6D3 Methods and extent of natural light

[2019: F4.2]

Delete F4D3F6D3(2) and replace with VIC F4D3F6D3(2) as follows:

(2) In a Class 2, 3 or 9 building or Class 4 part of a building a *required window* that faces a boundary of an adjoining allotment or a wall of the same building or another building on the allotment must not be less than a horizontal distance from that boundary or wall that is the greater of—

(a) generally — 1 m; and

(b) in a *patient care area* or other room used for sleeping purposes in a Class 9a or Class 9c building — 3 m; and

(c) 50% of the square root of the exterior height of the wall in which the *window* is located, measured in metres from its sill.

(3) Delete F4D3F6D3(4) and replace with VIC F4D3F6D3(4) as follows:

(4) In a Class 9b *early childhood centre*, other than a *restricted children’s service*, the sills of 50% of *windows* in children’s rooms must be located not more than 500 mm above the floor level.
Part G1 Minor structures and components

Insert clause VIC G1P2 as follows:

VIC G1P2 Swimming pool access and water recirculation systems

(1) A barrier must be provided to a swimming pool and must—
 (a) be continuous for the full extent of the hazard; and
 (b) be of a strength and rigidity to withstand the foreseeable impact of people; and
 (c) restrict the access of young children to the pool and the immediate pool surrounds; and
 (d) have any gates and doors fitted with latching devices not readily operated by young children, and constructed to automatically close and latch.

(2) A swimming pool water recirculation system must incorporate safety measures to avoid entrapment of, or injury to, a person.

Applications:

(1) VIC G1P2(1) only applies to a swimming pool with a depth of water more than 300 mm associated with—
 (a) a Class 2 or 3 building or Class 4 part of a building; or
 (b) a children’s service.

(2) VIC G1P2(2) only applies to a swimming pool with a depth of water more than 300 mm.

Insert clause VIC G1D2 as follows:

VIC G1D2 Swimming pools

(1) A swimming pool associated with a children’s service, with a depth of water more than 300 mm, must have fencing or other barriers in accordance with AS 1926.1 and AS 1926.2.

(2) A swimming pool with a depth of water more than 300 mm and which is associated with a Class 2 or 3 building or Class 4 part of a building, must have suitable barriers to restrict access by young children to the immediate pool surrounds in accordance with AS 1926.1 and AS 1926.2.

(3) A water recirculation system in a swimming pool with a depth of water more than 300 mm must comply with AS 1926.3.
Early childhood centre: Includes—

(a) any premises, or part thereof, providing or intending to provide a centre-based education and care service within the meaning of the Education and Care Services National Law Act 2010, and the Education and Care Services National Regulations, excluding a service where education and care is primarily provided to school aged children; and

(b) a children’s service.

Flood hazard area: The site (whether or not mapped) encompassing land in an area liable to flooding within the meaning of Regulation 153 of the Building Regulations 2018.

Freeboard: The minimum height of the lowest floor of the building above the defined flood level, regulated by the relevant planning scheme, or specified or otherwise determined by the relevant council under Regulation 153 of the Building Regulations 2018 (see Figure 3).
In addition to any applicable provisions of the Building Act 1993, Building Regulations 2018 and this Code, there are a number of other legislative technical requirements affecting the design, construction and/or performance of buildings that practitioners may need to be aware of, including, but not necessarily limited to, the following list. Additional legislative instruments such as regulations, codes and standards may exist under the legislation listed.

1. Abattoirs and Knackeries

Administering Agency
Department of Environment and Primary Industries

Relevant Legislation
Meat Industry Act 1993

2. Accommodation – Residential (Boarding Houses, Guest Houses, Hostels, Motels)

Administering Agency
Department of Health and Human Services
Consumer Affairs Victoria
Municipal council

Relevant Legislation
Public Health and Wellbeing Act 2008
Public Health and Wellbeing Regulations 2009
Residential Tenancies Act 1997
Residential Tenancies (Rooming House Standards) Regulations 2012

3. Accommodation - Supported Residential Services

Administering Agency
Department of Health and Human Services

Relevant Legislation
Supported Residential Services (Private Proprietors) Act 2010
Supported Residential Services (Private Proprietors) Regulations 2012

4. Alpine Resorts

Administering Agency
Department of Environment, Land, Water and Planning
Alpine Resorts Management Boards

Relevant Legislation
Alpine Resorts (Management) Act 1997
5. Asbestos Removal

Administering Agency
Victorian WorkCover Authority
Environment Protection Authority

Relevant Legislation
Occupational Health and Safety Act 2004
Environment Protection Act 1970

6. Children's Services

Administering Agency
Department of Education and Training

Relevant Legislation
Children's Services Act 1996
Children's Services Regulations 2009
Education and Care Services National Law Act 2010
Education and Care Services National Regulations

7. Crematoria, Mausolea, Vaults, etc.

Administering Agency
Department of Health and Human Services, Cemeteries and Crematoria Regulation Unit
Cemetery Trusts

Relevant Legislation
Cemeteries and Crematoria Act 2003
Cemeteries and Crematoria Regulations 2015

8. Crown Land

Administering Agency
Department of Environment, Land, Water and Planning
Crown Land committees of management

Relevant Legislation
Crown Land (Reserves) Act 1978

9. Dairies

Administering Agency
Dairy Food Safety Victoria

Relevant Legislation
Dairy Act 2000
10. Dangerous Goods

Administering Agency
Victorian WorkCover Authority

Relevant Legislation
Dangerous Goods Act 1985
Dangerous Goods (Explosives) Regulations 2011
Dangerous Goods (HCDG) Regulations 2016
Dangerous Goods (Storage and Handling) Regulations 2012
Codes of practice published by the Victorian WorkCover Authority

11. Electrical Installations

Administering Agency
Energy Safe Victoria
Electrical transmission and distribution companies

Relevant Legislation
Electricity Industry Act 2000
Electricity Industry (Residual Provisions) Act 1993
Electricity Safety Act 1998
State Electricity Commission Act 1958
Electricity Safety (Installations) Regulations 2009
Standards Australia Wiring Rules, AS/NZS 3000/3013

12. Fences - dividing

Administering Agency
Department of Justice and Regulation
Dispute Settlement Centre of Victoria

Relevant Legislation
Fences Act 1968

13. Fire Prevention in Existing Buildings

Administering Agency
Municipal council

Relevant Legislation
Building Act 1993
Building Regulations 2018

14. Food Premises

Administering Agency
Department of Health and Human Services
Municipal council
Relevant Legislation
Food Act 1984

15. Gas Installations
Administering Agency
Energy Safe Victoria

Relevant Legislation
Gas Industry Act 2001
Gas Safety Act 1997
Gas Safety (Gas Installation) Regulations 2008
AS/NZS 5601 Gas Installations

16. Historic Buildings
Administering Agency
Department of Environment, Land, Water and Planning
Executive Director under the Heritage Act 2017

Relevant Legislation
Heritage Act 2017

17. Hospitals, Nursing Homes and Health Care Buildings
Administering Agency
Department of Health and Human Services

Relevant Legislation
Public Health and Wellbeing Act 2008

18. Lift Installations
Administering Agency
Victorian WorkCover Authority

Relevant Legislation
Occupational Health and Safety Act 2004
Occupational Health and Safety Regulations 2017
AS1735 Lifts, escalators and moving walks

19. Moveable Dwellings (in Caravan Parks)
Administering Agency
Department of Environment, Land, Water and Planning
Municipal council

Relevant Legislation
Residential Tenancies Act 1997
Residential Tenancies (Caravan Parks and Moveable Dwellings Registration and Standards) Regulations 2010
20. Occupational Health and Safety

Administering Agency
Victorian WorkCover Authority

Relevant Legislation
Occupational Health and Safety Act 2004
Occupational Health and Safety Regulations 2017
Codes of practice published by the Victorian WorkCover Authority

21. Pharmacies

Administering Agency
Department of Health and Human Services
Victorian Pharmacy Authority

Relevant Legislation
Pharmacy Regulation Act 2010
Victorian Pharmacy Authority Guidelines

22. Planning Controls

Administering Agency
Department of Environment, Land, Water and Planning
Municipal council

Relevant Legislation
Planning and Environment Act 1987
Planning schemes

23. Prisons and Jails

Administering Agency
Department of Justice and Regulation
Corrections Victoria

Relevant Legislation
Corrections Act 1986

24. Radiation Safety

Administering Agency
Department of Health and Human Services

Relevant Legislation
Radiation Act 2005
Radiation Regulations 2017
25. Schools (Non-Government)

Administering Agency
Department of Education and Training
Victorian Registration and Qualifications Authority

Relevant Legislation
Education and Training Reform Act 2006

26. Sanitary Plumbing, Water Supply and Sewerage

Administering Agency
Victorian Building Authority

Relevant Legislation
Building Act 1993
Plumbing Regulations 2018
National Construction Code Volume Three Plumbing Code of Australia
AS/NZS 3500 Plumbing and Drainage

27. Septic Tank Installations

Administering Agency
Environment Protection Authority
Municipal council

Relevant Legislation
Environment Protection Act 1970
Guidelines For Environmental Management: Code of Practice - Onsite wastewater management

28. Smoking Restrictions

Administering Agency
Department of Health and Human Services
Municipal council

Relevant Legislation
Tobacco Act 1987

29. Subdivision of Buildings

Administering Agency
Department of Environment, Land, Water and Planning
Municipal council

Relevant Legislation
Subdivision Act 1988
Introduction

Footnote: Other legislation affecting buildings
This Appendix contains variations and additions to the Building Code of Australia (BCA) provisions which are considered necessary for the effective application of the Code in Western Australia.

These additional provisions are a consolidation of existing building related requirements from the Health (Public Building) Regulations 1992 into the Western Australian Appendix of the BCA.
In addition to any applicable provisions of the Building Act 2011, Building Regulations 2012 and this Code, there are a number of other legislative technical requirements affecting the design, construction and/or performance of buildings that practitioners may need to be aware of, including, but not necessarily limited to, the following list. Additional legislative instruments such as regulations, codes and standards may exist under the legislation listed.

1. Building

Administering Agency
Department of Mines, Industry Regulation and Safety

Relevant Legislation
Building Services (Complaint Resolution and Administration) Act 2011
Building Services (Complaint Resolution and Administration) Regulations 2011
Building Services (Registration) Act 2011
Building Services (Registration) Regulations 2011

2. Caravan Parks and Camping Grounds

Administering Agency
Department of Local Government, Sport and Cultural Industries

Relevant Legislation
Caravan Park and Camping Grounds Act 1995
Caravan Park and Camping Grounds Regulations 1997

3. Child Care

Administering Agency
Department of Communities

Relevant Legislation
Child Care Services Act 2007
Child Care Services Regulations 2007
Child Care Services (Child Care) Regulations 2006

4. Fences

Administering Agency
Department of Mines, Industry Regulation and Safety

Relevant Legislation
Dividing Fences Act 1961

5. Health

Administering Agency
Department of Health
Relevant Legislation
Health (Miscellaneous Provision) Act 1911
Health Act (Laundries & Bathrooms) Regulations
Health Act (Swimming Pools) Regulations 1964
Health (Air Handling and Water Systems) Regulations 1994
Health (Asbestos) Regulations 1992
Health (Aquatic Facilities) Regulations 2007
Health (Construction Work) Regulations 1973
Construction Camp Regulations
Health (Public Buildings) Regulations 1992
Health (Treatment of Sewage and Disposal of Effluent and Liquid Waste) Regulations 1974
Health (Rottnest Island) By-laws 1989
Sewerage (Lighting, Ventilation and Construction) Regulations 1971
Health Local Laws where adopted by Local Government

6. Heritage

Administering Agency
Heritage Council of Western Australia

Relevant Legislation
Heritage of Western Australia Act 1990
Heritage of Western Australia Regulations 1991

7. Hospitals and Health Services

Administering Agency
Department of Health

Relevant Legislation
Private Hospitals and Health Services Act 1927

8. Housing

Administering Agency
Department of Communities

Relevant Legislation
Housing Act 1980

9. Land

Administering Agency
Western Australian Land Information Authority

Relevant Legislation
Strata Titles Act 1985
10. Occupational Health and Safety

Administering Agency
Department of Mines, Industry Regulation and Safety

Relevant Legislation
Occupational Safety and Health Act 1984

11. Planning Controls

Administering Agency
Department of Planning, Lands and Heritage

Relevant Legislation
Planning and Development Act 2005
Planning and Development (Consequential and Transitional Provisions) Act 2005

12. Public Works

Administering Agency
Department of Finance, Building Management and Works

Relevant Legislation
Public Works Act 1902